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Abstract 

 

In this paper, the value of information (VoI) from structural health monitoring (SHM) is 

quantified in a case study for offshore wind turbines (OWTs). This is done by 

combining data from an operating turbine equipped with a blade SHM system with cost 

information from a service provider for OWTs in a Bayesian decision framework. The 

reliability of the blade SHM system is evaluated based on a monitoring campaign with a 

225 kW Vestas V27 wind turbine, where one of the blades was introduced to an 

artificial trailing edge damage of increasing size. The blade was equipped with a 

prototype of an SHM system, which consists of an electro-magnetic actuator that 

periodically impacts the blade and an array of accelerometers mounted along the leading 

and trailing edges of the blade. Changes in the structural integrity can be detected using 

conventional outlier analysis, where the current state of the blade is compared to a 

statistical model from the healthy state using a metric that yields a damage index 

representing the structural integrity. As the damage was introduced artificially, it is 

possible to statistically estimate the confusion matrix corresponding to different 

threshold values, and here we opt to select thresholds to optimize the value of SHM. 

Based on SHM data from the V27 wind turbine, a probabilistic model is developed for 

the relation between the damage level and indicator, and this is assumed to be 

representable for the reliability of similar SHM systems installed on OWTs. A case 

study is developed to quantify the value of SHM for an 8 MW OWT using a decision 

framework based on Bayesian pre-posterior decision analysis. Deterioration is modelled 

as a Markov chain developed based on data, and the costs are obtained from a service 

provider for OWTs. Discrete Bayesian networks are used for deterioration modelling 

and Bayesian updating within the decision framework. First, the value of SHM is 

evaluated for different interference thresholds for the damage indicator. Then, strategies 

are applied using thresholds for the probability of failure, which is updated using 

Bayesian networks with damage indicators received from the SHM system. Three 

sensor configurations are tested, and for the least reliable configuration, the strategy 

using thresholds for the probability of failure results in much higher VoI than the 

strategy using a threshold for the damage indicator. For the most reliable configuration, 

they result in similar VoI.   

 

 

1.  Introduction 
 

For offshore wind turbines, operation and maintenance (O&M) costs are high – around 

25-30% of the cost of energy (1). To limit the amount of catastrophic failures, condition 

monitoring systems are often installed to detect incipient failures in the drivetrain, 

where many failures are seen. The blades also experience a large number of defects, and 
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to avoid catastrophic failures, inspections are usually performed at regular intervals. 

Traditionally, inspections are performed using rope access, which is relatively 

expensive. Cheaper but less reliable alternatives are inspections from the ground using 

telephoto cameras or scanning systems and inspections from drones. Another promising 

technique is to use structural health monitoring (SHM) systems. These systems can 

detect incipient faults without need to access the turbines (2,3), and therefore have the 

potential to reduce maintenance costs; especially for offshore wind turbines in distant 

locations with harsh weather conditions causing low accessibility. However, the SHM 

systems come with a cost and they are not perfect, resulting in false alarms, defects not 

being detected, and, as such, the risk of increasing the costs instead of reducing them. 

Therefore, quantification of the value of monitoring prior to installation is crucial. To 

this end, the value of information (VoI) concept can be applied, as proposed in the 

COST Action TU1402 (4). The objective of this paper is to quantify the value of SHM 

for blades of an 8 MW offshore wind turbine. 

 

2.  Value of information 
 

The concept of VoI originates from Bayesian decision analysis (5). In this application 

context, VoI is the difference in the total expected lifetime operation and maintenance 

costs for a wind turbine without SHM and with SHM. These costs will not only depend 

on the nature of the deterioration processes, the SHM system, and so forth; they will 

also depend on the decisions made based on the SHM observations, and the decisions 

made in the situation without SHM. The Bayesian decision analysis provides the basis 

for making these decisions in an optimal way, hence minimizing the expected lifetime 

costs. 

 

2.1 Bayesian decision analysis  

 

In the context of maintenance planning, the Bayesian pre-posterior decision analysis can 

be explained as follows. The decision maker knows that the blades are deteriorating, 

and that there is a probability of the event of catastrophic failure if no maintenance is 

performed. Maintenance, for example, a repair or exchange of a blade, will improve the 

condition of the blade and hereby decrease the probability of failure, but it comes with a 

cost. The amount of maintenance should be balanced against the reduced risk of failure. 

As the condition of the blade is uncertain, the decision maker can decide to gain more 

information on the condition by ordering an inspection. The inspection also comes with 

a cost, although it does not improve the condition of the blade, and therefore inspections 

alone do not reduce the failure rate. Inspections only reduce the amount of failures when 

a decision rule on an action on maintenance is coupled to the inspection outcome. The 

same is true for SHM; only when SHM observations eventually affect decisions on 

maintenance, they can be beneficial.    

 

If the decision maker only was to make the decision on whether to inspect and whether 

to do maintenance once in the lifetime, the problem would be a standard pre-posterior 

decision problem that could be solved by constructing a decision tree (6) and evaluating 

the expected costs associated with each combination of decisions. However, inspections 

and maintenance can be performed at various points in time, and the number of 

branches in the decision tree would increase exponentially, thus making the problem 
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computationally intractable. Approximative methods for solving the decision problem 

include the use of limited memory influence diagrams (LIMIDs), partially observable 

Markov decision process (POMDP), and stationary decision rules (7). In this paper, we 

apply a computational framework using Bayesian networks, which employ stationary 

decision rules. A short introduction to the framework is provided below, and for details 

we refer to (8). 

 

2.2 Risk-based decision framework 

 

The computational framework for risk-based planning of inspections, maintenance and 

monitoring can be applied to find the total expected lifetime O&M costs for various 

decision rules for inspections and preventive repairs. Simple and advanced decision 

rules are distinguished. Simple decision rules include equidistant inspections and 

decision rules depending on directly observed variables, for instance, the most recent 

SHM or inspection outcome. Advanced decision rules depend on a variable that 

summarizes all past acquired information, for instance, the probability of failure. 

 

The cores of the computational framework are two decision models, which are used to 

evaluate the probability of each event (inspections, repairs and failures) for each time 

step during the planned lifetime. For both decision models, the modelling is based on 

discrete Bayesian networks. The first uses Bayesian networks directly for the evaluation 

of the probabilities of each event; the second uses Monte Carlo simulations for the 

estimation of probabilities of each event and use Bayesian networks within simulations 

to update the probability of failure for use of advanced decision rules. The first decision 

model is fast and exact but does not support advanced decision rules; the second 

decision model is more time consuming but supports both simple and advanced decision 

rules. For both decision models, the required input are strategies (sets of decision rules) 

and probabilistic models (conditional probability distributions for deterioration, 

inspections, SHM, and repairs). After running the decision models, the probabilities of 

each event in each time step are multiplied by the specific costs of each event and 

summarized over the lifetime to obtain the total expected lifetime O&M costs.  

 

2.2.1 Bayesian networks 

Discrete Bayesian networks are used within the risk-based decision framework to 

predict deterioration using a probabilistic deterioration model. The predictions can be 

efficiently updated when information from SHM and inspections becomes available 

based on models for the reliability of the monitoring methods, for example, probability 

of detection as function of damage size. Within the framework, Bayesian networks with 

different structures are used for the different strategies included in the framework. An 

example is the network shown in figure 1 that can be used to estimate the expected 

number of inspections, repairs, and failures in the case where inspections are made after 

damage detection by SHM, and decision to repair is made based on the inspection. The 

dashed arrows indicate that the network continues with more time steps equal to time 

step number one. Elaboration on how to use the network is provided in (8), and a 

general introduction to Bayesian networks can be found in (9). 
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Figure 1. Bayesian network used for estimation of expected number of inspections, repairs, and 

failures when inspections are made after damage detection by SHM, and decision to repair is made 

based on the inspection. : damage size, : damage size after any repairs, : model parameter, 

: inspection outcome, : SHM outcome, : inspection decision, : repair decision. 

 

3.  Reliability of SHM system 
 

When estimating the value an SHM system can bring, one has to take into account that 

the system is not perfect: it can produce false alarms and can miss faults. These 

situations are known as Type I and Type II errors and can be characterized by the 

probability of such events. This probability is an important part of the SHM VoI model. 

Unfortunately, the very nature of SHM systems makes it difficult providing such 

probability numbers based on collected statistics. First of all, only few blade SHM 

systems have been installed. Secondly, the events the SHM systems are supposed to 

detect happen quite seldom. In principle, such statistics can be estimated from a proper 

simulation of operating wind turbine dynamics, including the effects of possible faults 

at different locations and including the SHM system into the model (so-called SHM 

virtual test environments). However, nowadays such test environments are in a very 

early stage of development (10). In this study, the estimations are based on the results of 

a test campaign, in which an active vibration-based SHM system was installed on one 

blade of an operating Vestas V27 wind turbine, and an artificial damage (a trailing edge 

opening) was introduced to the instrumented blade. In subsection 3.1, we provide a 

short overview of the SHM system and the test campaign, while a detailed description 

can be found in (3). 

 

3.1 Measurement campaign 

 

The test campaign started in November 2014 and lasted 104 days. One blade of a 225 

kW Vestas V27 wind turbine was equipped with a prototype of an SHM system 

developed in the frame of a research project (11). The SHM system consists of an 

electromagnetic actuator (mounted near the blade root) and 16 accelerometers (mounted 

along the blade) as shown in figure 2. The actuator and accelerometers were connected 

to the data acquisition system located inside the spinner. The actuator was set up to 

impact the blade surface every five minutes; synchronously, data from the 

accelerometers, rotor azimuth, and blade pitch were recorded. The information 

regarding weather conditions (wind speed and direction, temperature, and so forth) and 

wind turbine-related information (for example, generated power) were collected as well. 
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From the data acquisition system in the spinner, the data was wirelessly transmitted to 

the nacelle and stored on a computer located inside the tower. No damage detection was 

performed in real-time; instead, the data was processed remotely and off-line. 

 

 
Figure 2. Contour of the blade where the red circles indicate the location of the accelerometers and 

the green circle is the actuator position (3).  

 

After few weeks of collecting data characterizing the healthy blade, a defect, in the form 

of a trailing edge opening, was artificially introduced to the blade. This particular 

damage type was selected due to two reasons; (a) it is one of the typical defects for the 

blades manufactured using this technology and (b) a trailing edge opening is easy to 

implement and easy to repair. First, a 15 cm opening was introduced, and then, after few 

weeks of collecting enough data for characterizing this damage, the opening was 

extended to 30 cm and subsequently to 45 cm. After collecting the necessary amount of 

data, the damage was repaired, and data for this state was collected as well. Finally, 

after measuring in 104 days under different weather conditions and operating regimes, 

the SHM system was dismounted. A total of about 25,000 samples, covering the five 

states of the wind turbine, were collected and made available for damage detection 

analyses. 

 

3.2 Damage detection methodology 

 

In the study, we employ a standard SHM scheme, which has been used extensively for 

damage detection purposes, see, for example, (12). The specifics of the methodological 

steps are provided in (3), and below a brief overview is given. The first step of the 

scheme is the so-called feature extraction. From the measured acceleration signals, the 

algorithm extracts information, which is believed to be sensitive to damage. This step 

includes filtering and signal trimming and subsequent computation of a covariance 

matrix of the measured accelerations. Finally, dimensionality reduction based on 

principal component analysis is employed, hence resulting in a low-dimensional feature 

vector, which is shown to be sensitive to structural damage. The feature vector is 

computed for each actuator hit; further in the text, it is referred to as a sample. The next 

step is the training of the classification algorithm. A semi-supervised learning approach 

is employed, implying that a baseline/training model representing the healthy state is 

computed based on the data from this state. The discordance between a sample from the 

current, potentially damaged state and the baseline model is found as a Mahalanobis 

distance. The latter becomes a damage indicator; in the sense that a Mahalanobis 

distance exceeding some pre-defined threshold indicates that the dynamics of the 

structure have changed significantly, potentially due to damage. To find the threshold 

value, it is common to utilize the distribution of the samples in the healthy state. For 

example, one can allow some percentage of the outliers in the training set and select the 

threshold accordingly. In this way, thresholds are selected based on the allowed false 

alarm rate. In this paper, three sensor configurations are considered. For each sensor 
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configuration, the thresholds for the damage indicator are identified for false alarm rates 

0 % to 10 %, and the detection rates are estimated for the three damage lengths. The 

resulting detection rates are shown in figure 3.   

 

Sensor configuration 1 

 

 

 
 

Sensor configuration 2 

 

 

 
 

Sensor configuration 3 

 

 

 
Figure 3. Test false alarm rate and correct detection rate as a function of allowed false alarm rate, 

for three sensor configurations. The corresponding sensor configurations, with the engaged 

accelerometers shown as filled circles, are shown next to the graph (3). 

 

4.  Case study 
 

In this case study, the value of SHM of the blades is quantified for an 8 MW offshore 

wind turbine using the risk-based decision framework described in section 2. The SHM 

system is assumed to have the same performance as that used in the measurement 

campaign described in section 3. Decisions on repairs are assumed to be based on the 

outcome of inspections. Three strategies for inspections are considered:  

• .................................................................................................................... S
1: Equidistant inspections (no SHM) 

• .................................................................................................................... S
2: Simple SHM strategy (inspections are made when a threshold for the damage 

indicator is exceeded) 
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• .................................................................................................................... S
3: Advanced SHM strategy (inspections are made when a threshold for the 

probability of failure is exceeded) 

 

The VoI is quantified for three sensor configurations to assess the influence on costs. 

For each strategy and sensor configuration, the optimal interference threshold is found, 

and the VoI is estimated. Thereby, the computations can be used for decisions on sensor 

configuration, as it can be assessed if a more expensive and more reliable configuration 

is worth the increased costs. 

 

4.1 Modelling 

 

The input models for the risk-based decision framework described in section 2 are given 

as conditional probability distributions defining a Bayesian network; for details see (8). 

 

4.1.1 Deterioration model 

A wind turbine blade can experience many types of failures. Often, wind turbine 

operators group blade failures into categories, depending on their severity. Then the 

statistics and response actions are provided for each category; typically, five such 

categories are set up. The annual defect detection rates shown in table 1 are assumed 

representative for this case study. They are estimated based on Vestas’ statistics for 

2011 (14) and interviews with persons directly involved in wind turbine blade 

maintenance.   

 
Table 1. Annual detection rates for defects of each category per wind turbine. 

Defect category Example of description Annual turbine 

detection rate % 

Category 1 Minor crack in trailing edge 20 

Category 2 Crack in trailing edge panel 15 

Category 3 Crack in trailing edge 10 

Category 4 Major crack in trailing edge 8 

Category 5 Trailing edge split 2 

Catastrophic New Blade 1 

 

As proposed in (15), deterioration is modelled as a Markov chain, with the states 0 to 6. 

The first state represents a healthy one with no defects, while states 1 to 6 represent the 

defect categories given in table 1. It is assumed that each defect cannot increase more 

than one category per month, and only the presence of one defect per turbine is 

considered. The transition probabilities are estimated assuming perfect annual 

inspections and preventive repairs of failures of state 2 and above. The decision model 

described in section 2.2 is used to estimate the transition probabilities, such that the 

annual turbine failure rates given in table 1 are obtained. The result is given in table 2. 
 

Table 2. Estimated monthly transition probabilities. 

From state 0 1 2 3 4 5 

Probability 0.0497 0.1404 0.1825 0.2190 0.1180 0.2146 

 

4.1.2 Inspection and repair model 
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Inspections are assumed to be perfect, which implies that existing defects are always 

detected and categorized correctly. Both preventive and corrective repairs (exchanges) 

are assumed to be perfect, hence bringing the damage state to state zero. 

 

4.1.3 SHM model 

The SHM model is based on the estimated detection and false alarm rates found using 

the results from the measurement campaign described in section 3. For use in the 

computational framework, a conditional probability distribution for the SHM outcome 

as function of damage state is formulated. The measurement campaign included 

measurement for four states: no damage, 15 cm damage, 30 cm damage and 45 cm 

damage (the data from the repaired state was not used). We assume that the states with 

damage correspond to damage category 1, 2, and 3, respectively. The probability of 

false alarm and the probability of detection for each damage size were found for 

different allowed false alarm rates (figure 3); each allowed false alarm rate corresponds 

to a threshold for the damage indicator. The probability of detection for a given false 

alarm rate is therefore the probability of exceeding a given threshold for the damage 

indicator. The SHM model summarizes the probability of exceedance of each threshold 

for each damage category in a conditional probability distribution for the SHM 

observation given the damage state. For convenience, the SHM thresholds are referred 

to by numbers 1 to 11, and the relation between these numbers and the allowed false 

alarm rate is shown in table 3.  

 
 Table 3. Relation between SHM thresholds defined in the SHM model and the allowed false alarm 

rate used to set the threshold for the corresponding damage index. 

SHM threshold 1 2 3 4 5 6 7 8 9 10 11 

False alarm rate [%] 10 9 8 7 6 5 4 3 2 1 0 

 

4.2 Costs 

 

The cost model is built on the data that is publicly available or collected from interviews 

with persons directly involved in wind turbine blade maintenance. Unfortunately, there 

is a huge discrepancy between the numbers provided by different public sources (often 

web-based), thus the provided numbers should rather be considered as parameters to the 

model, which can be substituted by the numbers (often confidential) available from a 

particular wind energy operator bookkeeping system. The costs of an inspection (by 

rope access) is assumed to be 4800 euros. Loss due to damage may be split into several 

components, namely, the cost of repair (materials and working hours), the production 

lost (downtime) due to repair, and, finally, associated cost such as logistics, unplanned 

access, crane hire (if necessary), and so forth. The estimated costs of repair for different 

damage categories are presented in compact form in table 4.  

 
Table 4. Assumed costs for repairs according to damage category (euros). 

Damage 

category 

Lost revenue Mobilization 

cost 

Repair 

cost 

Total cost 

Category 1 1,600 0 2,000 3600 

Category 2 3,200 2000 4,000 9,200 

Category 3 4,800 2000 6,000 12,800 

Category 4 8,000 2000 8,000 18,000 
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Category 5 232,000 2000 15,000 249,000 

Catastrophic 720,000 317,000 450,000 1,487,000 

 

4.3 Results 

 

This section presents the results: the total expected lifetime O&M costs, the optimal 

strategies, and the VoI for the three different sensor configurations shown in section 3.4. 

 

4.3.1 Base case - equidistant inspections (S1) 

In the base case (S1), no SHM is used for damage detection. Instead, inspections are 

assumed to be made at regular intervals, and preventive repairs are made when the 

inspection reveals defects with category above the threshold for repairs. Figure 4 shows 

the expected lifetime costs for combinations of inspection intervals and repair 

thresholds. The optimal values can be found as the combination leading to lowest costs. 

For strategy S1, it is optimal to inspect every 9 months and repair damages of category 

1 and above.  

 
Figure 4. Expected lifetime costs for strategy S1 for inspection intervals 3 to 24 months. For each 

inspection interval, the costs are shown for two repair thresholds: damage category 1 and 2. 

 

4.3.2 Simple SHM strategy (S2) 

In strategy S2, inspections are made when a threshold for the SHM outcome is 

exceeded, and, as for S1, preventive repairs are made when inspection reveals defects 

with category above the threshold for repairs. To identify the optimal thresholds, the 

expected lifetime costs were found for different thresholds, as shown for sensor 

configuration 1 in figure 5. For the two other configurations, the optimal thresholds 

were found in the same way.  
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Figure 5. Expected lifetime costs for strategy S2 for sensor configuration 1 for thresholds for SHM 

observation 1 to 11. For each threshold, the costs are shown for three repair thresholds: damage 

category 1, 2, and 3. 

 

For sensor configuration 1, it is optimal to inspect when the SHM threshold 7 

(corresponding to a 4 % false alarm rate) is exceeded. For sensor configuration 2 and 3, 

the SHM threshold 11 (corresponding to 0 % false alarm rate) should be used. For all 

configurations, all detected damages (category 1 and above) should be repaired. 

 

4.3.3 Advanced SHM strategy (S3) 

In strategy S3, inspections are made when a threshold for the probability of failure 

within a year is exceeded. In this strategy, all past SHM observations are included when 

making the decision. Figure 3 shows the expected lifetime costs for sensor configuration 

1 for different thresholds, and the optimal thresholds were found for configurations 2 

and 3 using similar figures. For sensor configuration 1, the optimal threshold for the 

probability of failure within a year is 0.1, and for configurations 2 and 3 the optimal 

threshold is 0.2. As for the other strategies, all detected damages (category 1 and above) 

should be repaired. 

 
Figure 6. Expected lifetime costs for strategy S3 for sensor configuration 1 for thresholds for 

probability of failure 0.01 to 0.4. For each threshold, the costs are shown for three repair 

thresholds: damage category 1, 2, and 3. 

 

4.3.4 Comparison of strategies and value of information 

In figure 7, the expected lifetime costs are shown for all strategies (S1, S2, and S3) and 

for the three sensor configurations (1, 2, and 3) for the optimal thresholds. Additionally, 
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the VoI is shown, which has been estimated as the difference between the strategy 

without SHM (S1) and each of the strategies with SHM. 

 
Figure 7. Expected lifetime costs and value of information for strategies S1 to S3 and sensor 

configurations 1 to 3. 

 

4.4 Discussion 

 

For the models used in the case study, early repair of failures is generally beneficial, as 

the repair costs increase dramatically with damage category. For the base case without 

SHM (S1), the found optimal inspection interval is quite low, as higher intervals will 

lead to large expected costs of catastrophic failures. For the simple SHM strategy (S2), 

the highest threshold for the damage indicator (corresponding to a false alarm rate of 0 

%) should be used for sensor configurations 2 and 3, as defects would still be detected 

in time, and avoidance of false alarms reduced costs of inspections. For the less reliable 

sensor configuration 1, a lower threshold should be used, as the number of faults of 

higher categories would be too large; it would be better to allow for some false alarms. 

For the advanced SHM strategy (S3), the optimal threshold for probability of failure 

within a year is large; namely, 0.1 to 0.2. The reason is that even when the probability 

of failure within a year is, for example, 0.1, it is still very certain that the SHM system 

will detect the defect before failure and the preventive repair will almost certainly be 

made in time.  

 

The results show that the potential for cost reductions using SHM is large. The sensor 

configuration will affect the VoI, as a more reliable SHM system will be more effective 

in eliminating the occurrence of repairs of defects of higher categories. For less reliable 

systems, the advanced strategy performs much better than the simple strategy, whereas 

for the most reliable system, their performance is similar. In the shown costs, the costs 

of the SHM system are not included. The costs of a system are expected to be in the 

order of 60,000 euros. Therefore, sensor configurations 2 and 3 could both be beneficial 

to install, and the difference in price of SHM system will determine which one is better.  

 

Some of the assumptions behind the models can be questioned. It is, for instance, 

assumed that a defect can only transfer one state per time step (one month) and 

therefore needs to go through all states. Also, the deterioration model models the health 

state of the rotor as one and does not consider multiple defects in one rotor. This 

corresponds to the assumption that the largest defect drives the costs and the probability 

of detection, and that all smaller defects are also repaired when a repair is made (15). 
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The annual rates used when fitting the deterioration model might not accurately 

represent this. The SHM outcomes are assumed to be independent given the damage 

size. In case of correlations, for example, if the location affected the outcome, this 

should be included in the model (16). 

 

3.  Conclusions 
 

The paper presents a method to assess VoI of SHM based on probabilistic models for 

deterioration, SHM, and inspections. As demonstrated in the case study, the model can 

be applied to assess the VoI for different sensor configurations, thereby providing 

support for decisions on where to install sensors and how many sensors to install. The 

VoI was estimated both for a simple and an advanced SHM strategy. For very reliable 

sensor configurations, the VoI was similar, but for less reliable sensor configurations, 

the advanced strategy provided higher VoI, as more than one SHM outcome was used 

when making decisions. The approach demonstrated in this paper can also be used to 

identify the optimal characteristics of an SHM system in order to specify design 

objectives for developers of SHM systems.  
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