

Aalborg Universitet

A Distributed Framework for Social Network Analysis and Visualization

Arroyo, Daniel Ortiz; Larsen, Henrik Legind; Davidsen, Søren Atmakuri

Creative Commons License
Unspecified

Publication date:
2013

Link to publication from Aalborg University

Citation for published version (APA):
Arroyo, D. O., Larsen, H. L., & Davidsen, S. A. (2013). A Distributed Framework for Social Network Analysis and
Visualization.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 13, 2024

https://vbn.aau.dk/en/publications/707d553a-5198-4a87-a452-5b0c2aa5ca94

A Distributed Framework for Social Network Analysis and
Visualization

Daniel Ortiz-Arroyo
do@es.aau.dk

Henrik Legind Larsen
hll@es.aau.dk

Søren Atmakuri Davidsen
sda@es.aau.dk

Computational Intelligence and Security Lab
Department of Electronic Systems

Aalborg University, Esbjerg, Denmark

ABSTRACT
This paper introduces a distributed component for social
network analysis (SNA) and visualization. The component
separates light-weight from heavy-weight computation mea-
sures within a client-server solution.

The component includes a browser-based client that allows
its integration in larger projects. Our current protptype has
been specially designed to ease its integration within the
VIRTUOSO project [4]. The prototype will allow security
analysts to quickly visualize social networks and perform
certain measures on them.

1. INTRODUCTION
In the practical application of social network analysis, an
important issue is how to present the results produced to the
end users. Visualization is one common method employed
in social network analysis to address this problem. There
are plenty of network visualization applications and libraries
such as Netdraw, Socnetv, Jung, Prefuse and Gephi, among
others. However, most of these visualization libraries are
designed for desktop applications.

Browsers have become one of the most popular graphical
user interfaces since they are available not only in personal
computers and tablets but also in mobile phones. Users
ccommonly use them for searching, browsing, entering data
in web portals and reading news.

The goal of the prototype presented in this paper is to cre-
ate a browser-based network visualization tool that addi-
tionally to visualization provides the basic infrastructure for
the analysis of social networks ina distributed environment.

In our recent research work on social network analysis, we
have focused on two main aspects:

1) algorithms to identify sets of key players [3];

2) predicting unobserved connections between players [1].

Further, from our participation in the VIRTUOSO project
[4] we have set up two goals for the prototype:

1) support for visualization in a light-weight browser-based
environment

2) implementation of useful tools for intelligence officers.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces important network measures in a security
context, Section 3 discusses the architecture of our proto-
type and in Section 4 future directions and conclusions are
offered.

2. NETWORK MEASURES IN SECURITY
The types of network calculations (measures) we have im-
plemented in our prototype can be classified as follows:

1) measures which rank nodes;

2) measures which rank edges.

The classification is very general, but fits well for our pur-
poses. In the following paragraphs we give a short intro-
duction to networks and some of the common measures em-
ployed in SNA.

The most common model of a network is an directed weighted
graph G(V,E,w), where V = {v1, v2, ..., vn} is the set of
vertices, E = {e1, e2, ..., em} a set of edges, each edge be-
ing a triplet of the two connecting nodes and their weight
ei = (u, v, w). In our prototype we consider both directed
and undirected graphs, where the undirected is a special
case where (v, u, w) ∈ E ⇔ (u, v, w) ∈ E. Likewise, we con-
sider also unweighted graphs, which is a special case where
∀(u, v, w) ∈ E : w = 1. We can consider the neighborhood
of a node N(v) to be the set of nodes adjacent to v, and the
number of nodes in this set D(v).

2.1 Node Ranking Measures
In ranking nodes we consider two concepts: 1) the centrality
of the node - i.e. how important is it to the functioning of
the network; 2) the hierarchial position in the network.

Node centrality ranking: Node centrality is well-established

within the social network analysis community. It deals with
the problem of identifying individual nodes which are im-
portant within the network context and more generally to
identify groups of important nodes. An example is degree
centrality, which measures number of adjacent nodes. A
high degree centrality means the node is likely to receive
information flowing in the network, hence in an intelligence
context, such node could be a good source of information.
Some classic node centrality measures are seen in Table 1.

Measure Definition

Degree centrality CD(v) = D(v)
n−1

Betweenness centrality CB(v) =
∑
u∈V

∑
z∈V guz(v)

Closeness centrality CC(v) =
∑
u∈V s(v, u)

Eigenvector centrality xi = 1
λ

∑n
j=1 Aijxj

Table 1: Commonly used centrality measures and
their definition. guz(v) = 1 if v ∈ p(u, z) determines if
if a node belongs to a shortest path.

To rank nodes by centrality measures, we normalize the cen-
trality results to the unit-interval and use the result as their
rank. In the special case of finding sets of key players [3],
we consider the rank of a node to be in {0, 1} as seen in Eq.
1.

rskp(v) =

{
1 if v ∈ {key players}
0 otherwise

(1)

Node hierarchial position ranking: This type of ranking has
to do with the organization of the network. If we consider
the organization-chart of a company, it is usally organized
with layers of hierarchies encompassing director, managers,
workers, etc. In intelligence, this hierarchy is rarely known,
so the idea is to extract it from available information.

One approach could be to use node centrality measures to
convert the graph to a directed graph which could then be
transformed to a hierarchial structuring. Another approach
could be to use a directed network to build a measure of
agony, then the hierarchy is defined as the minimum-agony
tree which covers the network [2].

The hierarchy-detecting methods produce a network where
each node has a label equivalent of the level in the hierarchy.
When ranking, we use an unit-interval normalized version of
this level as the rank of the node.

2.2 Edge Ranking Measures
By ranking edges we want to indicate that some edges are
more interesting than others. In our prototype, we consider
two meanings of edge ranking: 1) shortest path ranking; 2)
predicted edges ranking. In the following we describe both
types of edge ranking.

Shortest path ranking: We say a graph has a path from a
source node s to a target node t if there is a sequence of edges
connecting the nodes, (s, u0), (u0, u1), ...(un−1, t) through a
finite set of interconnected nodes. The minimum-length
path between two nodes is called the shortest or geodesic
path, which we denote p(s, t) and it’s length s(s, t).

In shortest path ranking, we rank the shortest path by using
Dijkstra’s algorithm, meaning, when ranking shortest path
of nodes (s, t), any edge has a rank in {0, 1}, as seen in Eq.
2. More generally we can consider algorithms for k-shortest
paths to get an edge rank in the unit interval.

rs,t(e) =

{
1 if e ∈ p(s, t)
0 otherwise

(2)

Predicted edges ranking: Predicting edges in a network can
formally be described as: Given a graph G(V,E), where E
represents the observed edges, how likely is that an unob-
served edge (v, u) 6∈ E may exist between an arbitrary pair
of nodes (v, u). The general approach is to use a scoring
function score(v, u) for the unobserved edge, and by nor-
malizing the scores we get the rank of the unobserved edge.

Several methods exists for predicting edges, for example the
graph structural measure provided by Adamic/Adar [1], as
seen in Eq. 3 and Eq. 4, which considers the number of
common neighbors of a node-pair. N(v) is the set of nodes
connected by a direct edge to v and D(z) is the degree of z
as earlier defined.

scoreAA(v, u) =
∑

z∈N(v)∩N(u)

1

logD(z)
(3)

rAA(e : (v, u)) =
scoreAA(v, u)

max(v,u)∈E scoreAA(v, u)
(4)

Other methods for predicting edges are also worth mention-
ing that depend on data which is not available in our defini-
tion of a graph. For example the temporal edge prediction
in [1], which works on temporal edges where a timestamp
t(e) is available.

3. DESIGN AND ARCHITECTURE
The basic architecture of the complete application is de-
scribed in Figure 1. Open sources are public information
sources available on the Internet, which are gathered through
other processes, normalized and stored in a knowledge base
(KB). Our prototype loads social network structures1 and
allows visualization of the networks and to perform calcula-
tions as mentioned in Section 2.

An important aspect of our prototype is that it runs in a
distributed fashion partially server-side and partially client-
side (in a browser).

The browser is the end-user GUI, where networks can be
loaded (selected from available network views), and the user
can indicate which calculations can be performed on the
network.

When a network-load is requested, the server-side will sup-
ply the network to the browser. When a network calculation

1In future versions the networks will be extracted automat-
ically from the Knowledge Base

Knowledge base

Open
Sources

Figure 1: System architecture overview.

is requested, it can be completed only in the browser or in
the server-side, depending on its complexity.

Figure 2 examplifies this flow:

1. Network data is extracted server-side and sent to browser
for rendering.

2. End-user choose a server-side measure to evaluate on
the network. The browser requests this to the server-
side.

3. Server-side returns the results of the measure, browser
updates the visualized network.

4. End-user choose a client-side measure to evaluate on
the network. The browser calculates and updates the
visualized network.

2. Measure network.

1. Network data.
3. Measure results.

4. Light measure network

Figure 2: Prototype processing flow.

The current prototype performs shortest path and degree
centrality measure calculations on browser-side, everything
else is processed on the server-side.

The implementation of our prototype is done partially in
Java language (server-side) and in Javascript (client-side).

In the Server-side, we use the popular Tomcat web-server to-
gether with Java servlets abd JGraphT and JGraphT-SNA
libraries to represent and perform measures on the network.

On the Client-side, we use HTML5 as much as possible.
Our graph-layout is based on Barnes-Hut2 and web-workers
to make the GUI reponsive to the end-user. The HTML5
canvas-element is used for rendering the network.
2Through the ArborJS library, http://arborjs.org

Figure 3: Screenshot of prototype: Node ranking.

Figure 3 shows a sample screenshot of our prototype in ac-
tion, where a node centrality measure has been calculated
and more non-central to central nodes are displayed using a
green to red gradient.

Figure 4: Screenshot of prototype: Edge ranking.

Figure 4 is another sample screenshot from our prototype, in
which an edge prediction measure has been calculated. The
predicted edges are highlighted with stronger/wider edges
for those which are considered more likely by the chosen
algorithm.

4. FUTURE WORK AND CONCLUSIONS
While our prototype is already functional, it has still plenty
of room for improvements and new features. In the VIRTU-
OSO project, the prototype will be integrated as a SOAP
service that will emply the KB to extract networks in a
JAVA-based portal environment.

In later versions of our prototype we use Java on the server
side and the hybrid JAVA/Javascript framework Google Web
Toolkit (GWT). GWT allows to write all code in JAVA lan-
guage, and translate parts of the application to Javascript
for execution on the browser. This is a good match for the
current architecture of our prototype and will allow us to
use a single language in development. This will have the
additional advantage of making easier to move functionality
from client to server and viceversa. For instance, measures
which work directly on the network should all run in the

http://arborjs.org

browser and measures which require additional information,
available only in the KB will run on the server.

Other features planned include allowing edition of the net-
work by users, not to update the KB, but to ease the work
of the intelligence officers that may want to perform what if
questions and see how the measures change under conditions
that are not available in the KB.

The current prototype offers only few options for working on
really large networks. When extracting networks from the
KB, the extraction will be made for a specific problem, which
limits the size and order of the networks for visualization.
One of the directions of our current research is to handle very
large graphs using client-side techniques such as clustering
nodes or adding zooming capabilities. On the server-side
we would like to make use of a distributed infrastructure
such as Hadoop’s Map/Reduce parallelization, to make the
user-interface work seamiglessly even with very complex and
time-consuming network measures.

Our research is currently centered on hierarchy-detection
methods.

To summarize, we have described a prototyope that em-
ploys a distributed architecture and includes features such
as browser-based network visualization and SNA meatrics.
The prototype helps intelligence officers to visualize and per-
form calculations on social networks. Finally we have dis-
cussed further development of the prototype.

5. REFERENCES
[1] S. A. Davidsen and D. Ortiz-Arroyo. Centrality

robustness and link prediction in complex social
networks, chapter 98. Computer Communications and
Networks. Springer, 2011 (to appear).

[2] M. Gupte, P. Shankar, J. Li, S. Muthukrishnan, and
L. Iftode. Finding hierarchy in directed online social
networks. In Proc. of the 20th international conference
on World wide web, WWW ’11, pages 557–566. ACM,
2011.

[3] D. Ortiz-Arroyo and D. M. A. Hussain. An information
theory approach to identify sets of key players. In
Proceedings of the 1st European Conference on
Intelligence and Security Informatics, EuroISI ’08,
pages 15–26. Springer, 2008.

[4] VIRTUOSO. Versatile InfoRmation Toolkit for
end-Users oriented Open-Sources explOitation. EU
Frame Program 7, 2010.

	Introduction
	Network measures in security
	Node Ranking Measures
	Edge Ranking Measures

	Design and Architecture
	Future work and conclusions
	References

