
 

  

 

Aalborg Universitet

Voronoi-Based Estimation of Minkowski Tensors from Finite Point Samples

Hug, Daniel; Kiderlen, Markus; Svane, Anne Marie

Published in:
Discrete & Computational Geometry

DOI (link to publication from Publisher):
10.1007/s00454-016-9851-x

Creative Commons License
Other

Publication date:
2017

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Hug, D., Kiderlen, M., & Svane, A. M. (2017). Voronoi-Based Estimation of Minkowski Tensors from Finite Point
Samples. Discrete & Computational Geometry, 57(3), 545-570. https://doi.org/10.1007/s00454-016-9851-x

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

https://doi.org/10.1007/s00454-016-9851-x
https://vbn.aau.dk/en/publications/af277915-7b21-4ab9-bc9a-478f129960fb
https://doi.org/10.1007/s00454-016-9851-x


ar
X

iv
:1

51
1.

02
39

4v
2 

 [
m

at
h.

M
G

] 
 2

2 
Ja

n 
20

17

Voronoi-based estimation of Minkowski tensors

from finite point samples

Daniel Hug, Markus Kiderlen, and Anne Marie Svane

March 28, 2018

Abstract

Intrinsic volumes and Minkowski tensors have been used to describe
the geometry of real world objects. This paper presents an estimator
that allows to approximate these quantities from digital images. It is
based on a generalized Steiner formula for Minkowski tensors of sets
of positive reach. When the resolution goes to infinity, the estimator
converges to the true value if the underlying object is a set of positive
reach. The underlying algorithm is based on a simple expression in
terms of the cells of a Voronoi decomposition associated with the image.

1 Introduction

Intrinsic volumes, such as volume, surface area, and Euler characteristic,
are widely-used tools to capture geometric features of an object; see, for
instance, [1, 24, 22]. Minkowski tensors are tensor valued generalizations
of the intrinsic volumes, associating with every sufficiently regular compact
set in R

d a symmetric tensor, rather than a scalar. They carry information
about geometric features of the set such as position, orientation, and eccen-
tricity. For instance, the volume tensor – defined formally in Section 2 – of
rank 0 is just the volume of the set, while the volume tensors of rank 1 and
2 are closely related to the center of gravity and the tensor of inertia, re-
spectively. For this reason, Minkowski tensors are used as shape descriptors
in materials science [29, 31], physics [14], and biology [3, 36].

The main purpose of this paper is to present estimators that approximate
all the Minkowski tensors of a set K when only weak information on K is
available. More precisely, we assume that a finite set K0 which is close to K
in the Hausdorff metric is known. The estimators are based on the Voronoi
decomposition of Rd associated with the finite set K0, following an idea of
Mérigot et al. [21]. What makes these estimators so interesting is that they
are consistent; that is, they converge to the respective Minkowski tensors
of K when applied to a sequence of finite approximations converging to K
in the Hausdorff metric. We emphasize that the notion of ‘estimator’ is
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used here in the sense of digital geometry [17] meaning ‘approximation of
the true value based on discrete input’ and should not be confused with the
statistical concept related to the inference from data with random noise.
The main application we have in mind is the case where K0 is a digitization
of K. This is detailed in the following.

As data is often only available in digital form, there is a need for es-
timators that allow us to approximate the Minkowski tensors from digital
images. In a black-and-white image of a compact geometric object K ⊆ R

d,
each pixel (or voxel) is colored black if its midpoint belongs to K and white
otherwise. Thus, the information about K contained in the image is the set
of black pixel (voxel) midpoints K0 = K ∩ aL, where L is the lattice formed
by all pixel (voxel) midpoints and a−1 is the resolution. A natural criterion
for the reliability of a digital estimator is that it yields the correct tensor
when a → 0+. If this property holds for all objects in a given family of sets,
for instance, for all sets with smooth boundary, then the estimator is called
multigrid convergent for this class.

Digital estimators for the scalar Minkowski tensors, that is, for the
intrinsic volumes, are widespread in the digital geometry literature; see,
e.g., [17, 24, 25] and the references therein. For Minkowski tensors up to
rank two, estimators based on binary images are given in [28] for the two-
dimensional and in [30] for the three-dimensional case. Even for the class of
convex sets, multigrid convergence has not been proven for any of the above
mentioned estimators. The only exception are volume related quantities.
Most of the above mentioned estimators are n-local for some given fixed
n ∈ N. We call an estimator n-local if it depends on the image only through
the histogram of all n×· · ·×n configurations of black and white points. For
instance, a natural surface area estimator [19] in three-dimensional space
scans the image with a voxel cube of size 2 × 2 × 2 and assigns a surface
contribution to each observed configuration. The sum of all contributions
is then the surface area estimator, which is clearly 2-local. The advantage
of n-local estimators is that they are intuitive, easy to implement, and the
computation time is linear in the number of pixels or voxels.

However, many n-local estimators are not multigrid convergent for con-
vex sets; see [32] and the detailed discussion in Section 6. This implies that
many established estimators, like the mentioned one in [19] cannot be multi-
grid convergent for convex sets. All the estimators of 2D-Minkowski tensors
in [28] are 2-local. By the results in [32], the estimators for the perimeter
and the Euler characteristic can thus not be multigrid convergent for convex
sets. The multigrid convergence of the other estimators has not been inves-
tigated. The algorithms for 3D-Minkowski tensors in [30] have as input a
triangulation of the object’s boundary, and the way this triangulation is ob-
tained determines whether the resulting estimators are n-local or not. There
are no known results on multigrid convergence for these estimators either.
Summarizing, to the best of our knowledge, this paper presents for the first
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time estimators of all Minkowski tensors of arbitrary rank that come with
a multigrid convergence proof for a class of sets that is considerably larger
than the class of convex sets.

The present work is inspired by [21], and we therefore start by recalling
some basic notions from this paper. For a nonempty compact set K, the
authors of [21] define a tensor valued measure, which they call the Voronoi

covariance measure, defined on a Borel set A ⊆ R
d by

VR(K;A) =

∫

KR

1A(pK(y))(y − pK(y))(y − pK(y))⊤ dy.

Here, KR is the set of points at distance at most R > 0 from K and pK
is the metric projection on K: the point pK(x) is the point in K closest to
x, provided that this closest point is unique. The metric projection of K is
well-defined on R

d with the possible exception of a set of Lebesgue-measure
zero; see, e.g., [7].

The paper [21] uses the Voronoi covariance measure to determine local
features of surfaces. It is proved there that if K ⊆ R

3 is a smooth surface,
then

VR(K;B(x, r)) ≈ 2π

3
R3r2

(

u(x)u(x)⊤ +
r2

4

∑

i=1,2

ki(x)
2Pi(x)Pi(x)

⊤

)

, (1)

where B(x, r) is the Euclidean ball with midpoint x ∈ K and radius r,
u(x) is one of the two surface unit normals at x ∈ K, P1(x), P2(x) are the
principal directions and k1(x), k2(x) the corresponding principal curvatures.
Hence, the eigenvalues and -directions of the Voronoi covariance measure
carry information about local curvatures and normal directions.

Assuming that a compact set K0 approximates K, [21] suggests to es-
timate VR(K; ·) by VR(K0; ·). It is shown in that paper that VR(K0; ·)
converges to VR(K; ·) in the bounded Lipschitz metric when K0 → K in the
Hausdorff metric. Moreover, if K0 is a finite set, then the Voronoi covariance
measure can be expressed in the form

VR(K0;A) =
∑

x∈K0∩A

∫

B(x,R)∩Vx(K0)
(y − x)(y − x)⊤ dy.

Here, Vx(K0) is the Voronoi cell of x in the Voronoi decomposition of Rd

associated with K0. Thus, the estimator which is used to approximate
VR(K;A) is easily computed. Given the Voronoi cells of K0, each Voronoi
cell contributes with a simple integral. Figure 1 (a) shows the Voronoi cells
of a finite set of points on an ellipse. The Voronoi cells are elongated in
the normal direction. This is the intuitive reason why they can be used to
approximate (1).

The Voronoi covariance measure VR(K;A) can be identified with a sym-
metric 2-tensor. In the present work, we explore how natural extensions of
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(a) (b)

Figure 1: (a). The Voronoi cells of a finite set of points on a surface. (b).
A digital image and the associated Voronoi cells.

the Voronoi covariance measure can be used to estimate general Minkowski
tensors. The generalizations of the Voronoi covariance measure, which we
will introduce, will be called Voronoi tensor measures. We will then show
how the Minkowski tensors can be recovered from these. When we apply
the results to digital images, we will work with full-dimensional sets K, and
the finite point sample K0 is obtained from the representation K0 = K ∩aL
of a digital image of K. The Voronoi cells associated with K0 = K ∩ aL
are sketched in Figure 1 (b). Taking point samples from K with increasing
resolution, convergence results will follow from an easy generalization of the
convergence proof in [21].

The paper is structured as follows: In Section 2, we recall the definition
of Minkowski tensors and the classical as well as a local Steiner formula for
sets of positive reach. In Section 3, we define the Voronoi tensor measures,
discuss how they can be estimated from finite point samples, and explain
how the Steiner formula can be used to connect the Voronoi tensor measures
with the Minkowski tensors. Section 4 is concerned with the convergence
of the estimator. The results are specialized to digital images in Section 5.
Finally, the estimator is compared with existing approaches in Section 6.

2 Minkowski tensors

We work in Euclidean space Rd with scalar product 〈· , ·〉 and norm | · |. The
Euclidean ball with center x ∈ R

d and radius r ≥ 0 is denoted by B(x, r),
and we write Sd−1 for the unit sphere in R

d. Let ∂A and intA be the
boundary and the interior of a set A ⊆ R

d, respectively. The k-dimensional
Hausdorff-measure in R

d is denoted by Hk, 0 ≤ k ≤ d. Let Cd be the family
of nonempty compact subsets of Rd and Kd ⊆ Cd the subset of nonemtpy
compact convex sets. For two compact sets K,M ∈ Cd, we define their
Hausdorff distance by

dH(K,M) = inf{ε > 0 | K ⊆ M ε,M ⊆ Kε}.
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Let Tp denote the space of symmetric p-tensors (tensors of rank p) over
R
d. Identifying R

d with its dual (via the scalar product), a symmetric p-
tensor defines a symmetric multilinear map (Rd)p → R. Letting e1, . . . , ed
be the standard basis in R

d, a tensor T ∈ T
p is determined by its coordinates

Ti1...ip = T (ei1 , . . . , eip)

with respect to the standard basis, for all choices of i1, . . . , ip ∈ {1, . . . , d}.
We use the norm on T

p given by

|T | = sup
{

|T (v1, . . . , vp)| | |v1| = · · · = |vp| = 1
}

for T ∈ T
p. The same definition is used for arbitrary tensors of rank p.

The symmetric tensor product of y1, . . . , ym ∈ R
d is given by the sym-

metrization y1⊙· · ·⊙ym = (m!)−1
∑⊗m

i=1yσ(i), where the sum extends over
all permutations σ of {1, . . . ,m} and ⊗ is the usual tensor product. We write
xr for the r-fold tensor product of x ∈ R

d. For two symmetric tensors of the
form T1 = y1 ⊙ · · · ⊙ yr and T2 = yr+1 ⊙ · · · ⊙ yr+s, where y1, . . . , yr+s ∈ R

d,
the symmetric tensor product T1 ⊙ T2 of T1 and T2, which we often ab-
breviate by T1T2, is the symmetric tensor product of y1, . . . , yr+s. This is
extended to general symmetric tensors T1 and T2 by linearity. Moreover, it
follows from the preceding definitions that

|y1 ⊙ · · · ⊙ ym| ≤ |y1| · · · |ym|,

y1, . . . , ym ∈ R
d.

For any compact set K ⊆ R
d, we can define an element of Tr called the

rth volume tensor

Φr,0
d (K) =

1

r!

∫

K
xr dx.

For s ≥ 1 we define Φr,s
d (K) = 0. Some of the volume tensors have well-

known physical interpretations. For instance, Φ0,0
d (K) is the usual volume

of K, Φ1,0
d (K) is up to normalization the center of gravity, and Φ2,0

d (K) is
closely related to the tensor of inertia. All three tensors together can be used
to find the best approximating ellipsoid of a particle [36]. The sequence of
all volume tensors (Φr,0

d (K))∞r=0 determines the compact set K uniquely. For
convex sets in the plane even the following stability result [10, Remark 4.4.]
holds: If K,L ∈ K2 are contained in the unit square and have coinciding
volume tensors up to rank r, then their distance, measured in the symmetric
difference metric H2

(

(K \ L) ∪ (L \K)
)

, is of order O(r−1/2) as r → ∞.
We will now define Minkowski surface tensors. These can also be used to

characterize the shape of an object or the structure of a material as in [3, 14].
They require stronger regularity assumptions on K. Usually, like in [26,
Section 5.4.2], the set K is assumed to be convex. However, as Minkowski
tensors are tensor-valued integrals with respect to the generalized curvature
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measures (also called support measures) of K, they can be defined whenever
the latter are available. We will use this to define Minkowski tensors for sets
of positive reach.

First, we recall the definition of a set of positive reach and explain how
curvature measures of such sets are determined (see [8, 35]). For a compact
set K ∈ Cd, we let dK(x) denote the distance from x ∈ Rd to K. Then,
for R ≥ 0, KR = {x ∈ R

d | dK(x) ≤ R} is the R-parallel set of K. The
reach Reach(K) of K is defined as the supremum over all R ≥ 0 such that
for all x ∈ R

d with dK(x) < R there is a unique closest point pK(x) in
K. We say that K has positive reach if Reach(K) > 0. Smooth surfaces
(of class C1,1) are examples of sets of positive reach, and compact convex
sets are characterized by having infinite reach. By definition, the map pK
is defined everywhere on KR if R < Reach(K). Let K ⊆ R

d be a (compact)
set of positive reach. The (global) Steiner formula for sets with positive
reach states that for all R < Reach(K) the R-parallel volume of K is a
polynomial, that is,

Hd(KR) =

d
∑

k=0

κd−kR
d−kΦ0,0

k (K). (2)

Here κj is the volume of the unit ball in R
j and the numbers Φ0,0

0 (K), . . . ,

Φ0,0
d (K) are the so-called intrinsic volumes of K. They are special cases of

the Minkowski tensors to be defined below. Some of them have well-known
interpretations. As mentioned, Φ0,0

d (K) is the volume of K. Moreover,

2Φ0,0
d−1(K) is the surface area, Φ0,0

d−2(K) is proportional to the total mean

curvature, and Φ0,0
0 (K) is the Euler characteristic of K. For convex sets, (2)

is the classical Steiner formula which holds for all R ≥ 0.
Zähle [35] showed that a local version of (2) can be established giving

rise to the generalized curvature measures Λk(K; ·) of K, for k = 0, . . . , d−1.
An extension to general closed sets is considered in [12]. The generalized
curvature measures (also called support measures) are measures on Σ =
R
d × Sd−1. They are determined by the following local Steiner formula

which holds for all R < Reach(K) and all Borel set B ⊆ Σ:

Hd
({

x ∈ KR\K |
(

pK(x), x−pK(x)
|x−pK(x)|

)

∈ B
})

=
d−1
∑

k=0

Rd−kκd−kΛk(K;B).

(3)
The coefficients Λk(K;B) on the right side of (3) are signed Borel measures
Λk(K; ·) evaluated on B ⊆ Σ. These measures are called the generalized

curvature measures of K. Since the pairs of points in B on the left side
of (3) always consist of a boundary point of K and an outer unit normal
of K at that point, each of the measures Λk(K, ·) is concentrated on the
set of all such pairs. For this reason, the generalized curvature measures
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Λk(K; ·), k ∈ {0, . . . , d−1}, are also called support measures. They describe
the local boundary behavior of the part of ∂K that consists of points x
with an outer unit normal u such that (x, u) ∈ B. A description of the
generalized curvature measures Λk(K, ·) by means of generalized curvatures
living on the normal bundle of K was first given in [35] (see also [26, §2.5
and p. 217] and the references given there). The total measures Λk(K,Σ)
are the intrinsic volumes.

Based on the generalized curvature measures, for every k ∈ {0, . . . , d−1},
r, s ≥ 0 and every set K ⊆ R

d with positive reach, we define the Minkowski

tensor

Φr,s
k (K) =

1

r!s!

ωd−k

ωd−k+s

∫

Σ
xrusΛk(K; d(x, u))

in T
r+s. Here ωk is the surface area of the unit sphere Sk−1 in R

k. More
information on Minkowski tensors can for instance be found in [13, 20,
27, 15]. As in the case of volume tensors, the Minkowski tensors carry
strong information on the underlying set. For instance, already the sequence
(Φ0,s

1 (K))∞s=0 determines any K ∈ Kd up to a translation. A stability re-
sult also holds: if K and L are both contained in a fixed ball and have
the same tensors Φ0,s

1 of rank s ≤ s0, then a translation of K is close to

L in the Hausdorff metric and the distance is O(s−β
0 ) as s0 → ∞ for any

0 < β < 3/(n + 1); see [18, Theorem 4.9].
One can define local Minkowski tensors in a similar way (see [11]). For

a Borel set B ⊆ Σ, for k ∈ {0, . . . , d − 1}, r, s ≥ 0 and a set K ⊆ R
d with

positive reach, we put

Φr,s
k (K;B) =

1

r!s!

ωd−k

ωd−k+s

∫

B
xrus Λk(K; d(x, u))

and, for a Borel set A ⊆ R
d,

Φr,0
d (K;A) =

1

r!

∫

K∩A
xr dx.

In order to avoid a distinction of cases, we also write Φr,0
d (K;A × Sd−1)

instead of Φr,0
d (K;A). Moreover, we define Φr,s

d (K; ·) = 0 if s ≥ 1. The
local Minkowski tensors can be used to describe local boundary properties.
For instance, local 1- and 2-tensors are used for the detection of sharp edges
and corners on surfaces in [6]. They also carry information about normal
directions and principal curvatures as explained in the introduction.

We conclude this section with a general remark on continuity proper-
ties of the Minkowski tensors. Although the functions K 7→ Φr,s

k (K) are
continuous when considered in the metric space (Kd, dH), they are not con-
tinuous on Cd. (For instance, the volume tensors of a finite set are always
vanishing, but finite sets can be used to approximate any compact set in
the Hausdorff metric.) This is the reason why our approach requires an
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approximation argument with parallel sets as outlined below. The consis-
tency of our estimator is mainly based on a continuity result for the metric
projection map. We quote this result [4, Theorem 3.2] in a slightly different
formulation which is symmetric in the two bodies involved. Let ‖f‖L1(E) be

the usual L1-norm of the restriction of f to a Borel set E ⊆ R
d.

Proposition 2.1. Let ρ > 0 and let E ⊆ R
d be a bounded measurable set.

Then there is a constant C1 = C1 (d,diam(E ∪ {0}), ρ) > 0 such that

‖pK − pK0
‖L1(E) ≤ C1dH(K,K0)

1

2

for all K,K0 ∈ Cd with K,K0 ⊆ B(0, ρ).

Proof. Let E′ be the convex hull of E and observe that

‖pK − pK0
‖L1(E) ≤ ‖pK − pK0

‖L1(E′).

It is shown in [4, Lemma 3.3] (see also [8, Theorem 4.8]) that the map
vK : Rd → R given by vK(x) = |x|2 − d2K(x) is convex and that its gradient
coincides almost everywhere with 2pK . Since E′ has rectifiable boundary,
[4, Theorem 3.5] implies that

‖pK − pK0
‖L1(E′) ≤ c1(d)(Hd(E′) + (c2 + ‖d2K − d2K0

‖
1

2

∞,E′)Hd−1(∂E′))

× ‖d2K − d2K0
‖

1

2

∞,E′ .

Here c2 = diam(2pK(E′) ∪ 2pK0
(E′)) ≤ 2 diam(K ∪ K0) ≤ 4ρ and the

supremum-norm ‖ · ‖∞,E′ on E′ can be estimated by

‖d2K − d2K0
‖∞,E′ ≤ 2 diam(E′ ∪K ∪K0)‖dK − dK0

‖∞,E′

≤ 2
[

diam(E′ ∪ {0}) + 2ρ
]

dH(K,K0).

Moreover, intrinsic volumes are increasing on the class of convex sets, so

Hd(E′) ≤ Hd(B(0,diam(E′ ∪ {0})))
Hd−1(∂E′) ≤ Hd−1(∂B(0,diam(E′ ∪ {0}))).

Together with the trivial estimate dH(K,K0) ≤ 2ρ and with the equality
diam(E ∪ {0}) = diam(E′ ∪ {0}), this yields the claim.

The authors of [4] argue that the exponent 1/2 in Proposition 2.1 is best
possible.

3 Construction of the estimator

In Section 3.1 below, we define the Voronoi tensor measures and show how
the Minkowski tensors can be obtained from these. We then explain in Sec-
tion 3.2 how the Voronoi tensor measures can be estimated from finite point
samples. As a special case, we obtain estimators for all intrinsic volumes.
This is detailed in Section 3.3.
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3.1 The Voronoi tensor measures

Let K be a compact set. Here and in the following subsections, we let
r, s ∈ N0 and R ≥ 0. Define the T

r+s-valued measures Vr,s
R (K; ·) given on a

Borel set A ⊆ R
d by

Vr,s
R (K;A) =

∫

KR

1A(pK(x)) pK(x)r(x− pK(x))s dx. (4)

When K is a smooth surface, V0,2
R (K; ·) corresponds to the Voronoi covari-

ance measure in [21]. We will refer to the measures defined in (4) as the
Voronoi tensor measures. Note that if f : R

d → R is a bounded Borel
function, then

∫

Rd

f(x)Vr,s
R (K; dx) =

∫

KR

f(pK(x)) pK(x)r(x− pK(x))s dx ∈ T
r+s. (5)

Suppose now that K has positive reach with Reach(K) > R. Then a
special case of the generalized Steiner formula derived in [12] (or an extension
of (3)) implies the following version of the local Steiner formula for the
Voronoi tensor measures:

Vr,s
R (K;A) =

d
∑

k=1

ωk

∫

Σ

∫ R

0
1A(x)t

s+k−1xrus dtΛd−k(K; d(x, u))

+ 1{s=0}

∫

K∩A
xr dx

= r!s!

d
∑

k=0

κk+sR
s+kΦr,s

d−k(K;A× Sd−1), (6)

where A ⊆ R
d is a Borel set. In particular, the total measure is

Vr,s
R (K) = Vr,s

R (K;Rd) = r!s!
d

∑

k=0

κk+sR
s+kΦr,s

d−k(K).

Note that the special case r = s = 0 is the Steiner formula (2) for sets with
positive reach.

Equation (6), used for different parallel distances R, can be solved for the
Minkowski tensors. More precisely, choosing d+1 different values 0 < R0 <
. . . < Rd < Reach(K) for R, we obtain a system of d+ 1 linear equations:







Vr,s
R0

(K;A)
...

Vr,s
Rd

(K;A)






= r!s!







κsR
s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d













Φr,s
d (K;A× Sd−1)

...
Φr,s
0 (K;A× Sd−1)






.

(7)
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Since the Vandermonde-type matrix

Ar,s
R0,...,Rd

= r!s!







κsR
s
0 . . . κs+dR

s+d
0

...
...

κsR
s
d . . . κs+dR

s+d
d






∈ R

(d+1)×(d+1) (8)

in (7) is invertible, the system can be solved for the tensors, and thus we
get







Φr,s
d (K;A×Sd−1)

...
Φr,s
0 (K;A×Sd−1)






=

(

Ar,s
R0,...,Rd

)−1







Vr,s
R0

(K;A)
...

Vr,s
Rd

(K;A)






. (9)

If s > 0, then Φr,s
d (K;A × Sd−1) = 0 by definition, so we may omit one of

the equations in the system (7).

3.2 Estimation of Minkowski tensors

Let K be a compact set of positive reach. Suppose that we are given a com-
pact set K0 that is close to K in the Hausdorff metric. In the applications
we have in mind, K0 is a finite subset of K, but this is not necessary for the
algorithm to work. Based on K0, we want to estimate the local Minkowski
tensors of K. We do this by approximating Vr,s

Rk
(K;A) in Formula (9) by

Vr,s
Rk

(K0;A), for k = 0, . . . , d and A ⊆ R
d a Borel set. This leads to the

following set of estimators for Φr,s
k (K;A× Sd−1), k ∈ {0, . . . , d}:







Φ̂r,s
d (K0;A× Sd−1)

...

Φ̂r,s
0 (K0;A× Sd−1)






=

(

Ar,s
R0,...,Rd

)−1







Vr,s
R0

(K0;A)
...

Vr,s
Rd

(K0;A)






(10)

with Ar,s
R0,...,Rd

given by (8). Setting A = R
d in (10), we obtain estimators

Φ̂r,s
k (K0) = Φ̂r,s

k (K0;R
d × Sd−1)

of the intrinsic volumes. Note that this approach requires an estimate for
the reach of K because we need to choose 0 < R0 < · · · < Rd < Reach(K).
The idea to invert the Steiner formula is not new. It was used in [4] to
approximate curvature measures of sets of positive reach. In [16] and [23] it
was used to estimate intrinsic volumes but without proving convergence for
the resulting estimator.

We now consider the case where K0 is finite. Let

Vx(K0) = {y ∈ R
d | pK0

(y) = x}

denote the Voronoi cell of x ∈ K0 with respect to the set K0. Since R
d is

the union of the finitely many Voronoi cells of K0, it follows that K
R
0 is the

10



Figure 2: The Voronoi decomposition (blue lines) and R-parallel set (red
curve) associated with a digital image.

union of the R-bounded parts B(x,R)∩Vx(K0), x ∈ K0, of the Voronoi cells
Vx(K0), x ∈ K0, which have pairwise disjoint interiors. Thus (4) simplifies
to

Vr,s
R (K0;A) =

∑

x∈K0∩A

xr
∫

B(x,R)∩Vx(K0)
(y − x)s dy. (11)

Like the Voronoi covariance measure, the Voronoi tensor measure Vr,s
R (K0;A)

is a sum of simple contributions from the individual Voronoi cells.
An example of a Voronoi decomposition associated with a digital image

is sketched in Figure 2. The original set K is the disk bounded by the inner
black circle, and the disk bounded by the outer black circle is its R-parallel
set KR. The finite point sample is K0 = K ∩ Z

2, which is shown as the set
of red dots in the picture, and the red curve is the boundary of its R-parallel
set. The Voronoi cells of K0 are indicated by blue lines. The R-bounded
part of one of the Voronoi cells is the part that is cut off by the red arc.

3.3 The case of intrinsic volumes

Recall that Φ0,0
k (K) = Λk(K;Rd) is the kth intrinsic volume. Thus, Section

3.2 provides estimators for all intrinsic volumes as a special case. This case
is particularly simple. The measure V0,0

R (K;A) is simply the volume of a
local parallel set

V0,0
R (K;A) = Hd

(

{x ∈ KR | pK(x) ∈ A}
)

,

V0,0
R (K) = Hd(KR).

11



In particular, if K ⊆ R
d is a compact set with Reach(K) > R, then Equa-

tion (6) reduces to the usual local Steiner formula

Hd({x ∈ KR | pK(x) ∈ A}) =
d

∑

k=0

κkR
kΛd−k(K;A× Sd−1),

and to the (global) Steiner formula (2) if A = R
d.

In this case, our algorithm approximates the parallel volume Hd(KR)
by Hd(KR

0 ). In the example in Figure 2, this corresponds to approximating
the volume of the larger black disk by the volume of the region bounded by
the red curve. This volume is again the sum of the volumes of the regions
bounded by the red and blue curves. In other words, it is the sum of volumes
of the R-bounded Voronoi cells on the right-hand side of the equation

V0,0
R (K0;A) =

∑

x∈K0∩A

Hd(B(x,R) ∩ Vx(K0)).

3.4 Estimators for general local Minkowski tensors

In Section 3.2 we have only considered estimators for local tensors of the
form Φr,s

k (K;A × Sd−1), where K ⊆ R
d is a set with positive reach. The

natural way to estimate Φr,s
k (K;B), for a measurable set B ⊆ Σ, would be

to copy the idea in Section 3.2 with Vr,s
R (K;A) replaced by the following

generalization of the Voronoi tensor measures,

Wr,s
R (K;B) =

∫

KR\K
1B(pK(x), uK(x))pK(x)r(x− pK(x))s dx, (12)

where uK(x) = (x− pK(x))/|x− pK(x)| estimates the normal direction. Of
course, this definition works for any K ∈ Cd. Moreover, we could define
estimators related to (12) whenever we have a set K0 which approximates
K. However, even if K has positive reach, the map x 7→ uK(x) is not
Lipschitz on KR\K, and therefore the convergence results in Section 4 will
not work with this definition. Since the map x 7→ uK(x) is Lipschitz on
KR\KR/2, it is natural to proceed as follows. For any K ∈ Cd, we define

Vr,s
R (K;B) =

∫

KR\KR/2

1B(pK(x), uK(x))pK(x)r(x− pK(x))s dx. (13)

Note that
Vr,s
R (K; ·) = Wr,s

R (K; ·)−Wr,s
R/2(K; ·), (14)

whereWr,s
R (K; ·) is defined as in (12). We will not use the notationWr,s

R (K; ·)
in the following. If K has positive reach and 0 < R < reach(K), then the
generalized Steiner formula yields

Vr,s
R (K;B) = r!s!

d
∑

k=1

κs+kR
s+k(1− 2−(s+k))Φr,s

d−k(K;B).

12



Again, choosing 0 < R1 < . . . < Rd < reach(K), we can recover the
Minkowski tensors from







Φr,s
d−1(K;B)

...
Φr,s
0 (K;B)






=

(

A
r,s
R1,...,Rd

)−1







Vr,s
R1

(K;B)
...

Vr,s
Rd

(K;B)







where

A
r,s
R1,...,Rd

=
1

r!s!







κs+1(1− 2−(s+1))Rs+1
1 . . . κs+d(1− 2−(s+d))Rs+d

1
...

...

κs+1(1− 2−(s+1))Rs+1
d . . . κs+d(1− 2−(s+d))Rs+d

d







is a regular matrix. Using this, we can define estimators for Φr,s
k (K;B), for

0 ≤ k ≤ d− 1, by







Φ
r,s
d−1(K0;B)

...

Φ
r,s
0 (K0;B)






=

(

A
r,s
R1,...,Rd

)−1







Vr,s
R1

(K0;B)
...

Vr,s
Rd

(K0;B)






,

where K0 is a compact set which approximates K. Convergence of these
modified estimators will be discussed in Section 4.

The estimators Φ
r,s
k can be used to approximate local tensors of the form

Φr,s
k (K;B) where the set B ⊆ Σ involves normal directions. Thus, they are

more general than Φ̂r,s
k . However, (14) shows that estimating Vr,s

R (K;B)
requires an approximation of two parallel sets, rather than one. We therefore
expect more severe numerical errors for Φ

r,s
k .

4 Convergence properties

In this section we prove the main convergence results. This is an immediate
generalization of [21, Theorem 5.1].

4.1 The convergence theorem

For a bounded Lipschitz function f : Rd → R, we let |f |∞ denote the usual
supremum norm,

|f |L = sup

{ |f(x)− f(y)|
|x− y| | x 6= y

}

the Lipschitz semi-norm, and

|f |bL = |f |L + |f |∞

13



the bounded Lipschitz norm. Let dbL be the bounded Lipschitz metric on
the space of bounded T

p-valued Borel measures on R
d. For any two such

measures µ and ν on R
d, the distance with respect to dbL is defined by

dbL(µ, ν) = sup

{∣

∣

∣

∣

∫

f dµ−
∫

f dν

∣

∣

∣

∣

| |f |bL ≤ 1

}

,

where the supremum extends over all bounded Lipschitz functions f : Rd →
R with |f |bL ≤ 1. The following theorem shows that the map

K 7→ Vr,s
R (K; ·)

is Hölder continuous with exponent 1
2 with respect to the Hausdorff metric on

Cd (restricted to compact subsets of a fixed ball) and the bounded Lipschitz
metric. In the proof, we use the symmetric difference A∆B = (A\B)∪(B\A)
of sets A,B ⊆ R

d.

Theorem 4.1. Let R, ρ > 0 and r, s ∈ N0 be given. Then there is a positive

constant C2 = C2(d,R, ρ, r, s) such that

dbL(Vr,s
R (K; ·),Vr,s

R (K0; ·)) ≤ C2dH(K,K0)
1

2

for all compact sets K,K0 ⊆ B(0, ρ).

Proof. Let f with |f |bL ≤ 1 be given. Then (5) yields

∣

∣

∣

∣

∫

Rd

f(x)Vr,s
R (K; dx)−

∫

Rd

f(x)Vr,s
R (K0; dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

KR

f(pK(x)) pK(x)r(x− pK(x))s dx

−
∫

KR
0

f(pK0
(x))pK0

(x)r(x− pK0
(x))s dx

∣

∣

∣

∣

≤ I + II, (15)

where I is the integral

∫

KR∩KR
0

|f(pK(x))pK(x)r(x− pK(x))s − f(pK0
(x)) pK0

(x)r(x− pK0
(x))s| dx

and

II = ρrRsHd(KR∆KR
0 ).

By [4, Corollary 4.4], there is a constant c1 = c1(d,R, ρ) > 0 such that

Hd(KR∆KR
0 ) ≤ c1 dH(K,K0) (16)

14



when dH(K,K0) ≤ R/2. Replacing c1 by a possibly even bigger constant,
we can ensure that (16) also holds when R/2 ≤ dH(K,K0) ≤ 2ρ. Hence,

II ≤ c2 dH(K,K0)
1

2 (17)

with some constant c2 = c2(d,R, ρ, r, s) > 0.
Using the inequalities (and interpreting empty products as 1)

∣

∣

∣

∣

m
⊙

i=1

yi −
m
⊙

i=1

zi

∣

∣

∣

∣

≤
∣

∣

∣

∣

m
⊗

i=1

yi −
m
⊗

i=1

zi

∣

∣

∣

∣

≤
m
∑

j=1

|yj − zj |
j−1
∏

i=1

|yi|
m
∏

i=j+1

|zi|, (18)

with m = r + s and the rank-one tensors

y1 = . . . = yr = pK(x), yr+1 = . . . = yr+s = x− pK(x),
z1 = . . . = zr = pK0

(x), zr+1 = . . . = zr+s = x− pK0
(x),

we get

|f(pK(x)) pK(x)r(x− pK(x))s − f(pK0
(x)) pK0

(x)r(x− pK0
(x))s|

≤ |f(pK(x))− f(pK0
(x))||pK(x)|r|x− pK(x)|s

+ |f(pK0
(x))|

r
∑

j=1

|pK(x)− pK0
(x)||pK(x)|j−1|pK0

(x)|r−j |x− pK0
(x)|s+

+ |f(pK0
(x))|

s
∑

j=1

|pK(x)− pK0
(x)||pK(x)|r|x− pK(x)|j−1|x− pK0

(x)|s−j .

Since we assumed that |f |bL ≤ 1, we get

I ≤ (r + s+ 1)max{ρ, 1}r max{R, 1}s
∫

KR∩KR
0

|pK(x)− pK0
(x)| dx

≤ c3 dH(K,K0)
1

2 . (19)

The existence of the constant c3 = c3(d,R, ρ, r, s) in the last inequality is
guaranteed by Proposition 2.1 with KR ∩ KR

0 as the set E, because this
choice of E satisfies diam(E ∪ {0}) ≤ 2(ρ+R).

When r = s = 0 and f = 1, the above proof simplifies to Inequality (16)
as I vanishes. Hence we obtain the following strengthening of the theorem,
which is relevant for the estimation of intrinsic volumes.

Theorem 4.2. Let R, ρ > 0. Then there is a constant C3 = C3(d,R, ρ) > 0
such that

∣

∣

∣V0,0
R (K)− V0,0

R (K0)
∣

∣

∣ ≤ C3 dH(K,K0)

for all compact sets K,K0 ⊆ B(0, ρ).
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For local tensors, the proof of Theorem 4.1 can also be adapted to show
a convergence result.

Theorem 4.3. Let r, s ∈ N0 and R > 0. If Ki → K with respect to the

Hausdorff metric on Cd, as i → ∞, then Vr,s
R (Ki;A) → Vr,s

R (K;A) in the

tensor norm, for every Borel set A ⊆ R
d which satisfies

Hd(p−1
K (∂A) ∩KR) = 0. (20)

Proof. Convergence of tensors is equivalent to coordinate-wise convergence.
Hence, it is enough to show that the coordinates satisfy

Vr,s
R (Ki;A)i1...ir+s → Vr,s

R (K;A)i1...ir+s as i → ∞,

for all choices of indices i1 . . . ir+s; see the notation at the beginning of
Section 2.

We write TK(x) = pK(x)r(x− pK(x))s. Then

Vr,s
R (K;A)i1...ir+s =

∫

KR

1A(pK(x))TK(x)i1...ir+s dx

is a signed measure. Let TK(x)+i1...ir+s
and TK(x)−i1...ir+s

denote the positive
and negative part of TK(x)i1...ir+s, respectively. Then

Vr,s
R (K;A)±i1...ir+s

=

∫

KR

1A(pK(x))TK(x)±i1...ir+s
dx

are non-negative measures such that

Vr,s
R (K; ·)i1...ir+s = Vr,s

R (K; ·)+i1...ir+s
− Vr,s

R (K; ·)−i1...ir+s
.

The proof of Theorem 4.1 can immediately be generalized to show that
Vr,s
R (Ki; ·)±i1...ir+s

converges to Vr,s
R (K; ·)±i1...ir+s

in the bounded Lipschitz norm
(as i → ∞), and hence the measures converge weakly. In particular, they
converge on every continuity set of Vr,s

R (K; ·)±i1...ir+s
. If Hd(p−1

K (∂A)∩KR) =
0, then A is such a continuity set.

Remark 4.4. Though relatively mild, the condition Hd(p−1
K (∂A)∩KR) = 0

can be hard to control if K is unknown. It is satisfied if, for instance, K
and A are smooth and their boundaries intersect transversely. A special
case of this is when K is a smooth surface and A is a small ball centered on
the boundary of K. This is the case in the application from [21] that was
described in the introduction. Examples where it is not satisfied are when
A = K or when K is a polytope intersecting ∂A at a vertex.

Remark 4.5. Let f : Rd → R be a bounded measurable function. We
define

Vr,s
R (K; f) :=

∫

Rd

f(x)Vr,s
R (K; dx).
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Hence Vr,s
R (K;A) = Vr,s

R (K;1A) for every Borel set A ⊆ R
d. Then, Theorem

4.3 is equivalent to saying that, for all continuous test functions f : Rd → R,

Vr,s
R (Ki; f) → Vr,s

R (K; f), as i → ∞,

in the tensor norm, whenever Ki → K with respect to the Hausdorff metric
on Cd, as i → ∞. Thus, if one is interested in the local behaviour of Φr,s

k (K; ·)
at a neighborhood A, like in [21], then one can study

Φr,s
k (K; f) :=

∫

Σ
f(x)xrus Λk(K; d(x, u)),

where f is a continuous function with support in A. This avoids the extra
condition (20).

As the matrix Ar,s
R0,...,Rd

in the definition (10) of Φ̂r,s
k (K0;A×Sd−1) does

not depend on the set K0, the above results immediately yield a consistency
result for the estimation of the Minkowski tensors. We formulate this only
for A = R

d.

Corollary 4.6. Let ρ > 0 and K be a compact subset of B(0, ρ) of positive
reach such that Reach(K) > Rd > . . . > R0 > 0. Let K0 ⊆ B(0, ρ) be a

compact set. Then there is a constant C4 = C4(d,R0, . . . , Rd, ρ) such that

∣

∣

∣
Φ̂0,0
k (K0)− Φ0,0

k (K)
∣

∣

∣
≤ C4 dH(K0,K),

for all k ∈ {0, . . . , d}.
For r, s ∈ N0 there is a constant C5 = C5(d,R0, . . . , Rd, ρ, r, s) such that

∣

∣

∣Φ̂
r,s
k (K0)− Φr,s

k (K)
∣

∣

∣ ≤ C5 dH(K0,K)
1

2 ,

for all k ∈ {0, . . . , d− 1}.

Finally, we state the convergence results for the modified estimators for
Φr,s
k (K;B), where B ⊆ Σ is a Borel set, that were defined in Section 3.4. The

map x 7→ x/|x| is Lipschitz on R
d\ int(B(0, R/2)) with Lipschitz constant

4/R, and therefore the mapping uK , which was defined after (12), satisfies

|uK(x)− uK0
(x)| ≤ 4

R |pK(x)− pK0
(x)|,

for x ∈ (KR\KR/2) ∩ (KR
0 \K

R/2
0 ). Moreover,

(

KR\KR/2
)

∆
(

KR
0 \K

R/2
0

)

⊆
(

KR∆KR
0

)

∪
(

KR/2∆K
R/2
0

)

.

Using this, it is straightforward to generalize the proofs of Theorems 4.1 and
4.3 to obtain the following result.
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Theorem 4.7. Let R, ρ > 0 and r, s ∈ N0 be given. Then there is a positive

constant C6 = C6(d,R, ρ, r, s) such that

dbL(Vr,s
R (K; ·),Vr,s

R (K0; ·)) ≤ C6dH(K,K0)
1

2

for all compact sets K,K0 ⊆ B(0, ρ).

This in turn leads to the next convergence result.

Theorem 4.8. Let r, s ∈ N0 and R > 0. If K,Ki ∈ Cd are compact sets

such that Ki → K in the Hausdorff metric, as i → ∞, then Vr,s
R (Ki;B)

converges to Vr,s
R (K;B) in the tensor norm, for any measurable set B ⊆ Σ

satisfying

Hd({x ∈ KR | (pK(x), uK(x)) ∈ ∂B}) = 0.

Here ∂B is the boundary of B as a subset of Σ.
If B satisfies this condition and Reach(K) > Rd, then

lim
i→0

Φ
r,s
k (Ki;B) = Φr,s

k (K;B).

Remark 4.9. We can argue as in Remark 4.5 to see that if K,Ki ∈ Cd are
compact sets such that Ki → K in the Hausdorff metric, as i → ∞, then

Vr,s
R (Ki; g) → Vr,s

R (K; g), as i → ∞,

whenever g : Σ → R is a continuous test function and Vr,s
R (K; g) is defined

similarly as before.
IfK satisfies Reach(K) > Rd, we get Φ

r,s
k (Ki; g) → Φr,s

k (K; g), as i → ∞.

5 Application to digital images

Our main motivation for this paper is the estimation of Minkowski tensors
from digital images. Recall that we model a black-and-white digital image
of K ⊆ R

d as the set K ∩ aL, where L ⊆ R
d is a fixed lattice and a > 0. We

refer to [2] for basic information about lattices.
The lower dimensional parts of K are generally invisible in the digital

image. When dealing with digital images, we will therefore always assume
that the underlying set is topologically regular, which means that it is the
closure of its own interior.

In digital stereology, the underlying object K is often assumed to belong
to one of the following two set classes:

• K is called δ-regular if it is topologically regular and the reach of its
closed complement cl(Rd\K) and the reach of K itself are both at
least δ > 0. This is a kind of smoothness condition on the boundary,
ensuring in particular that ∂K is a C1 manifold (see the discussion
after Definition 1 in [34]).
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• K is called polyconvex if it is a finite union of compact convex sets.
While convex sets have infinite reach, note that polyconvex sets do
generally not have positive reach. Also note that for a compact convex
set K ⊆ R

d, the set cl(Rd\K) need not have positive reach.

It should be observed that for a compact set K ⊆ R
d both assumptions

imply that the boundary of K is a (d − 1)-rectifiable set in the sense of [9]
(i.e., ∂K is the image of a bounded subset of Rd−1 under a Lipschitz map),
which is a much weaker property that will be sufficient for the analysis in
Section 5.1.

5.1 The volume tensors

Simple and efficient estimators for the volume tensors Φr,0
d (K) of a (topo-

logically regular) compact set K are already known and are usually based
on the approximation of K by the union of all pixels (voxels) with midpoint
in K. This leads to the estimator

φr,0
d (K ∩ aL) =

1

r!

∑

z∈K∩aL

∫

z+aV0(L)
xr dx,

where V0(L) is the Voronoi cell of 0 in the Voronoi decomposition generated
by L. This, in turn, can be approximated by

φ̂r,0
d (K ∩ aL) =

ad

r!
Hd (V0(L))

∑

z∈K∩aL

zr.

When r ∈ {0, 1}, we even have φr,0
d (K ∩ aL) = φ̂r,0

d (K ∩ aL).
Choose C > 0 such that V0(L) ⊆ B(0, C). Then

K∆
⋃

z∈K∩aL

(z + aV0(L)) ⊆ (∂K)aC .

In fact, if x ∈
[
⋃

z∈K∩aL(z + aV0(L))
]

\K, then there is some z ∈ K ∩ aL
such that x ∈ z + aV0(L) and x /∈ K. Since z ∈ K and x /∈ K, we have
[x, z] ∩ ∂K 6= ∅. Moreover, x− z ∈ aV0(L) ⊆ B(0, aC), and hence |x− z| ≤
aC. This shows that x ∈ (∂K)aC . Now assume that x ∈ K and x /∈ (∂K)aC .
Then B(x, ρ) ⊆ K for some ρ > aC. Since

⋃

z∈aL(z + aV0(L)) = R
d, there

is some z ∈ aL such that x ∈ z+aV0(L). Hence x− z ∈ aV0(L) ⊆ B(0, aC).
We conclude that z ∈ B(x, aC) ⊆ K, therefore z ∈ K ∩ aL and thus
x ∈ ⋃

z∈K∩aL(z + aV0(L)).
Hence

|φr,0
d (K ∩ aL)− Φr,0

d (K)| ≤ 1

r!

∫

(∂K)aC
|x|r dx. (21)
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If Hd(∂K) = 0, then the integral on the right-hand side goes to zero by
monotone convergence, so

lim
a→0+

φr,0
d (K ∩ aL) = Φr,0

d (K). (22)

If ∂K is (d − 1)-rectifiable in the sense of [9, Section 3.2.14], that is, ∂K
is the image of a bounded subset of R

d−1 under a Lipschitz map, then
Hd(∂K) = 0. Since ∂K is compact, [9, Theorem 3.2.39] implies that
lima→0+ Hd((∂K)aC)/a exists and equals a fixed multiple ofHd−1(∂K) which
is finite. Hence, (21) shows that the speed of convergence in (22) is O(a) as
a → 0+.

Inequality (18) yields that |xr − zr| ≤ aCr(|x| + aC)r−1 whenever x ∈
z + aV0(L) and r ≥ 1. Therefore,

|φ̂r,0
d (K ∩ aL)− φr,0

d (K ∩ aL)| ≤ aC

(r − 1)!

∑

z∈K∩aL

∫

z+aV0(L)
(|x|+ aC)r−1 dx

≤ aC

(r − 1)!

∫

KaC

(|x|+ aC)r−1 dx,

which shows that
lim

a→0+
φ̂r,0
d (K ∩ aL) = Φr,0

d (K),

provided that Hd(∂K) = 0. If ∂K is (d − 1)-rectifiable, then the speed of
convergence is of the order O(a).

Hence, we suggest to simply use the estimators φ̂r,0
d (K ∩ aL) for the

volume tensors. This estimator can be computed much faster and more
directly than Φ̂r,0

d (K ∩ aL). Moreover, it does not require an estimate for
the reach of K, and it converges for a much larger class of sets than those
of positive reach.

5.2 Convergence for digital images

For the estimation of the remaining tensors we suggest to use the Voronoi
tensor measures. Choosing K0 = K ∩ aL in (11), we obtain

Vr,s
R (K ∩ aL;A) =

∑

x∈K∩aL∩A

xr
∫

B(x,R)∩Vx(K∩aL)
(y − x)s dy, (23)

where A ⊆ R
d is a Borel set.

To show some convergence results in Corollary 5.2 below, we first note
that the digital image converges to the original set in the Hausdorff metric.

Lemma 5.1. If K is compact and topologically regular, then

lim
a→0+

dH(K,K ∩ aL) = 0.

If K is δ-regular, then dH(K,K ∩ aL) is of order O(a). The same holds if

K is topologically regular and polyconvex.
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Proof. Recall from [2, p. 311] that µ(L) = maxx∈Rd dist(x,L) is well defined
and denotes the covering radius of L.

Let ε > 0 be given. Since K is compact, there are points x1, . . . , xm ∈ K
such that

K ⊆
m
⋃

i=1

B(xi, ε).

Using the fact that K is topologically regular, we conclude that there are
points yi ∈ int(K) ∩ int(B(xi, 2ε)) for i = 1, . . . ,m. Hence, there are
εi ∈ (0, 2ε) such that B(yi, εi) ⊆ K ∩ B(xi, 2ε) for i = 1, . . . ,m. Let
0 < a < min{εi/µ(L) | i = 1, . . . ,m}. Since εi/a > µ(L) it follows
that aL ∩ B(yi, εi) 6= ∅, for i = 1, . . . ,m. Thus we can choose zi ∈
aL ∩ B(yi, εi) ⊆ aL ∩ K for i = 1, . . . ,m. By the triangle inequality, we
have |zi − xi| ≤ εi + 2ε ≤ 4ε, and hence xi ∈ (K ∩ aL) + B(0, 4ε), for
i = 1, . . . ,m. Therefore, K ⊆ (K ∩ aL) + B(0, 5ε) if a > 0 is sufficiently
small.

Assume that K is δ-regular, for some δ > 0. We choose 0 < a <
δ/(2µ(L)). Since aµ(L) < δ/2, for any x ∈ K there is a ball B(y, aµ(L)) of
radius aµ(L) such that x ∈ B(y, aµ(L)) ⊆ K. From aL ∩ B(y, aµ(L)) 6= ∅
we conclude that there is a point z ∈ K ∩ aL with |x− z| ≤ 2aµ(L). Hence
x ∈ (K ∩ aL) +B(0, 2aµ(L)), and therefore dH(K,K ∩ aL) ≤ 2aµ(L).

Finally, we assume that K is topologically regular and polyconvex. Then
K is the union of finitely many compact convex sets with interior points.
Hence, for the proof we may assume that K is convex with B(0, ρ) ⊆ K
for a fixed ρ > 0. Choose 0 < a < ρ/(2µ(L)) and put r = 2aµ(L) < ρ. If
x ∈ K, then B((1 − r/ρ)x, r) ⊆ K and B((1 − r/ρ)x, r) contains a point
z ∈ aL. Since

|x− z| ≤ r + (r/ρ)|x| ≤ 2aµ(L) (1 + diam(K)/ρ) ,

we get
K ⊆ (K ∩ aL) +B

(

0, 2aµ(L) (1 + diam(K)/ρ)
)

,

which completes the argument.

Thus Theorems 4.1 and 4.2 and Corollary 4.6 together with Lemma 5.1
yield the following result.

Corollary 5.2. If K is compact and topologically regular, then

lim
a→0+

dbL(Vr,s
R (K; ·),Vr,s

R (K ∩ aL; ·)) = 0,

lim
a→0+

Vr,s
R (K ∩ aL) = Vr,s

R (K).

If, in addition, K has positive reach, then

lim
a→0+

Φ̂r,s
k (K ∩ aL) = Φr,s

k (K). (24)
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If K is δ-regular or a topologically regular convex set, then the speed of

convergence is O(a) when r = s = 0 and O(
√
a) otherwise.

The property (24) means that Φ̂r,s
k (K ∩ aL) is multigrid convergent for

the class of sets of positive reach as defined in the introduction. A similar
statement about local tensors, but without the speed of convergence, can be
made. We omit this here.

5.3 Possible refinements of the algorithm for digital images

We first describe how the number of necessary radii R0 < R1 < . . . < Rd in
(10) can be reduced by one if s = 0 and A = R

d. Setting s = 0 and A = R
d

and subtracting (r!)Φr,0
d (K) on both sides of Equation (6) yields

∫

KR\K
pK(x)r dx = Vr,0

R (K)− (r!)Φr,0
d (K) = (r!)

d
∑

k=1

κkR
kΦr,0

d−k(K). (25)

As mentioned in Section 5.1, the volume tensor Φr,0
d (K) can be estimated by

φ̂r,0
d (K ∩ aL). We may take Vr,0

R (K ∩ aL)− (r!)φ̂r,0
d (K ∩ aL) as an improved

estimator for (25). This corresponds to replacing the integration domains
B(x,R) ∩ Vx(K ∩ aL) in (23) by

(B(x,R) ∩ Vx(K ∩ aL))\Vx(aL).

This makes sense since Vx(aL) is likely to be contained in K while the left-
hand side of (25) is an integral over KR\K. The Minkowski tensors can now
be isolated from only d equations of the form (25) with d different values of
R.

We now suggest a slightly modified estimator for the Minkowski tensors
satisfying the same convergence results as Φ̂r,s

k (K∩aL) but where the number
of summands in (23) is considerably reduced. As the volume tensors can
easily be estimated with the estimators in Section 5.1, we focus on the
tensors with k < d.

Let K be a compact set. We define the Voronoi neighborhood NL(0) of
0 to be the set of points y ∈ L such that the Voronoi cells V0(L) and Vy(L)
of 0 and y, respectively, have exactly one common (d− 1)-dimensional face.
Similarly, for z ∈ L the Voronoi neighborhood NL(z) of z is defined, and
thus clearly NL(z) = z + NL(0). When L ⊂ R

2 is the standard lattice,
NL(z) consists of the four points in L that are neighbors of z in the usual
4-neighborhood [24]. Define I(K ∩ aL) to be the set of points z ∈ K ∩ aL
such that NaL(z) ⊆ K ∩ aL. The relative complement B(K ∩ aL) = (K ∩
aL) \ I(K ∩ aL) of I(K ∩ aL) can be considered as the set of lattice points
in K ∩ aL that are close to the boundary of the given set K.
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We modify (23) by removing contributions from I(K ∩ aL) and define

Ṽr,s
R (K ∩ aL;A) =

∑

x∈B(K∩aL)∩A

xr
∫

B(x,R)∩Vx(K∩aL)
(y − x)s dy. (26)

Assuming that K has positive reach, let 0 < R0 < R1 < . . . < Rd <
Reach(K). We write again K0 for K ∩ aL. Then we obtain the estimators







Φ̃r,s
d (K0;A× Sd−1)

...

Φ̃r,s
0 (K0;A× Sd−1)






=

(

Ar,s
R0,...,Rd

)−1







Ṽr,s
R0

(K0;A)
...

Ṽr,s
Rd

(K0;A)






(27)

with Ar,s
R0,...,Rd

given by (8).

Working with Ṽr,s
R (K ∩ aL;A) reduces the workload considerably. For

instance, when K is δ-regular or polyconvex and topologically regular, the
number of elements in I(K ∩ aL) increases with a−d, whereas the number
of elements in B(K ∩ aL) only increases with a−(d−1) as a → 0+. The set
I(K ∩ aL) can be obtained from the digital image of K in linear time using
a linear filter. Moreover, we have the following convergence result.

Proposition 5.3. Let K be a topologically regular compact set with positive

reach and let C be such that V0(L) ⊆ B(0, C). If A is a Borel set in R
d and

aC < R0 < R1 < . . . < Rd < Reach(K) and K0 = K ∩ aL, then

Φ̃r,s
k (K0;A× Sd−1) = Φ̂r,s

k (K0;A× Sd−1)

for all k ∈ {0, . . . , d − 1}, whenever s = 0 or s is odd. If s is even and

k ∈ {0, . . . , d− 1}, then

lim
a→0+

Φ̃r,s
k (K0;A× Sd−1) = lim

a→0+
Φ̂r,s
k (K0;A× Sd−1).

Proof. Let aC < R < Reach(K). For x ∈ I(K ∩ aL), we have

B(x,R) ∩ Vx(K ∩ aL) = Vx(aL),

so the contribution of x to the sum in (23) is (s!)xrΦs,0
d (V0(aL)). It follows

that

Vr,s
R (K ∩ aL;A)− Ṽr,s

R (K ∩ aL;A) = (s!)Φs,0
d (V0(aL))

∑

x∈I(K∩aL)∩A

xr. (28)

For odd s we have Φs,0
d (V0(aL)) = 0, so the claim follows. For s = 0 the

right-hand side of (28) does not vanish, but it is independent of R. A
combination of

(

Ar,0
R0,...,Rd

)−1











1
1
...
1











=











(r!)−1

0
...
0











,
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with (28), (10) and (27) gives the claim.
For even s > 0, we have that Φs,0

d (V0(aL)) = ad+sΦs,0
d (V0(L)), while

∣

∣

∣

∣

∣

∣

∑

x∈I(K∩aL)∩A

xr

∣

∣

∣

∣

∣

∣

≤
∑

x∈I(K∩aL)

|x|r

≤ sup
x∈K

|x|r
∑

x∈I(K∩aL)

(

adHd(V0(L))
)−1

Hd(Vx(aL))

≤ sup
x∈K

|x|r · a−d · Hd(V0(L))
−1 · Hd(KaC).

Therefore, the expression on the right-hand side of (28) converges to 0.

It should be noted that a similar modification for Φ
r,s
k is not necessary.

In fact the modified Voronoi tensor measure (13) with K = K0 has the
advantage that small Voronoi cells that are completely contained in the
R0/2-parallel set of K ∩ aL do not contribute. In particular, contributions
from I(K ∩ aL) are automatically ignored when a is sufficiently small.

6 Comparison to known estimators

Most existing estimators of intrinsic volumes [17, 19, 24] and Minkowski
tensors [28, 30] are n-local for some n ∈ N. The idea is to look at all

n×· · ·×n pixel blocks in the image and count how many times each of the 2n
d

possible configurations of black and white points occur. Each configuration
is weighted by an element of Tr+s and Φr,s

k (K) is estimated as a weighted
sum of the configuration counts. It is known that estimators of this type for
intrinsic volumes other than ordinary volume are not multigrid convergent,
even when K is known to be a convex polytope; see [32]. It is not difficult
to see that there cannot be a multigrid convergent n-local estimator for the
(even rank) tensors Φ0,2s

k (K) with k = 0, . . . , d− 1, s ∈ N, for polytopes K,
either. In fact, repeatedly taking the trace of such an estimator would lead
to a multigrid convergent n-local estimator of the kth intrinsic volume, in
contradiction to [32].

The algorithm presented in this paper is not n-local for any n ∈ N. It
is required in the convergence proof that the parallel radius R is fixed while
the resolution a−1 goes to infinity. The non-local operation in the definition
of our estimator is the calculation of the Voronoi diagram. The computation
time for Voronoi diagrams of k points is O(k log k+ k⌊d/2⌋), see [5], which is
somewhat slower than n-local algorithms for which the computation time for
k data points is O(k). The computation time can be improved by ignoring
interior points as discussed in Section 5.3.

The idea to base digital estimators for intrinsic volumes on an inversion
of the Steiner formula as in (9) has occurred before in [16, 23]. In both
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references, the authors define estimators for polyconvex sets which are not
necessarily of positive reach. This more ambitious aim leads to problems
with the convergence.

In [16], the authors use a version of the Steiner formula for polycon-
vex sets given in terms of the Schneider index, see [26]. Since its definition
is, however, n-local in nature, the authors choose an n-local algorithm to
estimate it. As already mentioned, such algorithms are not multigrid con-
vergent.

In [23], it is used that the intrinsic volumes of a polyconvex set can, on
the one hand, be approximated by those of a parallel set with small parallel
radius, and on the other hand, the closed complement of this parallel set has
positive reach, so that its intrinsic volumes can be computed via the Steiner
formula. The authors employ a discretization of the parallel volumes of
digital images, but without showing that the convergence is preserved.

It is likely that the ideas of the present paper combined with the ones
of [23] could be used to construct multigrid convergent digital algorithms
for polyconvex sets. The price for this is that the notion of convergence in
[23] is slightly artificial for practical purposes, requiring very small parallel
radii in order to get good approximations and at the same time large radii
compared to resolution.

In [33], n-local algorithms based on grey-valued images are suggested.
They are shown to converge to the true value when the resolution tends to
infinity. However, they only apply to surface and certain mean curvature
tensors. Moreover, they are hard to apply in practice, since they require de-
tailed information about the underlying point spread function which specifies
the representation of the object as grey-value image. If grey-value images
are given, the algorithm of the present paper could be applied to thresh-
olded images, but there may be more efficient ways to exploit the additional
information of the grey-values.
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gawa, T., Ito, N., Mecke, K., Schröder-Turk, G.E.: Local anisotropy of
fluids using Minkowski tensors. J. Stat. Mech: Theory and Exp. 2010
P11010 (2010)

26

http://arxiv.org/abs/1605.06362


[15] Kiderlen, M., Jensen, E.B.V. (eds.): Tensor Valuations and their Ap-
plications in Stochastic Geometry and Imaging. Lecture Notes in Math-
emaics 2177. Springer (2017).

[16] Klenk, S., Schmidt, V., Spodarev, E.: A new algorithmic approach to
the computation of Minkowski functionals of polyconvex sets. Comput.
Geom. 34, 127–148 (2006)

[17] Klette, R., Rosenfeld, A.: Digital Geometry. Elsevier, San Francisco
(2004)

[18] Kousholt, A., Kiderlen, M.: Reconstruction of convex bodies from sur-
face tensors. Adv. in Appl. Math. 76, 1–33 (2016)

[19] Lindblad, J.: Surface area estimation of digitized 3D objects using
weighted local configurations. Image Vis. Comput. 23, 111–122 (2005)

[20] McMullen, P.: Isometry covariant valuations on convex bodies. Rend.
Circ. Mat. Palermo (2), Suppl. 50, 259–271 (1997)
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far, M., Senden, T.J., Mecke, K., Aste, T.: Disordered spherical bead
packs are anisotropic. Europhys. Lett. 90, 34001 (2010)

[32] Svane, A.M.: On multigrid convergence of local algorithms for intrinsic
volumes. J. Math. Imaging Vis. 49, 352–376 (2014)

[33] Svane, A.M.: Estimation of Minkowski tensors from digital grey-scale
images. Image Anal. Stereol. 34, 51–61 (2015)

[34] Svane, A.M.: Local digital algorithms for estimating the integrated
mean curvature of r-regular sets. Discrete Comput. Geom. 54, 316–338
(2015)

[35] Zähle, M.: Integral and current representation of Federer’s curvature
measures. Arch. Math. (Basel) 46, 557–567 (1986)

[36] Ziegel J.F., Nyengaard, J.R., Jensen, E.B.V.: Estimating particle shape
and orientation using volume tensors. Scand. J. Stat. 42, 813–831 (2015)

28


	1 Introduction
	2 Minkowski tensors
	3 Construction of the estimator
	3.1 The Voronoi tensor measures
	3.2 Estimation of Minkowski tensors
	3.3 The case of intrinsic volumes
	3.4 Estimators for general local Minkowski tensors

	4 Convergence properties
	4.1 The convergence theorem

	5 Application to digital images
	5.1 The volume tensors
	5.2 Convergence for digital images
	5.3 Possible refinements of the algorithm for digital images

	6 Comparison to known estimators

