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Non-intrusive codebook-based intelligibility prediction

Charlotte Sørensena,b,∗, Mathew Shaji Kavalekalamb, Angeliki Xenakia, Jesper Bünsow Boldta,
Mads Græsbøll Christensenb

aGN Hearing A/S, Denmark
bAudio Analysis Lab, CREATE, Aalborg University, Denmark

Abstract

In recent years, there has been an increasing interest in objective measures of speech intelligibility in the speech pro-
cessing community. Important progress has been made in intrusive measures of intelligibility, where the Short-Time
Objective Intelligibility (STOI) method has become the de facto standard. Online adaptation of signal processing in,
for example, hearing aids, in accordance with the listening conditions, requires a non-intrusive measure of intelligi-
bility. Presently, however, no good non-intrusive measures exist for noisy, nonstationary conditions. In this paper, we
propose a novel, non-intrusive method for intelligiblity prediction in noisy conditions. The proposed method is based
on STOI, which measures long-term correlations in the clean and degraded speech. Here, we propose to estimate
the clean speech using a codebook-based approach that jointly models the speech and noisy spectra, parametrized
by auto-regressive parameters, using pre-trained codebooks of both speech and noise. In experiments, the proposed
method is demonstrated to be capable of accurately predicting the intelligibility scores obtained with STOI from oracle
information. Moreover, the results are validated in listening tests that confirm that the proposed method can estimate
intelligibility from noisy speech over a range of signal-to-noise ratios.

Keywords: Hearing aids, non-intrusive, speech intelligibility prediction, STOI

1. Introduction

Human interaction depends on communication where
speech has a central role. Inability to understand speech,
e.g., due to hearing impairment, noisy background, or
distortion in communication systems, can lead to in-
effective communication and social isolation, and the
development of speech enhancement methods[1, 2] is,
therefore, a key concern in many applications. These
include challenging applications such as hearing aids
[3], telecommunication systems [4, 5], and architec-
tural acoustics [6]. To assess the listening conditions in
which speech processing would be beneficial, but also
to evaluate the speech processing algorithms as such, a
speech intelligibility measure is required [3, 5, 7].
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A natural way of assessing the intelligibility of a de-
graded, i.e., processed, distorted or noisy speech sig-
nal is by performing subjective listening tests. Subjec-
tive speech intelligibility scores gives the percentage of
correctly identified information from a degraded speech
signal. However, subjective speech intelligibility ex-
periments are time-consuming, expensive and cannot be
used for real-time applications. Hence, there is a great
interest in developing objective measures for speech in-
telligibility prediction. As opposed to subjective listen-
ing tests, objective intelligibility prediction algorithms
are faster, cheaper and can be used for real-time pro-
cessing.

The Articulation Index (AI) [8, 9] and the Speech
Intelligibility Index (SII) [10] are some of the earliest
metrics for prediction of speech intelligibility scores.
The AI and SII use the signal-to-noise ratio (SNR) of
speech excerpts in several frequency bands to estimate
the intelligibility, hence they require that both the clean
speech signal and the noise are available and uncorre-
lated as well as the noise to be stationary. The Ex-
tended SII (ESII) [11] and the Coherence SII (CSII)
[12], are variants of SII which account for fluctuating
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noise and nonlinear distortions from clipping, respec-
tively. The Speech Transmission Index (STI) [4] was
introduced to predict the intelligibility of an amplitude
modulated signal at the output of a transmission chan-
nel based on changes in the modulation depth across
frequency of a probe signal. The STI, which requires
a probe signal as reference, offers good prediction of
speech intelligibility in reverberant and noisy conditions
[4], but not for more adverse nonlinear distortions, such
as those caused by spectral subtraction [13]. The Short-
Time Objective Intelligibility (STOI) metric [14] pre-
dicts the intelligibility of a signal by its short-time cor-
relation with its clean counterpart which is required as
input. STOI estimates are accurate for time-frequency
processed speech [15, 16]. The speech-based Enve-
lope Power Spectrum Model (sEPSM) [17] estimates
the SNR in the envelope-frequency domain and uses the
noise signal alone as reference. The sEPSM accounts
for the effects of additive noise and reverberation and
some types of nonlinear processing such as spectral sub-
traction [17], but fails with other types of nonlinear pro-
cessing such as ideal binary masks and phase jitter [16].
More recent work includes that of [18], which takes an
information theoretical approach to the problem.

All the aforementioned methods are intrusive, i.e.,
they require either the clean speech signal or the noise
interference as reference to estimate the intelligibility
of the degraded signal. Access to the clean speech sig-
nal is impractical for many real-life applications or real-
time processing systems. To overcome this limitation,
a number of non-intrusive objective intelligibility mea-
sures have been proposed. The Speech to Reverber-
ation Modulation energy Ratio (SRMR) [19] and the
average Modulation-spectrum Area (ModA) [20] both
provide intelligibility predictions based on the modu-
lation spectrum of the degraded speech signal, i.e., in
a non-intrusive manner. Other notable work includes
the reduced dynamic range (rDR) based intelligibility
measure [21], wherein the intelligibility is predicted
directly from the dynamic range of the noisy speech,
and the across-band envelope correlation (ABEC) met-
ric [22], which is based on temporal envelope wave-
forms. Another approach to predict speech intelligibil-
ity non-intrusively is to first obtain an estimate of the
clean speech signal which is thereafter used as reference
to an intrusive method. Machine learning [23, 24], prin-
cipal component analysis [7] or noise reduction [25, 26]
methods have been proposed to reconstruct the clean
signal from its degraded version and use it as input to the
intrusive STOI metric for objective intelligibility pre-
diction.

The present paper, which is an extension of our prior

work [27], proposes a non-intrusive intelligibility met-
ric, which uses the STOI measure non-intrusively by es-
timating the features of the clean reference signal from
its degraded version. The proposed method, however,
estimates the reference signal by identifying the en-
tries of pre-trained codebooks of speech and noise spec-
tra which best fit the data, i.e., the noisy speech sig-
nal. The resulting new metric is dubbed Non-Intrusive
Codebook-based STOI (NIC-STOI). The method is in-
spired by the work [28, 29] which demonstrates that
codebook-based approaches offer effective speech en-
hancement, even under nonstationary noise such as bab-
ble noise. Moreover, the approaches of [28, 29] are
based on low-dimensional parametrizations of both the
noise and speech spectra, more specifically, via auto-
regressive (AR) models, something that engenders both
effective training leading to small codebooks and com-
putationally fast implementations. Furthermore, an AR
process models the envelope of the signal’s spectrum
rather than its fine structure. Such models are suitable
in this context since it is shown that the spectral enve-
lope of speech is an important cue for intelligibility [30].
Compared to our previous work [26], which can be in-
terpreted as sampling the speech spectrum at high-SNR
frequencies based on the pitch, something that is con-
sistent with the glimpsing model of speech perecetion
[31], the new method is based on the complete speech
spectrum. It should also be noted that we here address
the problem of single-channel non-intrusive intelligibil-
ity prediction, which is a much more difficult task than
the multichannel problem [25, 26], as the latter can use
spatial information.

The rest of the paper is organized as follows. First,
the principles of intelligibility prediction in the STOI
method are described in Section 2. Then, the signal
model that the proposed method is based on is detailed
in Section 3, and the proposed non-intrusive method is
described in in Section 4. The experimental details and
results, which include both experiments with objective
measures and a listening test, are first described in Sec-
tion 5 and then discussed in Section 6. Finally, Section
7 concludes on the work.

2. Background

The STOI [14] metric predicts the speech intelligi-
bility based on the correlation between the temporal
envelopes of the clean and the degraded speech signal
(see Fig. 1). First, the clean and degraded speech sig-
nals are decomposed in time-frequency representations
using a discrete Fourier transform. Then, these time-
frequency representations are grouped in one-third oc-
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Figure 1: Block diagram of the STOI measure [14] that forms the basis for the proposed non-intrusive method. The STOI metric is based on the
correlation between temporal envelopes of the clean and degraded speech in short time segments.

tave frequency bins and short-time segments (384 ms).
The short-time segments are normalized in order to ac-
count for global level differences of the input signals.
Furthermore, the short-time segments are clipped to pre-
vent time-frequency units that are already completely
degraded from excessively influencing the intelligibility
score. Finally, the correlation of the signals is calculated
over the short-time segments per frequency band. The
STOI output is the average of the correlation coefficients
across frequency bands and time-segments, i.e., a scalar
value in the range 0-1 which relates monotonically to
the average speech intelligibility scores.

3. Signal model

Assuming that a speech signal and a noise signal are
generated by uncorrelated random processes, the corre-
sponding noisy speech signal, y(n), at time instance n
is y(n) = s(n) + w(n). In the proposed method, both
the speech and the noise are modeled as stochastic pro-
cesses, namely AR processes [28, 29]. Using such a
stochastic AR model, a segment of the speech signal is
expressed as

s(n) = −
P∑

i=1

as(i)s(n − i) + u(n), (1)

which can also be expressed in vector notation as

u(n) = aT
s s(n) (2)

where P is the order of the AR process, s(n) =

[s(n), s(n − 1), . . . , s(n − P)]T is a vector collecting the
P past speech samples, as = [1, as(1), as(2), . . . , as(P)]T

is a vector containing the speech auto-regressive param-
eters with as(0) = 1, and u(n), which here models the

excitation, is zero mean white Gaussian noise with ex-
citation variance σ2

u. Transforming the AR model into
the frequency domain, As(ω)S (ω) = U(ω) ⇔ S (ω) =

U(ω)/As(ω), results in the following power spectrum:

Ps(ω) = |S (ω)|2 =
σ2

u

|As(ω)|2 , (3)

where As(ω) =
∑P

k=0 as(k)e− jωk. Similarly to the speech
sginal, the noise signal can be modeled as

w(n) = −
Q∑

i=1

aw(i)w(n − i) + v(n), (4)

which can also be expressed as

v(n) = aT
ww(n), (5)

where Q is the order of the AR process, w(n) =

[w(n),w(n−1), . . . ,w(N−Q)]T is a vector collecting the
Q past noise samples, aw = [1, aw(1), aw(2) . . . , aw(Q)]T

where aw(0) = 1, and v(n) is zero mean white Gaus-
sian noise with excitation variance σ2

v . The noisy power
spectrum is likewise given by

Pw(ω) = |W(ω)|2 =
σ2

v

|Aw(ω)|2 . (6)

where Aw(ω) =
∑Q

k=0 aw(k)e− jωk.
The models of the the speech and noise in (2) and

(5), respectively, can be motivated as follows. The AR
model has a long history in speech processing, where
one of its uses is in modeling the speech production
system (see, e.g., [32]), where it corresponds to a cylin-
der model of the vocal tract which is excited by a noise
signal generated by the lungs. The model is, though,
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well-known not to be perfect. For example, it does not
account for the nasal cavity and the Gaussian model is
only a good model for unvoiced speech and less so for
voiced speech [33]. Nevertheless, it remains useful for
many purposes and here it is used as a low-dimensional
representation of the speech spectrum. Regarding the
noise, the model is good for many natural noise sources,
but, in any case, it can be used for modeling arbitrary,
smooth spectra of Gaussian signals [34].

4. The NIC-STOI measure

The proposed method provides an objective measure
for speech intelligibility prediction given solely the de-
graded speech signal, i.e., non-intrusively.

The method is based on the speech and noise being
additive and the AR models of the speech (2) and noise
(5) signals. The speech and noise spectra are simulta-
neously estimated from the degraded speech signal us-
ing a Bayesian approach which uses the AR parameters
as prior information for inference. The prior informa-
tion is obtained from trained codebooks (dictionaries)
of speech and noise AR parameters. The estimation is
performed on short-time frames in order to account for
non-stationary noise.

Figure 2 depicts a block diagram of the NIC-STOI al-
gorithm. The methodology comprises three main steps:
1) estimation of the parameters for the speech and noise
AR models, 2) computation of the time-frequency rep-
resentations for the clean, s, and noisy speech, y, signals
from the estimated parameters, 3) prediction of speech
intelligibility of the noisy speech signal with the STOI
framework from the estimated spectra.

4.1. Step 1: Parameter Estimation

Let the column vector θ = [as; aw; σ2
u; σ2

v] com-
prise all parameters to be estimated, i.e., the AR coeffi-
cients and the excitation variances of the models of both
speech and noise.

Bayes’ theorem facilitates the computation of the
posterior distribution p(θ|y) of the model parameters θ
conditioned on the observation of N noise samples, i.e.,
y = [ y(0) y(1) . . . y(N−1) ], from the likelihood p(y|θ),
the prior distribution of the model parameters p(θ), and
the marginal distribution of the data p(y) [28, 29, 35]:

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (7)

Based on the signal model introduced previously, the
data likelihood, p(y|θ), is a multi-variate zero-mean
Gaussian distribution with covariance matrix, RY =

Rs + Rw, where Rs = σ2
u(GT

s Gs)−1 and Gs is a N × N
lower triangular Toeplitz matrix defined by the AR pa-
rameters as. More specifically, it is given by

Gs =



1 0 . . . 0
as(1) 1
... as(1)

as(P)
...

. . .
...

0 as(P)
. . .

...
... 1

0 0 . . . as(1) 1



(8)

while the noise covariance matrix can be expressed as
Rw = σ2

v(GT
wGw)−1 with Gw being defined in a similar

manner as Gs but from aw. Then, the minimum mean
square error (MMSE) estimate is given by [36]

θ̂MMSE = arg min
θ̂

E
[
(θ̂(y) − θ)2

]
= E(θ|y)

=

∫

Θ

θp(θ|y)dθ =

∫

Θ

θ
p(y|θ)p(θ)

p(y)
dθ, (9)

where Θ is the support space of the parameters to be
estimated. Based on the independence of speech and
noise signals, and further assuming that the AR process
and excitation variances are independent, the prior dis-
tribution of the model parameters can be simplified as

p(θ) = p(as, σ
2
u)p(aw, σ

2
v) ≈ p(as)p(σ2

u)p(aw)p(σ2
v).

Limiting the support of the AR parameter vectors as and
aw to predefined codebooks of size Ns and Nw, respec-
tively, the corresponding excitation variances are esti-
mated through a maximum likelihood (ML) approach

{σ2,ML
u,i j , σ

2,ML
v,i j } = arg max

σ2
u,σ

2
v

log p(y|aCB
si

; aCB
w j

; σ2
u; σ2

v),

where aCB
si

is the ith entry of the speech codebook and
aCB

w j
is the jth entry of the noise codebook.

The Gaussian likelihood p(y|θ) can be expressed in
the frequency domain in terms of the Itakura-Saito dis-
tortion measure between the observed, Py(ω), and mod-
eled, P̂i j

y (ω), noisy data power spectrum, i.e.,

p(y|aCB
si

; aCB
w j

; σ2
u,i j; σ

2
v,i j) ∝ e−dIS(Py(ω),P̂i j

y (ω)), (10)

where dIS(·, ·) is the Itakura-Saito divergence, which is
given by [29, 37]

dIS(Py(ω), P̂i j
y (ω)) =

1
2π

∫ 2π

0

( Py(ω)

P̂i j
y (ω)

− ln


Py(ω)

P̂i j
y (ω)

 − 1
)
dω. (11)

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

 

 

Figure 2: Block diagram depicting the processing scheme of the proposed non-intrusive codebook-based short-time objective intelligibility (NIC-
STOI) metric. The relevant features of the clean and degraded speech signals are estimated using a codebook-based approach as time-frequency
power spectra, which replace the estimates in the front-end of the STOI method.

Equation (11) makes use of the modeled noisy power
spectrum, which is here given by

P̂i j
y (ω) =

σ2
u

|Ai
s(ω)|2 +

σ2
v

|A j
w(ω)|2

, (12)

where Ai
s(ω) =

∑p
k=0 ai,CB

s (k)e− jωk and A j
w(ω) =∑p

k=0 a j,CB
w (k)e− jωk being the spectra of the ith and jth

vector from the speech codebook and noise codebook,
respectively.

Assuming that the modeling error between Py(ω) and
P̂i j

y (ω) is small and by using a second-order Taylor se-
ries approximation of ln(·), the Itakura-Saito divergence
can be approximated as [29]

dIS(Py(ω), P̂i j
y (ω)) ≈ 1

2
dLS

(
Py(ω), P̂i j

y (ω)
)
, (13)

where the log-spectral distortion between the observed
and modeled noisy spectrum, dLS

(
Py(ω), P̂i j

y (ω)
)
, which

is given by

dLS

(
Py(ω), P̂i j

y (ω)
)

= (14)

1
2π

∫ 2π

0

∣∣∣∣∣∣ln
(

σ2
u

|Ai
s(ω)|2 +

σ2
v

|A j
w(ω)|2

)
− ln

(
Py(ω)

)∣∣∣∣∣∣
2

dω

Finally, the ML estimates of the speech and noise exci-
tation variances, σ2,ML

u,i j and σ2,ML
v,i j can be obtained by

{σ2,ML
u,i j , σ

2,ML
v,i j } = arg min

σ2
u,σ

2
v

dLS

(
Py(ω), P̂i j

y (ω)
)
, (15)

which is solved by differentiating (14) with respect to
σ2

u and σ2
v and setting the result equal to zero [28, 35].

This results in the following estimate of the excitation

variance for the speech:

σ2,ML
u,i j =

1
Ψi j

(∑

ω

1

P2
y(ω)|A j

w(ω)|4
∑

ω

1

P2
y(ω)|Ai

s(ω)|2

−
∑

ω

1

P2
y(ω)|Ai

s(ω)|2|A j
w(ω)|2

∑

ω

1

P2
y(ω)|Ai

s(ω)|2
)
.

Similarly, the estimate of for excitation variance of the
noise is given by

σ2,ML
v,i j =

1
Ψi j

(∑

ω

1

P2
y(ω)|Ai

s(ω)|4
∑

ω

1

P2
y(ω)|A j

w(ω)|2

−
∑

ω

1

P2
y(ω)|Ai

s(ω)|2|A j
w(ω)|2

∑

ω

1

P2
y(ω)|Ai

s(ω)|2
)
.

The quantity Ψi j is given by

Ψi j =
∑

ω

1

P2
y(ω)|Ai

s(ω)|4
∑

ω

1

P2
y(ω)|A j

w(ω)|4

−

∑

ω

1

P2
y(ω)|Ai

s(ω)|2|A j
w(ω)|2


2

. (16)

Finally, based on these estimates, the quantities in (9)
are estimated from their discrete counterparts, which are
given by

θ̂ =
1

NsNw

Ns∑

i=1

Nw∑

j=1

θi j
p(y|θi j)

p(y)
(17)

and

p(y) =
1

NsNw

Ns∑

i=1

Nw∑

j=1

p(y|θi j), (18)

where θi j = [aCB
si

; aCB
w j

; σ2,ML
u,i j ; σ2,ML

v,i j ] is the resulting

parameter vector for the ith entry of the speech codebook

5
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Figure 3: The top panel depicts from left to right, respectively, the spectra of the original clean speech signal, the degraded noisy speech signal at
0 dB SNR and noise only. In the bottom panel their corresponding estimated spectra using the codebook-based approach are depicted.

and the jth entry of the noise codebook and the final es-
timates are denoted as θ̂ = [âs; âw; σ̂2

u; σ̂2
v]. These

estimates can be thought of as being obtained from an
average over all possible models with each model be-
ing weighted by its posterior. We remark that code-
book combinations that result in infeasible, negative
values for either the speech or noise excitation variances
should be neglected. Since all ML estimates of the
excitation variances and the predefined codebook en-
tries contribute with equal probability, the prior is non-
informative and is omitted in (9). It should also be noted
that the weighted summation of the AR parameters can
be performed in the line spectral frequency (LSF) do-
main whereby a stable inverse filters is ensured, some-
thing that is not always the case when operatig directly
on the AR parameters [28, 29].

4.2. Step 2: TF composition

The estimated parameters in θ̂, obtained using (17),
are then used to compute the time-frequency (TF) power
spectra of the estimated speech and noise spectra as

P̂s(ω) =
σ̂2

u

|Âs(ω)|2 , (19)

where Âs(ω) =
∑P

k=0 âs(k)e− jωk, and

P̂w(ω) =
σ̂2

v

|Âw(ω)|2 , (20)

where Âw(ω) =
∑Q

k=0 âw(k)e− jωk. The AR parameters,
i.e., âs and âw, determine the shape of the envelope of
the corresponding signals Ŝ (ω) and Ŵ(ω), respectively.

The excitation variances, σ̂2
u and σ̂2

v , determine the over-
all signal power. Finally, the noisy spectrum is com-
posed as the combined sum of the clean and the noise
power spectra:

P̂y(ω) = P̂s(ω) + P̂w(ω) =
σ̂2

u

|Âs(ω)|2 +
σ̂2

v

|Âw(ω)|2 . (21)

These time-frequency spectra replace the discrete
Fourier transform of the clean reference signal and the
noisy signal in the original STOI measure, respectively.

4.3. Step 3: Intelligibility Prediction

The STOI measure is used for intelligibility predic-
tion with the estimated spectra P̂s(ω) (19) and P̂y(ω)
(21) as inputs. First, the frequency bins of P̂s(ω) and
P̂y(ω) are grouped into 15 one-third octave bands de-
noted by Ps( f , t) and Py( f , t), respectively, with the low-
est center frequency set to 150 Hz and the highest set
to 4.3 kHz. The short-time region of the temporal en-
velopes of the clean speech is defined as ps( f , t) =

[Ps( f , t − N + 1), Ps( f , t − N + 2), . . . , Ps( f , t)]T , where
N is the length of the short-time regions and is set to 30,
resulting in a short-time region of 384 ms as in the orig-
inal STOI implementation [14]. In the same manner,
the short-time region of the degraded speech is given by
py( f , t). The short-time regions of the degraded speech,
py( f , t), are further clipped by a normalization proce-
dure in order to de-emphasize the impact of region in
which noise dominates the spectrum:

p′y( f , t) = min

( ‖ps( f , t)‖2
‖py( f , t)‖2 py( f , t), (1 + 10−β/20)ps( f , t)

)
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where ‖·‖2 denotes the l2 norm and β = −15 dB is the
lower signal-to-distortion ratio. The local correlation
coefficient, r( f , t), between p′y( f , t) and ps( f , t) at fre-
quency f and time t, is defined as

r( f , t) =
(ps( f , t) − µps( f ,t))T (p′y( f , t) − µp′y( f ,t))

√
(ps( f , t) − µps( f ,t))2

√
(p′y( f , t) − µp′y( f ,t))2

,

where µ(·) denotes the sample average of the corre-
sponding vector. Given the local correlation coefficient,
the NIC-STOI prediction is given by averaging across
all bands and frames as

dNS =
1

T F

F∑

f =1

T∑

t=1

r( f , t). (22)

5. Experimental Details and Results

5.1. Performance Measures
The non-intrusive intelligibility prediction is given

by dNS , for the different conditions to be evaluated.
Whereas the ground truth, denoted by dS , for these con-
ditions are given by the intrusive STOI scores. Similarly
to the approach in [24], the original true STOI score is
expected to be well-correlated with the subjective intel-
ligibility. Thus, the purpose is to predict the intrusive
STOI score of a given condition using a non-intrusive
method. The performance of the objective intelligibility
predictions are evaluated using three performance met-
rics often used for assessing objective intelligibility pre-
dictions [3, 14, 39]:

• The Pearson correlation coefficient (ρ) quantifies
the linear relationship between the predicted non-
intrusive intelligibility scores and true STOI scores
or subjective intelligibility scores, where a higher
ρ indicates higher correlation.

• Kendall’s Tau (τ) characterizes the ranking capa-
bility by describing the monotonic relationship be-
tween the predicted intelligibility scores and true
STOI scores or subjective intelligibility scores,
where a higher τ represents better performance
[40]. It is defined as τ = 2(nc − nd)/N(N − 1),
where nc is the number of concordant pairs, i.e. or-
dered in the same way, and nd is the number of
discordant pairs, i.e. ordered differently.

• The standard deviation of the prediction error (σ)
is given as a measure of the estimation accuracy
of the predicted non-intrusive intelligibility scores,
where a lower σ implies better results.

5.2. Experimental Details
The results reported in this paper are based on both

objective measurements and subjective listening tests.
For the results based on the objective measures, the
proposed metric, NIC-STOI, is evaluated on a test
set of 100 speech utterances (full sentences), 50 male
and 50 female, randomly selected from the EUROM 1
database of the English corpus [41]. The interfering ad-
ditive noise signal is babble noise from the AURORA
database. The babble noise contains many speakers in a
reverberant acoustical environment. The sentences and
interfering additive noise signal are both resampled to
10 kHz. Segments randomly selected from the additive
noise signal are added to the EUROM 1 sentences at
different SNR levels in the range of -30 to 30 dB SNR
in steps of 10 dB SNR.

For further evaluation of the proposed metric, a sub-
jective listening test has also been carried out to pro-
vide a data set for comparing NIC-STOI and SRMR.
Stimuli were the fixed-syntax sentences from the GRID
corpus database [38] mixed with the babble signal from
the AURORA database with an SNR range -8 to 0 dB.
The grid corpus consists of sentences spoken by 34 talk-
ers (16 female and 18 male). The sentences are sim-
ple, syntactically identical phrases, e.g. place blue in
A 4 again, and the listeners are asked to identify the
color, letter, and digit after listening to the stimuli us-
ing a user-controlled MATLAB interface. The syntax
and words of the GRID corpus are shown in Table 1.
A total of nine subjects were used for the experiment
which took around 30 minutes per subject. Intelligi-
bility was defined as the number of keywords correctly
identified per stimulus resulting in a fraction of either
0, 1/3, 2/3, or 1 being correct. A total of 220 stimuli
were used, approximately 2 s in duration each, with
the same stimuli being used for both NIC-STOI and
SRMR: 5 SNR levels times 44 different sentences. We
remark that to reduce intra- and intersubject variability
the condition-averaged results are used for comparison
and mapping of the objective results to subjective per-
formance [3, 42]. Measuring intelligibility on a short
time-scale (i.e., from short stimuli less than 2 s in du-
ration each) with non-stationary noise types implies a
high variance for both subjective and objective evalua-
tions, i.e., precise estimation of intelligibility requires
multiple sentences and not only a few words. However,
it is difficult to execute subjective listening tests using
long sentences or phrases as stimulus for which reason
the average of many shorter sentences is here used in-
stead.

The AR parameters and excitation variances of both
the speech and noise signal are estimated on frames with
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Table 1: Sentence syntax of the GRID database [38] which is used in the subjective listening test. Each sentence is constructed from (in order) a
combination of a command, color, preposition, letter digit, and adverb.

Command Color Preposition Letter Digit Adverb

bin blue at A-Z 0-9 again
lay green by (no W) now
place red in please
set white with soon
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Figure 4: Scatter plot of the predicted STOI scores using the non-
intrusive codebook-based STOI, NIC-STOI, metric.

a length of 256 samples. The speech and, thus, the es-
timated parameters are assumed to be stationary over
these very short 25.6 ms frames. The frames are win-
dowed using a Hann window with 50 % overlap be-
tween adjacent frames. The AR model orders P and
Q of the speech and noise, respectively, are set to 14 in
accordance with the literature [28, 29, 35]. The speech
codebook is trained using the generalized Lloyd algo-
rithm (GLA) on 10 minutes of speech from multiple
speakers in the EUROM 1 database in order to ensure
a sufficiently general speech model [28, 43]. We stress
that the speakers included in the test set are not used for
the training of the speech codebook. The noise code-
book is trained on 2 minutes of babble talk. The sizes
of the speech and noise codebooks are Ns = 64 and
Nw = 8, respectively.

5.3. Experimental Results

An example of the spectrum of a speech signal from
the test set is shown in Fig. 3 . The spectra of the orig-
inal clean speech signal, the degraded noisy signal at 0
dB SNR and the noisy only are depicted in the top panel
from left to right, respectively. The corresponding esti-
mated spectra of the relevant signal features are shown

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
STOI score

0.5
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0.7

0.8
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sc
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e

NIC-STOI VS STOI score

NICSTOI male
NICSTOI female
NICSTOI both genders

Figure 5: Averaged NIC-STOI scores (± standard deviation) against
the intrusively computed STOI score.

in the bottom panel. The spectra are generated using
trained codebooks of speech and noise spectral shapes.
The estimated clean spectrum (bottom left panel) and
estimated noisy spectrum (bottom middle panel) are
used as input to the intrusive STOI framework.

The performance of the NIC-STOI metric is evalu-
ated against the intrusively computed scores of the origi-
nal STOI metric as ground truth. In Fig. 4, the estimated
NIC-STOI scores have been plotted against the intru-
sive STOI scores. The plot shows good performance by
means of a strong monotonic relationship between NIC-
STOI and STOI, such that a higher NIC-STOI score also
corresponds to a higher STOI score. Furthermore, a
strong linear correlation can be observed between the
two measures. This observation is also supported by the
performance criteria, where NIC-STOI achieves a Pear-
son’s correlation of ρ = 0.94, Kendall’s Tau of τ = 0.70
and a standard deviation of the prediction errorσ = 0.14
for STOI, implying a high correlation. This indicates
that the proposed non-intrusive version of STOI can of-
fer a comparable performance to the original intrusive
STOI.

Fig. 5 depicts the averaged predictions (± standard
deviation) of the NIC-STOI scores in the scatter plot in
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Figure 6: Averaged NIC-STOI and STOI scores (± standard devia-
tion) per SNR condition.

Fig. 4 for male (blue line), female (red line) and both
genders (yellow line), where the performance measures
are given in Tab. 2. As it can be observed, the measure
performs equally well whether the method is tested us-
ing either a gender specific clean speech codebook or
a generic clean speech codebook. This suggests that
the method generalizes well and does not capture gen-
der specific effects due to the very generic and smooth
structure of the spectra of the auto-regressive processes.

In Fig. 6 the STOI measure (purple line) and the
NIC-STOI measure (male: blue line; female: red line;
both genders: yellow line) are depicted as function of
SNR. There is a clear monotonic correspondence be-
tween NIC-STOI and STOI, such that a higher STOI
measure results in a higher NIC-STOI score. Further-
more, the NIC-STOI scores also increase with increas-
ing SNR.

Subjective results, in terms of intelligibility as a func-
tion of SNR, are shown in Fig. 7 together with objec-
tive results obtained using the proposed NIC-STOI and
SRMR. The error bars in the Figure are 95 % confidence
intervals computed using a normal distribution for the
SRMR and NIC-STOI methods and the normal approx-
imation for the binomial confidence interval of the sub-
jective results from the listening test. Note that to map
the objective results to subjective intelligibility, a sig-
moid function has been fitted to the average data as de-
scribed in Section 5.2. As can be seen, the proposed
method performs well and is capable of predicting the
speech intelligibility with similar variance over a range
of SNRs. The results do not, however, enable the con-
clusion that NIC-STOI is superior to SRMR although
NIC-STOI has a better alignment with the subjective
data, as both metrics have a good performance, even at

Table 2: Performance of the proposed metric in terms of Pearson’s
correlation (ρ), and Kendall’s tau (τ) and the standard deviation of the
prediction error (σ) between NIC-STOI and STOI.

Condition ρ τ σ

Male 0.93 0.70 0.14
Female 0.94 0.71 0.13
Both genders 0.94 0.70 0.14

low SNRs, and the confidence intervals overlap. Con-
cerning the probability intervals, the intervals for both
NIC-STOI and SRMR are large, as is to be expected,
due to the short sentences in the GRID corpus and the
limited number of stimuli for each SNR level. One thing
to note is that the variance for SRMR increases as the
SNR decreases, whereas NIC-STOI exhibits a similar
variance across SNRs.

6. Discussion

Since the framework of NIC-STOI is based on an AR
model, it only captures the overall envelope structure
and not the fine structure of the speech signal as illus-
trated in Fig. 3 [29, 37]. The envelope of the speech has
been shown to be a good predictor for speech intelli-
gibility in previous intrusive intelligibility frameworks,
i.e. STI and EPSM [4, 17, 30]. Extensive vocoder simu-
lations also support these findings, where a high speech
intelligibility can be obtained in quiet solely from the
envelope content in only four spectral bands [30]. As
such, only modeling the envelope structure of the clean
speech as the essential features in NIC-STOI is assumed
to be an appropriate predictor for speech intelligibility.
Moreover, the promising results in [28], which show
improvements of STOI scores for single channel en-
hancement over the noise signal, also support that the
proposed model captures the essential features of the
speech, as the estimated AR parameters and excitation
variances are used in a speech production model in [28]
to enhance the noisy speech with a Kalman filter.

Both the reported objective and subjective results
show that the proposed method works well. The sub-
jective results show that the proposed method can pre-
dict the intelligibility of a listening experiment over a
range of 10 dB. Although the predicted values exhibit a
high variance, as is to be expected of this type of ex-
periment, this variance is similar to the one obtained
with SRMR. The objective results indicate that NIC-
STOI performs very well for a broad range of SNRs,
even down to -30 dB SNR where the noisy speech is
expected to be unintelligible. It should be noted that
while NIC-STOI appears to deviate from STOI for very
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low SNRs, this is less important as, according to [3],
a STOI score of 0.6 approximately corresponds to zero
intelligibility. Even though the absolute value of STOI
depends highly on the specific speech material and lis-
tening environment, the broad working range of NIC-
STOI should cover the range of intelligibility. Hence,
any score below this threshold can be simply assumed
unintelligible. Here, it is also important to stress that the
overall aim of NIC-STOI is to have a monotonic rela-
tion with the intrusively computed STOI scores, and not
necessarily to predict the absolute STOI scores. How-
ever, the offset observed between the predicted NIC-
STOI scores and STOI scores in Fig. 6 can easily be
accounted for by the observed linear trend between the
two measures depicted in Fig. 4, such that the absolute
STOI score can be predicted by means of the estimated
NIC-STOI score.

It should be noted that STOI was among the first
intrusive intelligibility metrics with very good perfor-
mance, but since it was first introduced other intrusive
metrics have also been proposed that show good per-
formance. The front-end of NIC-STOI, that forms the
basis of the present work, could also quite possibly be
used for other intrusive frameworks, provided that they
are also based on spectral features of the noisy and
clean speech. Regarding this, it is interesting to note
that the estimation of the parameters in short-time seg-
ments based on the current observation makes the front-
end suitable for non-stationary noise conditions. How-
ever, STOI does not work well for highly non-stationary
interferers due to the analysis window length. There-
fore, it could be interesting to investigate using the Ex-
tended STOI (ESTOI) as a back-end to NIC-STOI in-
stead, since this method has been developed to work
well for highly modulated noise sources [44].

Correlation-based metrics including STOI are gener-
ally not suitable for predicting the intelligibility of re-
verberant speech and, thus, it is likely that NIC-STOI
will fail in such conditions [14, 45]. Furthermore, the
short time frames used in STOI might also have a neg-
ative impact on the application of NIC-STOI to rever-
berant speech, as short time frames cannot capture all
the effects of reverberation, such as temporal smear-
ing [14]. Currently, SRMR and ModA are the most
well-studied non-intrusive intelligibility metrics. They
have both been proposed for predicting the intelligibil-
ity of reverberant speech, where they both show good
performance [3, 19, 20]. Even though these metrics
are aimed for reverberant speech, they have also been
tested for noisy and processed speech [3], where they
perform reasonably well. However, it would seem that
SRMR and ModA are a more suitable choice for rever-
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Figure 7: Intelligibility as a function of SNR for subjective listening
experiments and as predicted by the proposed NIC-STOI and SRMR.
Shown are the means and their 95 % confidence intervals.

berant speech, while our proposed method, NIC-STOI,
which takes into account the presence of noise, is a
more suitable choice for additive degradations, such as
background noise and interferences. In this connection,
it should also be mentioned that the proposed method
is computationally much more demanding than SRMR
and ModA, mainly due to the codebook search, al-
though approximate methods for implementation of this
exist [46].

In closing, we remark that the proposed method is
not expected to account well for non-linear signal pro-
cessing, since it is based on an additive noise model as
well as the codebooks being trained on clean speech sig-
nals and noise signals. However, testing the method
on the Ideal Time-Frequency Segregation (IFTS) data
set from [47], which was used for evaluating the orig-
inal STOI measure [14], results in a Pearson correla-
tion of 0.70, which is surprisingly good. For compar-
ison, NIC-STOI outperforms the non-intrusive intelli-
gibility metric, SRMR [3, 19], which achieves a Pear-
son correlation of 0.24 [7], although it should be noted
that SRMR, as already mentioned, was designed for re-
verberant speech. However, the newly proposed Non-
Intrusive STOI (NI-STOI) measure [7] achieves a Pear-
son correlation of 0.71 for the data set [47], which is
on par with the results obtained for NIC-STOI. We re-
mark that NI-STOI is not completely non-intrusive, as it
is based on the ideal voice activity detector used in the
intrusive STOI metric [7].
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7. Conclusion

In this paper, a non-intrusive codebook-based short-
time objective intelligibility metric, called NIC-STOI,
has been proposed. It is based on an intrusive intelli-
gibility metric, STOI, but, unlike STOI, it does not re-
quire access to the clean speech signal. Instead, the pro-
posed method estimates the spectrum of the reference
signal by identifying the entries of pre-trained spectral
codebooks of speech and noise spectra, parametrized by
auto-regressive parameters, which best fit the observed
signal, i.e., the noisy speech signal. This is done in a
statistical framework wherein parameters are estimated
by minimizing the Itakura-Saito divergence for com-
binations of speech and noise models. This is equiv-
alent to maximum likelihood estimation for Gaussian
distributed signals. The proposed NIC-STOI metric is
shown, in experiments, to be highly correlated with
STOI (with a Pearson correlation of 0.94 and a stan-
dard deviation of the prediction error of 0.14) and is also
validated in a listening experiment assessing speech in-
telligibility. Hence, it can be used for the assessment
of speech intelligibility when a clean reference signal
is not available. This could be used, for example, for
online optimization of hearing aids.
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M. Wältermann, Speech quality estimation: Models and trends,
IEEE Signal Processing Magazine 28 (6) (2011) 18–28.

[43] Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer
design, IEEE Trans. Communications 28 (1) (1980) 84–95.

[44] J. Jensen, C. H. Taal, An algorithm for predicting the intelli-
gibility of speech masked by modulated noise maskers, IEEE
Trans. Audio, Speech, and Language Process. 24 (11) (2016)
2009–2022.

[45] R. L. Goldsworthy, J. E. Greenberg, Analysis of speech-based
speech transmission index methods with implications for non-
linear operations, J. Acoust. Soc. Am. 116 (6) (2004) 3679–
3689.

[46] A. Gersho, R. M. Gray, Vector Quantization and Signal Com-
pression, Kluwer Academic Publishers, 1993.

[47] U. Kjems, J. B. Boldt, M. S. Pedersen, T. Lunner, D. Wang, Role
of mask pattern in intelligibility of ideal binary-masked noisy
speech, J. Acoust. Soc. Am. 126 (3) (2009) 1415–1426.

12


