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Abstract: In this paper, we propose a secondary consensus-based control layer for current
sharing and voltage balancing in DC microGrids (mGs). Differently from existing approaches
based on droop control, we assume decentralized Plug-and-Play (PnP) regulators at the primary
level, as they provide voltage stabilization and their design complexity is independent of the mG
size. We analyze the behavior of the closed-loop mG by approximating local primary control
loops with unitary gains. This analysis can be extended to the more complex case where primary
control loops are abstracted into first-order transfer functions (Tucci et al., 2016a). Besides
showing stability, current sharing, and voltage balancing in the asymptotic régime, we describe
how to design secondary controllers in a PnP fashion when Distributed Generation Units (DGUs)
are added or removed. Theoretical results are complemented by simulations using a 5-DGUs

mG implemented in Simulink/PLECS.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Power generation and distribution are rapidly changing
due to the increasing diffusion of renewable energy sources,
advances in energy storage, and active participation of
consumers to the energy market (Ipakchi and Albuyeh,
2009). This shift of paradigm has motivated the develop-
ment of migroGrids (mGs), commonly recognized as small-
scale power systems integrating Distributed Generation
Units (DGUs), storage devices and loads. Since AC power
generation is the standard for commercial, residential and
industrial utilization, several studies focused on AC mGs
(Guerrero et al., 2013; Riverso et al., 2015; Bolognani and
Zampieri, 2013). However, nowadays, DC energy systems
are gaining interest (Dragicevic et al., 2016) because of the
increasing number of DC loads, the availability of efficient
converters, and the need of interfacing DC energy sources
and batteries with minimal power losses. The basic issues
in control of DC mGs are voltage stabilization (Dragicevic
et al., 2016; Tucci et al., 2016b) and current sharing, the
latter meaning that DGUs must compensate constant load
currents proportionally to given parameters (for exam-
ple, the converter ratings) and independently of the mG
topology and line impedances. Current sharing is crucial
for preserving the safety of the system, as unregulated
currents may overload generators and eventually lead fail-

ures or system blackout (Han et al., 2016). An additional
desirable goal is voltage balancing, i.e. to keep the average
output voltage of DGUs close to a prescribed level. Indeed,
load devices are designed to be supplied by a nominal
reference voltage: it is therefore important to ensure that
the voltages at the load buses are spread around this value.
To realize these objectives, hierarchical control structures
have been proposed. In the primary layer, current sharing
regulation is usually implemented through decentralized
droop controllers. However, droop regulators alone induce
steady-state voltage drifts and might fail to guarantee
voltage stability. For solving this problem, in (Zhao and
Dorfler, 2015; Meng et al., 2016; Andreasson et al., 2014) it
has been proposed to complement them with a secondary
distributed control layer based on consensus algorithms.
The main drawback of these approaches is that voltage
stability critically depends on the communication network,
which can be compromised by faults, delays or cyber
attacks. Moreover, in terms of control design, the tuning of
stabilizing droop and consensus controllers is often done
in a centralized fashion, i.e. exploiting knowledge about
all DGUs and lines (Dragicevic et al., 2016). Synthesis
algorithms of this kind become prohibitive for large mGs or
networks with flexible structure. This motivated the devel-
opment of scalable design procedures for local primary con-
trollers as in (Tucci et al., 2016b) and (Zhao and Dérfler,
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2015). In (Tucci et al., 2016b), the aim is to stabilize the
voltage only via primary decentralized controllers. These
regulators, termed Plug-and-Play (PnP), have the follow-
ing features: (i) the computation of the local controller
for a DGU can be cast into a local optimization problem,
(ii) each optimization problem exploits information about
the DGU only and, at most, the power lines connected to
it, and (iii) when a DGU is plugged-in, only neighboring
DGUs must update their local controllers.

The goal of this paper is to enhance PnP controllers with
secondary regulators in order to achieve current sharing
and voltage balancing. Similarly to (Zhao and Dorfler,
2015), we exploit consensus filters requiring DGUs to
communicate in real-time over a network with arbitrary,
yet connected, topology. There are, however, several dif-
ferences between the approach in (Zhao and Dérfler, 2015)
and the present paper. First, as recalled above, in (Zhao
and Dérfler, 2015) the networked secondary layer is neces-
sary for voltage stability, as primary loops induce steady-
state voltage drifts. In our case, secondary controllers can
be turned off without compromising voltage stability. Sec-
ond, in (Zhao and Dorfler, 2015) DGUs under the action
of primary controllers are abstracted into ideal voltage
regulators. We also use this simplification, but only for
tutorial reasons. In fact, in (Tucci et al., 2016a) we show
that our proof can be extended to the more realistic case
where primary control loops are abstracted into first-order
transfer functions.

At the mathematical level, in order to prove current shar-
ing and voltage balancing, we characterize the eigenstruc-
ture of the product of three matrices (LDM), where L and
M are the graph Laplacians associated to the electrical
and the communication graphs, respectively, and D is a
diagonal positive definite matrix defining the desired ratios
between balanced currents. While several studies focused
on the properties of the product of stochastic matrices (see
e.g. (Jadbabaie et al., 2003)), which are central in discrete-
time consensus, to our knowledge products of Laplacians
received much less attention.

The paper is organized as follows. Section 2 summarizes
the electrical model of DGUs and PnP controllers. The sec-
ondary control layer is developed and analyzed in Section
3 and 4. Section 5 demonstrates current sharing and volt-
age balancing through simulations in Simulink/PLECS
(Allmeling and Hammer, 2013), where non-idealities of
real converters and lines have been taken into account.
Due to space limitations, we omit the proofs and refer to
(Tucci et al., 2016a) for details.

Notation and basic definitions. The cardinality of the
finite set .S will be denoted with |S|. A weighted graph is
a directed graph (digraph) G = (V,E, W) defined by the
set of nodes V = {1,...,n}, the set of edges &€ C V x
V and the diagonal matrix W € RIIXI€] collecting on
its diagonal the weights w; associated to edges e; € &€
(i.e. Wi = w;). The set of neighbors of node ¢ € V
is N, = {j: (5,5) € Eor (j,i) € £}. A digraph G is
weakly connected if its undirected version is connected
(Bullo, 2016). Q(G) € RIVIXI€l is the incidence matrix
of G (Grone et al., 1990). The Laplacian matrix of G
is £(G) = Q(G)WQ(G)T, and it is independent of the
orientation of edges. The average of a vector v € R"
is (v) = L3 v;. We denote with H' the subspace
composed by all vectors with zero average (Bensoussan
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and Menaldi, 2005; Ferrari-Trecate et al., 2006) i.e. H! =
{v € R™: (v) = 0}. The space orthogonal to H' is H!. It
holds H! = {al,, a € R} and dlm(Hl) = 1. Moreover,
the decomposition R» = H' @ H! | is direct, i.e. each vector
v € R™ can always be written in a unique way as

v="0+0 withd € H' and v € HY. (1)

Consider the matrix A € R™*™. With the notation
A(H'|H') we indicate the linear map A : H* — H! (i.e.
the restriction of the map A : R™ — R" to the subspace
H?'). For a subspace V C R", we denote with P, (v) the
projection of v € R™ on V.

Laplacian matrices have key properties summarized in the
next Proposition (Godsil and Royle, 2001; Bensoussan and
Menaldi, 2005).

Proposition 1. For a weakly connected graph G with
weights w; > 0, A = L(G) € R™™ has the following
properties:

(i) it has non positive off-diagonal elements;
D) AMA) > >A21(4) > 0= \y;

) Ker( ) = H1 and Range(A) = H';

) A(H'HY) is 1nvert1ble

(i
(iii

(iv

2. PLUG-AND-PLAY PRIMARY VOLTAGE
CONTROL

2.1 DGU electrical model

Asin (Tucci et al., 2016b), we consider a DC mG composed
of N DGUs, whose electrical scheme is shown in Figure 1.
In each DGU, the generic renewable resource is modeled
as a battery, and a Buck converter is used to supply a local
load connected to the Point of Common Coupling (PCC)
through an RLC filter. Furthermore, we assume that
loads Iy; are unknown and treated as current disturbances
(Tucci et al., 2016b). The controlled variable is the voltage
at each PCC. From Figure 1, by applying Kirchoff’s
voltage and current laws and exploiting Quasi Stationary
Line (QSL) approximation of power lines (Tucci et al.,
2016b), we obtain the following model of DGU !

dV 1 Vi 1
= _ I
hat Z (C“ R;; CtiRij) Cu ©

DGU 7 : JEN;
dIti 1 th 1
Vi Mgy —
dt L ' Lu Ly

where inputs (Vi;, I1;) and V; € N, states (V;,1I;), and
electrical parameters Ry, Cy;, Ly; and R;; are shown in
Figure 1. In particular, Vj is the voltage at the PCC of
each neighboring DGU j € N;.

2.2 Plug-and-play design

In this Section, we briefly summarize the PnP scalable
approach in (Tucci et al., 2016b) for designing primary
decentralized controllers guaranteeing voltage stability in
DC mGs. This will allow us to justify the approximation
of primary controllers used in Section 4.1.

The local regulator of DGU i exploits measurements of
V; and I;; to compute the command Vy; of the -th Buck
converter and make V; track a reference signal Vi..s; (see

1 For the detailed model derivation, we defer the reader to (Tucci
et al., 2016b).
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Buck i

Fig. 1. Electrical scheme of DGU i and local PnP voltage
controller.

Fig. 2. Graph representation of an mG composed of 4
DGUs (in black) and plug-in of DGU 5 (in red).

the scheme in Figure 1). Each controller is composed of
a vector matrix gain K; and an integral action is present
for offset-free voltage tracking. The decentralized design
of these vector gains is the core of PnP methodology. In
particular, as shown in (Tucci et al., 2016b), (i) the design
of K; requires only knowledge of the dynamics of DGU
i and the parameters of power lines connecting it to its
neighbors, and (ii) K; is automatically computed solving
a Linear Matrix Inequality (LMI) problem.

For modeling the interaction of multiple DGUs, we repre-
sent the mG with a directed graph Ge; = (Ver, Eet, W) (see
e.g. Figure 2), where (i) each node is a DGU with local
PnP controller and local current load, (ii) edges (i, j) are
power lines whose orientation define a reference direction
for positive currents, (iii) weights are line conductances 2

R%j, and (iv) we set N = [Vg| and M = |[E.].

Next, we describe how to handle plugging -in/-out of
DGUs while preserving the stability of the mG. Whenever
a DGU (say DGU %) wants to join the network (e.g. DGU
5 in Figure 2), it sends a plug-in request to its future
neighbors, i.e. DGUs j € N; (e.g. DGUs 2 and 4 in Figure
2). Then, each DGU in the set {i} UN; solves the LMI
problem (25) in (Tucci et al., 2016b) that, if feasible,
gives a vector gain K; guaranteeing voltage stability in
the whole mG after the addition of DGU . Otherwise,
if one of the LMIs is infeasible, the plug-in of DGU ¢ is
denied and no update of matrices K, j € N; is performed.
We highlight that, upon the plugging-in of DGU 14, the
update of gains K, j € N is necessary as DGUs j € N;
will be affected by new lines ij. Unplugging of a DGU
(say DGU m) follows a similar procedure. Notably, as
line mk will be disconnected, each DGU k, k € N,,, must
successfully redesign its local controller before allowing the
disconnection of DGU m.

2 Line inductances L;; are neglected as we assume QSL approxima-
tions (Tucci et al., 2016b).
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3. SECONDARY CONTROL BASED ON CONSENSUS
ALGORITHMS

PnP local controllers have the goal of turning DGUs into
controlled voltage generators, i.e. to approximate, as well
as possible, the identity V; = Vicf;. As such, they do not
ensure current sharing and voltage balancing, defined in
the sequel.

Definition 1. For constant load currents I;,i=1,..., N,
current sharing is achieved if, at steady state, the overall
load current is proportionally shared among DGUs, i.e. if
T _ Iy
I I
where I > 0 are scaling factors.

for all 4,5 € V.1, (2)

A practical way to make DGUs share their load currents
proportionally, for instance, to their generation capacity,
is to measure the output currents in per-unit (p.u.),
thus setting each scaling factor I in (2) equal to the
corresponding DGU rated current. On the other hand, if

It =1;,i=1,...,N (i.e. if the scaling factor is the same
for all the DGUs), the current sharing condition becomes

ILi;={Iy) i=1,...,N, (3)
where I, = [Iz1, 12, .., I n]T is the vector of the local

load currents.
Assumption 1. Voltage references are identical for all
DGUs, i.e. Vref,z’ = Vref, Vi € V.
Definition 2. Under Assumption 1, woltage balancing is
achieved if

(V) = Vies. (4)
where vector V. = [V;,Va,...,Vn]T collects the PCC
voltages.

In order to guarantee current sharing and voltage bal-
ancing, we use a consensus-based secondary control layer.
Consensus filters are commonly employed for achieving
global information sharing or coordination through dis-
tributed computations (Bullo, 2016). In our case, as shown
in Figure 3, we adopt the following consensus scheme for
adjusting the references of each PnP voltage regulator

S o <In<t> . IW)) ®
) Is. Is. ’
j=1,j#i ti tj
where a;; > 0 if DGUs ¢ and j are connected by a commu-
nication link (a;; = 0, otherwise) and the coefficient k7 > 0
is common to all DGUs. The use of consensus protocols
has been thoroughly studied for networks of agents with
simple dynamics, e.g. simple integrators (Bullo, 2016),
with the goal of proving convergence of individual states
to a common value. In our case, however, (5) is interfaced
with the mG dynamics and convergence of currents Iy
to the same value does not trivially follow from standard
consensus theory. This property will be analyzed in Section
4.

In the sequel, we assume bidirectional communication, i.e.
aij; = aj;. The corresponding communication digraph is
Ge = (Ver, &, We) where (i,j) € & <= a;; > 0 and
W, = diag{a;;}. Note that the topology of G. and G
can be completely different. From now on, we will make
the following standing assumption.

Assumption 2. The graphs G, and G. are weakly con-
nected.

AV;(t) = kg
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Secondary consensus layer

N—— \
RLfilter | 7, v, ] lineij
=
PnP controller C _l_ ()[m
Primary control layer Buck i DGU i

Fig. 3. Complete hierarchical control scheme of DGU 1.

From a system point of view, the collective dynamics of
the group of DGUs following (5) can be expressed as
AV = — k;L DI, (6)
~—
L
where AV = [AVy,...,AVN]T = V — Vyer, Vier =
Viers Vier.2s - Veepn)'s Ie = I, Ina, ..., Iin]", D =

T ) and L = L(G.). Note that L is the
tN
Laplacian matrix of G, with W, replaced by k;W..

diag (i,

4. MODELING AND ANALYSIS OF THE COMPLETE
SYSTEM

The hierarchical control scheme of a DGU equipped with
primary and secondary regulators is depicted in Figure
3. For studying the behavior of the closed-loop mG, we
approximate PnP-controlled DGUs by unit gains and show
that current sharing and voltage balancing are achieved in
a stable way. For the more complex analysis where pri-
mary control loops are abstracted into first-order transfer
functions, we defer the reader to (Tucci et al., 2016a).

4.1 Unit-gain approximation of PnP-controlled DG Us

By approximating primary PnP loops with ideal unit
gains, we have the relations V; = Vi + AV;, Vi € Ve
Figure 4 shows the resulting control scheme, used for
deriving the dynamics of the overall mG as a function of
the inputs Iy, and Vyer. Starting from the left-hand side
of Figure 4, we have, in order, (6) and

V = AV + Vier. (7)
Then, from basic circuit theory, we derive the relation
between the vector of voltages V and the vector of line
currents Iy = [Iy1, ..., It as
I, =-WBTV, (8)
where W is the weight matrix of G, and B = Q(Gg) is
the incidence matrix of the mG. Next, we get
I; =1y — BI, (9)
and, merging equations (6)-(9), we finally obtain
Y: AV = -LDBWBT AV — LDI;, — LD BWB” V¢
M M
= —-QAV —LDIy, — QVyer
(10)
where M = £(G;) = BWBT is the Laplacian matrix of
the electrical network and Q = LDM. Notice that Q is
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obtained pre- and post- multiplying a diagonal matrix by
a Laplacian (L and M, respectively). It follows that Q is
not a Laplacian matrix itself because it might fail to be
symmetric and have positive off-diagonal entries, even if
weights of G.; and G, are positive. Nevertheless, in the next
Proposition, we show that QQ preserves some key features
of Laplacian matrices.

IpIrs

In
-

Iy Iy
N

-wBT[—| -B

Iin Ion Iiv
)

Fig. 4. Hierarchical control scheme with unit-gain approx-
imation of PnP loops (dashed boxes).

Proposition 2. The matrix Q = LDM has the following
properties:

(i) Ker(Q) = H1;

(ii) Range(Q) = H';

(iii) the linear transformation Q(H*|H!) is invertible;

(iv) Q has real nonnegative eigenvalues;

(v) the zero eigenvalue of Q has algebraic multiplicity
equal to one.

Analysis of equilibria  In order to evaluate the steady-
state behavior of the electrical signals appearing in Figure
4, we study the equilibria of system (10). Hence, for given
constant inputs (If, Vi), we characterize the solutions
AV™ of equation

QAV* = —LDI;, — QVies (11)
and characterize them through the following Proposition.
Proposition 3. For equation (11),

(i) there is only one solution AV ¢ HY;
(ii) all solutions AV* € RY can be written as

AV = AV +aly acR. (12)
Next, we establish relevant properties of the equilibria of
(10).

Proposition 4. Consider system (10) with constant inputs
(I, Vi). Then, current sharing is achieved at steady
state. Moreover, if Vi = Vifly (i.e. Assumption 1
holds) and « in (12) is equal to zero, then the equilibrium

V* verifies the voltage balancing condition (4).

In the sequel, we show the convergence of AV in (10) to
an equilibrium ensuring both current sharing and voltage
balancing for constant I, and Vi = Vicrln.

Stability analysis ~ We first analyze the dynamics of
projections Pp1 (AV) = AV and Py (AV) = AV.
Proposition 5. If AV is given by system ¥ in (10) for
AV(0) = AV, then AV = AV+AV, where AV € H!
and AV € H' fulfill
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oF { AV=0y (13)
V(0) = (AVg)ly
and
s { AV =-QAV-LDIL = QVrer (1)
AV(0) = AV, — AV,

Remark 1. The splitting of ¥ into systems X and 5 implies
that, if AVg has zero average, then AV (¢) has the same
property, V¢ > 0 and irrespectively of inputs (Ir, Vyef)-
This behavior can be realized by suitable initialization of
the integrators appearing in Figure 4.

According to system ¥, the value of P (AV) = AV
remains constant over time and equal to AVg. Hence, in
order to characterize the stability of equilibria (12), it is
sufficient to study the dynamics (14). In an equivalent way,
one can consider system (10) and the following definition
of stability on a subspace.

Definition 3. Let V be a subspace of R™. The origin of
&z = Az, z(t) € R™ is Globally Exponentially Stable
(GES) on V if 3x,np > 0 : [|[Pyz(t)|| < xe || Pz (0)].
The parameter 7 is termed rate of convergence.

Note that X is a linear system and, for stability analysis,
we can neglect inputs, hence obtaining
{ AV = —QAV

AV(0) = AV,.
Theorem 1. The origin of (15) is GES on H'. Moreover,

the rate of convergence is the smallest strictly positive
eigenvalue of Q.

(15)

The above results reveal that, given an initial condition
AV(0) = AV for system (10) and constant inputs I,
and Vi = V..rln, the state AV converges to the
equilibrium (12) with & = (AVy).

Summarizing the main results of this Section, we have that
the consensus scheme described by (5), Assumption 1 and

(AVg) =0 (16)
guarantee the asymptotic achievement of current sharing
and voltage balancing in a GES fashion.

4.2 PnP design of secondary control

We now describe the procedure for designing secondary
controllers in a PnP fashion. We will show that, as for the
PnP design of primary regulators, when a DGU is added
or removed, the secondary control layer can be updated
only locally for preserving current sharing and voltage
balancing. When a DGU (say DGU i) sends a plug-in
request at a time ¢, it choses a set N of communication
neighbors and fixes parameters a;; > 0, Vj € Nf, in order
to design the local consensus filter (5). At the same time,
each DGU j, j € Nf, updates its consensus filter by setting
aj; = a;; in (5). Theorem 1 ensures that the disagreement
dynamics of the mG states is GES, independently of NF.
Let Assumption 1 hold for all the interconnected DGUs in
the mG before # and let us denote the common reference
voltage by Vyer. If DGU ¢ sets Viers = Vier and if we

choose AV;(t) = 0 (thus having ([AV'()T AW(E)]T> =0,
where AV’(f) is the vector AV prior the plugging-in

Michele Tucci et al. / IFAC PapersOnLine 50-1 (2017) 12440—12445

of DGU i), both current sharing and voltage balancing
are preserved in the asymptotic régime (see Proposition
4). The procedure for handling unplugging operations
while ensuring current sharing and voltage balancing is
described in (Tucci et al., 2016a).

5. SIMULATION RESULTS

In this Section, we demonstrate the capability of the pro-
posed control scheme to guarantee current sharing and
voltage balancing when DGUs are added or load changes
occur. Simulations have been performed in Simulink/-
PLECS. We consider an mG composed of 5 DGUs, ar-
ranged as in Figure 5, with non-identical electrical param-
eters and power lines. Notice that some DGUs have more
than one neighbor, hence the impact of couplings on their
dynamics will be larger. Moreover, we choose I}, = I,
i =1,...,5 (thus aiming to achieve the asymptotic cur-
rent sharing condition (3)), and the voltage reference in
Assumption 1 is V,ey = 48 V. All the electrical and
control parameters are collected in Appendix C of (Tucci
et al., 2016a). Simulations have been performed assuming
all-to-all communication among DGUs. In the following,
we describe Figure 6, which illustrates the evolution of
the main electrical quantities (i.e. DGU measured output
currents, PCC voltages and average PCCs voltage) during
the consecutive simulation stages shown in Figure 5.

At time to = 0, all the DGUs are assumed to be isolated
and only the primary PnP voltage regulators are active.
Therefore, as shown in stage 1, (i) each DGU supplies its
local load while keeping the corresponding PCC voltage
at 48 V, and (ii) the DGU output currents are different.
We further highlight that primary controllers have been
designed assuming that all the switches in Figure 5 con-
necting DGUs 1-4 are closed. From (Tucci et al., 2016b),
however, they also stabilize the mG when all switches are
open.

At time t; = 5 s, we connect together subsystems 1-
4 and, according to the previous observation, no update
of local controllers is required. At t; we also activate
the secondary control layer for DGUs 1-4, thus ensuring
asymptotic convergence of the output currents to the same
value (see the plot of I;, stage 2). This is achieved by
adjusting the voltages at PCC (as shown in the plot of
Vpce, stage 2). Furthermore, by setting AV;(t;) = 0,
i = 1,...,4, as described in Section 4.2, condition (16)
is verified and asymptotic voltage balancing is guaranteed
(see Vg, during stage 2).

For evaluating the PnP capabilities of our control scheme,
at to = 16 s, DGU 5 sends a plug-in request to DGU 4. Pre-
vious PnP controllers of DGUs 4 and 5 still fulfill the plug-
in conditions in (Tucci et al., 2016b): they are therefore
maintained and the plug-in of DGU 5 is performed. At the
same time, the secondary controller of DGU 5 is activated,
and then the DGU contributes to current sharing (see the
top plot in Figure 6, stage 3). Furthermore, by setting
AVs(te) = 0, as described in Section 4.2, we can maintain
the average PCCs voltage at 48 V (see V,,, stage 3).
Finally, at t3 = 30 s (stage 4), we halve the load of
DGU 1, thus increasing the corresponding load current Iy,
and causing a peak in the corresponding output current.
However, after few seconds, all the DGUs share again
the total load current, while the averaged PCCs voltage
converges to the reference value.
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c.»ki*k’j |
X ©

STAGE 3

STAGE 4

Fig. 5. Simulation stages: numbered nodes represent DGUs
and black lines denote power lines. The small circle
next to each DGU is green if the secondary con-
trol layer is active for the corresponding unit, red
otherwise. Open switches in stages 1 and 2 denote
disconnected DGUs. The arrow in stage 4 represents
a step up in the load current of DGU 1.

|ST1| sT2 | sT3 | sT4 |
-~ 5 1
< |--..‘-‘-/;:---E=:::::::---._~f e
ol L I
5 10 15 20 25 30 35 40
48.2 ;
EZ T
8 48 ; ;_—____——?\ al
>n_ T
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Fig. 6. Evolution of the output currents, voltages at PCCs
and average PCCs voltage. Lines in the plots of I;
and Vpeoco are color-coded as in Figure 5. Simulation
stages are those in Figure 5.

6. CONCLUSIONS

In this paper, a secondary consensus-based control layer
for current sharing and voltage balancing in DC mGs
has been proposed. Moreover, we presented a method for
designing secondary controllers in a PnP fashion when
new DGUs are added. As regards future developments,
communication delays (Bliman and Ferrari-Trecate, 2008;
Meng et al., 2014), will be included in the mathematical
analysis.
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