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Abstract—The LCL-type grid connected inverter has been widely 
used as the intelligent power interface between the distributed 
generation unit and the power grid. To reduce the cost and 
volume of the filter, it is desirable to design the LCL filter with 
higher resonance frequency provided that the quality of injected 
grid current is not compromised. Actually, it is the typical case 
for the T-type or NPC three-level inverter to design its LCL 
resonance frequency close to half of the switching frequency. In 
this case, however, the sideband effect of SPWM modulation can 
impose a significant impact on the system stability, and the 
traditional ZOH model is inadequate to describe the dynamic 
behavior of the digital SPWM modulator. In this paper, by 
extending the multi-frequency model to AC system, the stability 
of the grid-connected inverter is examed with the consideration 
of sideband effect. An interesting discovery in this paper is that 
the influence of grid voltage on the system stability can be 
successfully predicted, which provides a useful tool to study the 
stability of inverter in presence of large grid voltage 
disturbances. Experimental results from a down-scaled three-
phase inverter confirm the effectiveness of stability analysis. 

Keywords—grid-connected inverters； LCL filter； sideband 
harmonics, multi-frequency model 

I.  INTRODUCTION 
Driven by urgent demands of clean and sustainable energy, 

the renewable-energy-based distributed generation (DG) has 
been developed rapidly in the past decades [1]. Featuring full 
control flexibility and high efficiency, the LCL-filtered 
voltage source inverter (VSI) is widely used as the interface 
between the renewable energy source and the power grid. The 
dynamic coupling of grid connected inverters through the grid 
impedance tends to bring in a wide frequency range of 
resonances and harmonic instability, challenging stable 
operations of modern power systems [2]. To effectively 
address this issue, the impedance-based approach has been 
recently developed in [3], [4], which not only provides an 
intuitive insight of the interactions among the VSIs and the 
grid but also enables to reshape inverter control output 
impedance for stabilizing the power system [5]-[6].  

The impedance model developed for the stability analysis 
is usually based on the averaged small-signal model, where 
the sideband harmonics generated by the digital modulator 
have been neglected by small ripple approximation [7]. 

However, this is not always true. By employing the high-order 
filters, such as LCL filter, LLCL filter, LTCL filter, etc., the 
resonance frequency of filters can be designed to be near 
Nyquist frequency for a cost-effective design without 
compromising the quality of the injected grid current [8]-[9]. 
In this case, the sideband components may impose a 
significant impact on the dynamics of the inverters and the 
sideband harmonic resonance may be triggered.  

Common practice in modeling the digital SPWM 
modulator is to represent it by Zero-Order Holder (ZOH), but 
ZOH only takes the sampling and hold procedure into 
consideration. In fact, the SPWM modulation will generate 
abound of sideband components, especially when the PWM 
reference contains small-signal perturbations besides the 
fundamental wave. Therefore, ZOH model may lose much of 
the essential dynamics digital SPWM modulator. In order to 
fully describe the high-nonlinearity of PWM modulation, 
multi-frequency model has been developed in the dc system 
both for the analog control [10] and digital control [11]. Yet, 
both the multi-frequency model and the impedance matrix are 
established at the dc steady-state operating point, which is not 
readily used for the paralleled inverters, due to the time-
varying operating point with the sinusoidal fundamental 
waveform. In [12], multiple-frequency input admittance is 
derived to assess the passivity of the inverter above the 
Nyquist frequency. It only considers the sideband harmonics 
generated by sampling processes, while neglecting the 
sideband harmonics generated by the sinusoidal PWM 
modulator. In this paper, by investigating the relationship 
between the sideband and perturbation frequency components, 
the multi-frequency model is extended to the AC system. With 
this model, the influence of grid voltage on the system 
stability can be successfully predicted, which provides a useful 
tool to study the stability of inverters when the grid is 
experienced with large voltage disturbances. 

II. MULTI-FREQUENCY MODEL OF THE DIGITAL SPWM 
MODULATOR 

Compared with the harmonic spectrum of PWM 
modulation in DC system, the harmonic spectrum of 
sinusoidal PWM modulation in AC system is much more 



complicated when the reference modulating waveform 
contains both the fundamental and perturbation components. 
Moreover, when the digital control is employed, the sampling 
and hold (S&H) procedure also introduces sideband 
components [11]. Therefore, when the sampling frequency is 
different from the switching (carrier-) frequency, the output of 
the digital sinusoidal PWM modulator will contain multiple 
sideband harmonics. Common practice in modeling the digital 
sinusoidal PWM modulator is to use the Zero-Order Hold 
(ZOH), which can be expressed by: 

1( )
sT s

h
s

eG s
T s

−−
=

 
(1) 

where Ts is the sampling frequency. 

However, the ZOH only takes the S&H procedure into 
consideration, which neglects the inherent nonlinearity of the 
sinusoidal PWM. As shown in Fig.1, an obvious mismatch can 
be observed between the output waveform of ZOH and a 
digital sinusoidal PWM modulator. Hence, such a ZOH model 
is inadequate to capture the sideband component of the digital 
sinusoidal PWM modulator. 

The harmonics in the output of the digital sinusoidal PWM 
modulator can be divided into two types. The first type is the 
static harmonics, which are constant and not affected by the 
perturbations, while the other is the dynamic harmonics which 
are changed along with perturbations. As for the static 
harmonics, the analytical methods have been well developed 
based on the double Fourier analysis [13]. However, the 
analysis of dynamic harmonics, which may have a significant 
influence on system dynamic performance and stability, are 
usually overlooked. 

To fully capture the characteristics of dynamic harmonics, 
a small-signal perturbation is intentionally injected into the 
PWM reference waveform under αβ frame, as shown in Fig. 2. 
Then by calculating the spectra of inverter output voltage 
analytically, the frequency response of the digital sinusoidal 
PWM modulator can be derived at both the perturbation 

frequency and sideband frequency based on the harmonic 
balance principle [14]. 

To simplify the analysis, all the variables are transferred to 
the αβ frame and represented by the complex space vector. 
Thus, the three-phase system can be represented by single-
phase system, provided that the three-phase components are 
balanced. As shown in Fig. 2, the angular frequency of the 
carrier waveform is ωc, and the sampling frequency is ωs. In 
this work, the double update of the duty cycle is adopted, i.e. 
the digital control system is sampled and updated twice for 
each switching cycle, ωs = 2ωc. A small-signal perturbation 
component uαβ at the frequency ωp is intentionally added to the 
fundamental wave Uαβ. The complex vectors of uαβ and Uαβ in 
the frequency domain can be represented by: 

( )( ) ( ) ( ) 2 pj
p pu ju M e θ

α βω ω ω π δ ω ω= + = ⋅ ⋅ −αβu
 (2) 

( )0
0 0( ) ( ) ( ) 2 jU jU M e θ

α βω ω ω π δ ω ω= + = ⋅ ⋅ −αβU  (3) 

where Mp and M0 are the modulation ratios of uαβ and Uαβ, 
respectively; θp and θ0 are initial phase angle of uαβ and Uαβ, 
respectively. Under small-signal assumption, we have 
Mp<<M0. 

Using one-dimensional spectral analysis method proposed 
in [15], the harmonic spectrum of inverter output voltages in 
the αβ frame can be derived as (4) shown on the top of next  
page, where θc, is the initial phase angle of the carrier, and m, 
n0 and np are the index variables of the carrier, fundamental 
wave and small-signal perturbation, respectively. Jn is the n 
order of first kind Bessel function, which is expressed as 
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π
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According to the Fourier analysis given in (4), the 
harmonic spectra of the inverter output voltage in the three 
different cases are shown in Fig. 3. First, when the PWM 
reference contains only the sinusoidal fundamental waveform, 
as shown in Fig. 3(a), the dominant harmonics are around 
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Fig. 1 Outputs of ZOH and the digital sinusoidal PWM modulator Fig. 2 Digital sinusoidal PWM modulator with small-signal perturbation 

 
 



0.5ωs and ωs, which are static harmonics. Secondly, when the 
PWM reference contains only the small-signal perturbation 
ωp, as shown in Fig. 3(b), the resulting sideband harmonic is at 
the frequency ωs−ωp, which is the dynamic harmonic. Lastly, 

when the PWM reference contains both the sinusoidal 
fundamental wave and the small-signal perturbation, as shown 
in Fig. 3(c), the static harmonics are the same with that in Fig. 
3(a). However, the dynamic harmonics are different from that 
in Fig. 3(b). New sideband harmonic components are 
generated at the relatively low-frequency range, of which the 
frequencies ωsb1 and ωsb2 are also affected by the phase 
sequence of the perturbation. 

In this paper, it is assumed that the dynamic harmonic 
components beyond the Nyquist frequency 0.5ωs are well 
attenuated by the power filter and the anti-aliasing filter. Only 
the lowest sideband harmonic component at ωsb1 is taken into 
account when modeling the digital sinusoidal PWM modulator. 

According to (2) and (4), the relationship between the 
According to (2) and (4), the relationship between the 
perturbation and the corresponding dominant sideband 
components is derived based on the harmonic balance 
principle, which is illustrated by the multi-frequency model 
shown in Fig. 4. The dynamics of two frequency components, 
i.e., the perturbation frequency component and the sideband 
frequency component, have been taken into consideration. As 
for the positive sequence perturbation, i.e., ωp≥0, the dominant 
sideband component is ωsb1=ωp+ω0−ωc. If s=jωp is used as the 
Laplace variable at the perturbation frequency, 

( )0 cs s j ω ω= + −

 is thereby used as Laplace variable at the 
sideband frequency. As for the negative sequence 
perturbation, i.e., ωp<0, the dominated sideband component is 
ωsb1=ωp+ω0+ωc, so 0( )cs s j ω ω= + +

is thereby used as 
Laplace variable of the sideband frequency. 

In Fig. 4, Gd(s) represents the delay caused by the sampling 
and hold, which is given by 

0.5( ) ssT
dG s e−=  (6) 

The transfer function G1(s) is the representation of the 
sampler and modulator of the single frequency, which is 
expressed as: 
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Fig. 3 Harmonic spectra of the inverter output voltage with PWM reference 
containing (a) only fundamental wave, (b) only small-signal perturbation, (c) 
both the fundamental wave and small signal perturbation. 
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The transfer function G2(s) is used to denote the dynamic 
coupling between the perturbation frequency and the sideband 
frequency components. Since the dominant side-band 
frequency is different for the positive-sequence and negative-
sequence component of uαβ(ωp), the expression of G2(s) is also 
different depending on the sequence of uαβ(ωp), which can be 
expressed as: 
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It is worth noting that this multi-frequency model can be 
readily transformed from the αβ-frame to the dq-frame, simply 
by replacing the Laplace variables s and s  with s+jω0 and 

0s jω+ , respectively, according to the frequency translation 
between the αβ frame and dq frame [2]. 

III. PASSIVITY-BASED STABILITY ANALYSIS WITH 
CONSIDERATION OF SIDEBAND EFFECT 

In order to investigate the impact of the sideband 
components on the system stability, the passivity-based 
stability analysis is used in this paper to provide a more 
intuitive insight [4].  

The control scheme of the three-phase grid-connected 
inverter under study is shown in Fig. 5. A three-phase voltage-
source inverter (VSI) consisting of Q1 ~ Q6 is connected to the 
grid through an LCL filter. L1 is the inverter-side inductor, C is 
the filter capacitor, and L2 is the grid-side inductor. Vin is the 
input dc voltage, and vpcc_a, vpcc_b and vpcc_c are the three-phase 
grid voltages at the point of common coupling (PCC). In this 
paper, the inverter-side currents are controlled under the αβ 
frame, and the capacitor voltage vC is fed-forward to actively 

damp resonance peak of the LCL filter. Gi is the PR current 
regulator, and Gv is the first-order high pass filter used for 
active damping [4].  

The corresponding control block diagram is shown in Fig. 
6. To perform the passivity-based stability analysis, the closed 
output admittance Yinv of the L-inverter seen from the capacitor 
must be first derived. Using the similar method in [3], the 
control loop in the sideband frequency domain can be treated 
as an additional path which is paralleled with G1(s) in the 
perturbation frequency domain. According to Fig. 6, the 
transfer function of this additional path can be given by: 

2 2
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( ) 1 ( )
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⋅
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where ( )eqT s  is the equivalent loop gain in the sideband 
frequency domain which can be expressed by: 
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2
1 2 2
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Therefore, considering the dynamics in sideband frequency 
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Fig. 5 Control scheme of the three-phase grid-connected inverter 
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domain, the accurate transfer function of the digital SPWM 
modulator in the perturbation frequency domains can be 
derived as: 

1 1( ) ( ) ( )multi addG s G s G s= +  (11) 

So the accurate closed-loop admittance of the L-filtered 
inverter seen from the capacitor can also be derived as: 

1
_

1 1

1 ( ) ( ) ( )( )
( ) ( ) ( )

v multi d
inv multi

i multi d

G s G s G sY s
sL G s G s G s
−

=
+  (12) 

Meanwhile, the equivalent admittance of the rest passive 
components C and L2 can be derived as: 

2

1( )eqY s sC
sL

= +  (13) 

According to the passivity theory, the inverter is stable 
when the real part of the closed-loop admittance Yinv is 
positive at all the frequencies where it is possible to intersect 
with the admittance of the rest passive components Yeq. In 
other words, the phase of Yinv should be limited between −90° 
and 90° at all the possible intersection frequencies. 

IV. EXPERIMENTAL VERIFICATION 
In order to exam the sideband effect on the inverter control, 

down-scaled three phase inverter is built, and parameters of 
inverters are shown in Tab. I. The resonance frequency of the 
LCL filter is 2.6kHz, which is close the half of the switching 
frequency. 

Figs. 7 presents Bode diagrams of the admittance of L-
inverter Yinv and the rest passive components Yeq in the 
perturbation domain. Fig.8 presents the zoom-in view of the two 
admittances around the intersection frequencies. As seen, the 
passivity of the L-inverter is influenced by the magnitude of the 
grid voltage when considering the sideband effect of the digital 
SPWM modulator. As seen, the system is stable when grid 
voltage is 90V and a resonance is expected when grid voltage is 
increased to 140V. The resonance should be around −3.1kHz 
and 2.9kHz. 

Figs. 9 and 10 give the steady-state and dynamic 

experimental results, respectively. As seen, the system is 
stable when grid voltage is 90V and an obvious resonance can 
be seen when the grid voltage becomes 140V. According to 
the FFT analysis, the resonance is mainly around 2.9 kHz and 
3.1kHz. This resonance can not be prediected using the small 
signal averaged model which treats the grid voltage as an 
perturbation and can not change the system stability. So the 
experimental results confirm the effectiveness of the 
theoretical analysis.  

V. CONCLUSION 
To reduce the cost and volume of grid connected inverter, 

it is desirable to increase the resonance frequency of the LCL 
filter provided that the quality of the grid current is not 
compromised. Therefore, the sideband components generated 
by the digital SPWM modulation can impose a significant 
impact on the system stability. In this paper, the 
multifrequency model of the digital SPWM modulator is used 
to analyze the system stability instead of the common-used 
ZOH model. Using the passivity-based analysis method, the 
influence of grid voltage on the system stability can be 
successfully predicted, which provides a useful tool to study 
the stability of inverter in presence of large grid voltage 
disturbances. Experimental results from a down-scaled three-
phase inverter confirm the effectiveness of stability analysis. 
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TABLE I  
PARAMETERS OF GRID CONNECTED INVERTER 

Parameter Values 

Vin Input dc-link voltage 400 V 

Vg Phase grid voltage, RMS 140 V 

f0 Fundamental frequency 50 Hz 

fsw Switching frequency 6 kHz 

fs Sampling frequency 12 kHz 

Lf Inverter-side inductor 1500μH 

Cg Grid capacitor 5μF 

Lg Grid inductor 1500μH 
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Fig. 9  Steady-state waveforms when (a) Vg= 90V(rms) (b) Vg= 140V(rms) 
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Fig. 10 Dynamic waveforms when grid voltage is (a) step up from 90V(rms) to 140V(rms), (b) step down from 140V(rms) to 90V(rms). 
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