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Nonlinear periodic response analysis of mooring cables using harmonic balance1

method2

Lin Chena, Biswajit Basua,∗, Søren R.K. Nielsenb
3

aSchool of Engineering, Trinity College Dublin, Dublin 2, Ireland4
bDepartment of Civil Engineering, Aalborg University, Aalborg 9000, Denmark5

Abstract6

Mooring cables are critical components of ocean renewable energy systems including offshore floating wind tur-7

bines and wave energy converters. Mooring cable dynamics is strongly nonlinear resulting from the geometric effect,8

hydrodynamic loads and probably seabed interactions. Time-domain methods are commonly used for numerical sim-9

ulation. This study formulates a nonlinear frequency domain multi-harmonic balance method for efficient analysis of10

a mooring cable subjected to periodic fairlead motions. The periodic responses are of particular interest to investi-11

gate the mooring effect on the platform. In the formulation, the governing equations of the three-dimensional cable12

motions are spatially discretized using the finite difference method; the nonlinear ordinary differential equations are13

subsequently transformed into frequency domain by expanding both the structural responses and the nonlinear nodal14

forces using truncated Fourier series, leading to a set of nonlinear algebraic equations of the Fourier coefficients. The15

equations are eventually solved using Newton’s method where the alternating frequency/time domain method is used16

to handle the nonlinearity effect. The presented method is then compared to a time-domain method by numerical17

studies of a mooring cable. The results show that the method is of comparable accuracy as the time-domain method18

while it is generally more efficient. The proposed method shows promising results even when the cable tension be-19

comes non-positive for a period of time during the cable motion, which is a known ill-posed problem for time-domain20

methods.21

Keywords: Mooring cables; nonlinear dynamics; harmonic balance method; periodic response; alternating22

frequency/time domain technique.23

1. Introduction24

Offshore winds and waves are promising renewable energy sources and are receiving intensive research attention25

recently. Modeling mooring systems is one of the challenging tasks in simulation and design of such floating offshore26

structures [1, 2]. Several comparison studies have already shown the importance of mooring cable dynamics on27

floating wind turbines [3–7]. In the last decade, a number of cable models have been explored, validated or coupled28

with the multi-body dynamics of floating offshore wind turbines and wave energy devices for numerical simulation,29

including the finite element model [8, 9], the multi-body dynamics model [10], the lumped mass models [11, 12] and30

the finite difference model [13–17]. A review of the available models and simulation tools of mooring cables can be31

found in [18, 19]. Presently, mathematical modeling of mooring cables is still a topic area, e.g. a high-order spectral32

method has been developed by [20, 21] and modeling cables using bar elements in an open-source library has been33

conducted in [22].34

Despite a large number of models available for dynamic analyses of the mooring cables, the understanding of the35

mooring cable dynamics is still limited. This is due to the complex nonlinearity arising from the geometric effect,36

hydrodynamic loads and the seabed contact. Besides, for nonlinear analysis, hundreds of degrees of freedom of one37

∗Corresponding author.
Email addresses: l.chen.tj@gmail.com (Lin Chen), basub@tcd.ie (Biswajit Basu), srkn@civil.aau.dk (Søren R.K. Nielsen)

Preprint submitted to Journal of Sound and Vibration September 17, 2018



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Nomenclature

¯( ) variables are constant or dependent of cable static
solution

bn−1/2 vectorized Fourier coefficients of f̂n−1/2

c( )
k , s

( )
k Fourier coefficients of yn or fn−1/2, indicated by the

superscripts
β structural damping coefficient
hn−1/2,h1,hN residual vector of the resulting nonlinear al-

gebraic equations corresponding to intermediate
and boundary nodes

I( ) identity matrix with dimension indicated by the
subscript

q(t) vector containing the sine and cosine series
y(s, t) =

[
ε̃ u v w φ̃ θ̃

]>
, vector of nodal variables

zn vectorized Fourier coefficients of ŷn

F −,F + inverse FFT and FFT operators
∆zn increment of the Fourier coefficient vector
˙( ) time derivatives

∆sn−1 cable segment length between node n−1 and node
n

γ relaxation factor
f̂n−1/2 vectorized f̃n−1/2 samples in one oscillation period
ŷn vectorized yn samples in one oscillation period
M,K, f mass and stiffness matrices, and force vector after

moving all nonlinear terms to the force vector
Q(ω) Fourier series sampled at discrete time points
ω,T f characteristic angular frequency and period of the

forced fairlead motion
⊗ Kronecker product operator
φ, θ angles
ρw the density of water
Θ,Θk partial differential operator in frequency domain

and its block element
˜( ) variables dependent of cable dynamic solution
υ an integer to account for subharmonics in Fourier

series
ε(s, t) cable strain
Cdt,Cdn,Cdb drag coefficients in tangential, normal and bi-

normal directions of the moving Lagrangian coor-
dinate system

d cable diameter
e error
EA cable axial stiffness
Fdt, Fdn, Fdb drag forces per unit length in the local coordi-

nate
FX , FY , FZ fairlead forces
h, l static/initial cable depth and radius
i, j indexes
k index of harmonics in Fourier series
L0 unstretched cable length
m cable mass per unit length
ma added mass per unit length
N cable node number
n cable node index
Nc number of Fourier coefficients for each unknown
Nh number of harmonics retained in truncated Fourier

expansion
Nt number of time instances used for discretization

the one period
Ny number of nodal variables
s arc length coordinate of the unstretched cable
t time
u(s, t), v(s, t),w(s, t) cable velocity in tangential, normal

and bi-normal directions in the moving La-
grangian reference frame

U(t),V(t),W(t)) forced fairlead velocities at time t and
node N in vertical, horizontal and out-of-plane di-
rections of the fixed reference frame

Uc,Vc,Wc current velocities in the vertical and horizontal,
and out-of-plane directions of the fixed reference
coordinate system

ur(s, t), vr(s, t),wr(s, t) relative velocities of the cable with
respect to fluid current in the moving Lagrangian
reference frame

w0 submerged cable weight per unit length
we effective cable submerged weight per unit length

considering seabed effect

cable need to be considered for accuracy and hence the computational demand is another difficulty. Characterizing38

the cable dynamics is important for improving the computational efficiency for the coupled analyses, e.g. by model39

reduction and also for the interpretation of the coupled analysis results. In this context, this study focuses on the40

research gap of nonlinear responses of a mooring cable subjected to periodic fairlead excitations, which represent an41

important subset of the cable dynamics and also are important for understanding the nonlinear mooring loads on the42

structures in the steady state. For understanding the dynamic behavior of submerged cables, linearization methods43

[23–25] including linearization based frequency domain methods have been used to study towed cable dynamics [26].44

The second-order nonlinear dynamics of catenary pipelines/cables have been studied using a perturbation technique45

2



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

based on the finite difference model [27]. However, those methods can only give approximate solutions of the cable46

responses. In this study, the nonlinear periodic motion is proposed to be solved efficiently and accurately using a47

multi-Harmonic Balance (multi-HB) method.48

The harmonic balance method may date back to [28–30] and it has been widely used as an efficient method49

for computing periodic and steady-state responses of nonlinear systems and, hence to gain insight into system non-50

linear characteristics. Furthermore, the introduction of the Fast Fourier Transform (FFT) and the Alternating Fre-51

quency/Time (AFT) technique [31–34] enables the use of multiple (high-order) harmonics and accurate consideration52

of strong nonlinearity such as friction. With the AFT technique, it has been shown that the Jacobian matrix of the53

nonlinear algebraic equations resulting from multi-HB analysis can be formulated analytically, even for stiff systems54

with friction interfaces, which guarantees the computational efficiency. Currently, the multi-HB method is capable55

of studying the stability and nonlinear normal modes of large nonlinear systems as described in [35, 36]. It has been56

applied to aerospace structures [37], flexible structures with local nonlinear attachments [38–40], stay cables [41], and57

nonlinear mechanical systems [42], to name but a few. The single-term harmonic balance has been used for linearizing58

mooring dynamics by [24, 43, 44]. The multi-HB method, however, has not been applied to submerged cables with59

hydrodynamic effects so far.60

This paper is structured as follows. After this introduction, Section 2 presents the nonlinear hydrodynamics61

of mooring cables along with a finite difference method for spatial discretization. Section 3 formulates the multi-62

HB method for mooring cables together with the AFT technique. Numerical studies are presented in Section 4 to63

demonstrate the effectiveness and advantages of the method by comparison with a time-domain method. A brief64

conclusion is provided in Section 5.65

2. Nonlinear hydrodynamics of mooring cables66

The mooring cable under consideration has uniform properties and circular or annular cross-section with the outter67

diameter d, mass per unit length m, and submerged weight per unit length w0 when unstretched. A linear strain and68

tension relationship is considered with EA denoting the axial stiffness. The unstretched cable length is denoted by L0.69

The density of water is denoted by ρw. The initial cable depth and radius are denoted by h and l respectively, as shown70

in Fig. 1.71
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Figure 1: Submerged mooring cable and the coordinate system for describing its motion: (a) front view; (b) top view.
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2.1. Governing Equations72

The cable model derived in [13, 14] is used here. The bending and torsional stiffnesses are ignored because they73

are quite small for mooring cables and hence have limited effects on the cable responses. The coordinate systems74

for describing the three-dimensional mooring configuration and motion are shown in Fig. 1. The origin of the fixed75

reference frame (X,Y,Z) is located at the cable anchorage on the seabed with X − Y plane as the vertical plane defined76

by the anchor and the initial cable top end location and the X-axis is pointing upwards. A moving Lagrangian reference77

frame (x, y, z) is attached to the cable at an arc length s of the unstretched cable measuring from the seabed anchor.78

The x-axis is aligned with the local tangent direction. The angle between x-axis and X-axis in X − Y plane is denoted79

by φ and the angle between x-axis and Y-axis in Y − Z plane is denoted by θ. The cable curvatures in the X − Y plane80

and the Y − Z plane are then defined by ∂φ/∂s and ∂θ/∂s respectively. For the case concerned here where the cable is81

axisymmetric and the bending and torsion are ignored, the two angles (φ, θ) along with s are found to be sufficient to82

define the cable configuration [13]. The normal and binormal directions (y, z) of the local reference frame are defined83

correspondingly after the transformation, using the two angles, to align X-axis to the local tangent direction.84

Considering a steady current velocity with three components in the fixed reference frame, denoted by Uc, Vc and85

Wc respectively, from the balance of forces in the Lagrangian reference frame together with the compatibility relations,86

the partial differential equations (PDEs) governing the cable motion are given as [13]87

0 =EA
∂ε

∂s
− m

∂u
∂t

+ mv cos θ
∂φ

∂t
− mw

∂θ

∂t
+ EAβ

∂ε

∂t
− w0 cos φ cos θ + Fdt (1)

0 =EAε cos θ
∂φ

∂s
− (m + ma)

∂v
∂t
− m(u cos θ + w sin θ)

∂φ

∂t
−Cmρw

πd2

4
(Uc cos φ + Vc sin φ)

∂φ

∂t
+ w0 sin φ + Fdn (2)

0 = − EAε
∂θ

∂s
− (m + ma)

∂w
∂t

+ mv sin θ
∂φ

∂t
−Cmρw

πd2

4
(Uc sin φ sin θ − Vc cos φ sin θ)

∂φ

∂t
+ mu

∂θ

∂t

+ Cmρw
πd2

4
(Uc cos φ cos θ + Vc sin φ cos θ −Wc sin θ)

∂θ

∂t
− w0 cos φ sin θ + Fdb

(3)

0 =
∂u
∂s
−
∂ε

∂t
+ w

∂θ

∂s
− v

∂φ

∂s
cos θ (4)

0 =
∂v
∂s
− (1 + ε) cos θ

∂φ

∂t
+
∂φ

∂s
cos θ(u + w tan θ) (5)

0 =
∂w
∂s

+ (1 + ε)
∂θ

∂t
− v

∂φ

∂s
sin θ −

∂θ

∂s
u (6)

where ε(s, t) = cable strain; u(s, t), v(s, t) and w(s, t) are the tangential, normal, and bi-normal components of cable88

velocity. The buoyancy effect is included in calculation of the submerged weight per unit length w0; the Froude-89

Krylov force, hydrodynamic mass and drag forces are considered using modified Morison’s formula [45]. The added90

mass is calculated by ma = Caρwπd2/4 with the added mass coefficient denoted by Ca. The inertia coefficient is given91

as Cm = 1 + Ca. A structural damping term is added into Eq. (1) as βEA∂ε/∂t assuming proportional damping [12].92

The cable velocities relative to the fluid in the Lagrangian reference frame are denoted as ur(s, t), vr(s, t) and wr(s, t),93

i.e.94

ur = u − (Uc cos φ cos θ + Vc sin φ cos θ −Wc sin θ) (7)
vr = v − (−Uc sin φ + Vc cos φ) (8)
wr = w − (Uc cos φ sin θ + Vc sin φ sin θ + Wc cos θ) (9)

The hydrodynamic drag forces are given as95
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Fdt = −
1
2
ρwdπCdt |ur |ur

√
1 + ε (10)

Fdn = −
1
2
ρwdCdnvr

√
v2

r + w2
r

√
1 + ε (11)

Fdb = −
1
2
ρwdCdbwr

√
v2

r + w2
r

√
1 + ε (12)

where Cdt, Cdn, and Cdb are the drag coefficients in tangential, normal and binormal directions.96

2.2. Incremental form of the governing equations97

For dynamic analysis, the static solution is assumed to be known, which fulfills the static equations that98

0 =EA
dε̄
ds
− w0 cos φ̄ cos θ̄ + F̄dt (13)

0 =EAε̄ cos θ̄
dφ̄
ds

+ w0 sin φ̄ + F̄dn (14)

0 = − EAε̄
dθ̄
ds
− w0 cos φ̄ sin θ̄ + F̄db (15)

where ε̄, φ̄ and θ̄ are the static solutions, and F̄dt, F̄dn and F̄db are hydaulic drag forces when the cable is at rest. The99

preceding equations can be rewritten as100

dε̄
ds

=
1

EA

(
w0 cos φ̄ cos θ̄ − F̄dt

)
(16)

dφ̄
ds

= −
1

EAε̄ cos θ̄

(
w0 sin φ̄ + F̄dn

)
(17)

dθ̄
ds

= −
1

EAε̄

(
w0 cos φ̄ sin θ̄ − F̄db

)
(18)

Correspondingly, the relative velocity of the static cable with respect to water is defined as101

ūr = − Uc cos φ̄ cos θ̄ − Vc sin φ̄ cos θ̄ + Wc sin θ̄
v̄r =Uc sin φ̄ − Vc cos φ̄
w̄r = − Uc cos φ̄ sin θ̄ − Vc sin φ̄ sin θ̄ −Wc cos θ̄

The cable state can be expressed as the summation of its static and dynamic components as102

ε(s, t) = ε̄(s) + ε̃(s, t), φ(s, t) = φ̄(s) + φ̃(s, t), θ(s, t) = θ̄(s) + θ̃(s, t) (19)

and hence the governing equations are rewritten in an incremental form as103

5
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0 =EA
∂(ε̄ + ε̃)
∂s

− m
∂u
∂t

+ mv cos θ
∂φ̃

∂t
− mw

∂θ̃

∂t
+ EAβ

∂ε̃

∂t
− w0 cos φ cos θ + Fdt (20)

0 =EA(ε̄ + ε̃) cos θ
∂(φ̄ + φ̃)
∂s

− (m + ma)
∂v
∂t

− m [u cos θ + w sin θ]
∂φ̃

∂t
−Cmρw

πd2

4
(Uc cos φ + Vc sin φ)

∂φ̃

∂t
+ w0 sin φ + Fdn

(21)

0 = − EAε
∂(θ̄ + θ̃)
∂s

− (m + ma)
∂w
∂t

+ mv sin θ
∂φ̃

∂t
−Cmρw

πd2

4
(Uc sin φ sin θ − Vc cos φ sin θ)

∂φ̃

∂t

+ mu
∂θ̃

∂t
+ Cmρw

πd2

4
(Uc cos φ cos θ + Vc sin φ cos θ −Wc sin θ)

∂θ̃

∂t
− w0 cos φ sin θ + Fdb

(22)

0 =
∂u
∂s
−
∂ε̃

∂t
+ w

∂(θ̄ + θ̃)
∂s

− v
∂(φ̄ + φ̃)
∂s

cos(θ̄ + θ̃) (23)

0 =
∂v
∂s
− (1 + ε̄ + ε̃) cos(θ + θ̃)

∂φ̃

∂t
+
∂(φ̄ + φ̃)
∂s

cos(θ̄ + θ̃)
[
u + w tan(θ̄ + θ̃)

]
(24)

0 =
∂w
∂s

+ (1 + ε̄ + ε̃)
∂θ̃

∂t
− v

∂(φ̄ + φ̃)
∂s

sin(θ̄ + θ̃) −
∂(θ̄ + θ̃)
∂s

u (25)

2.3. Equations in matrix form104

The PDEs using the incremental formulation can be written in matrix form as105

M(y)
∂y
∂t

+ K(y)
∂y
∂s

+ f(y) = 0 (26)

where the nodal state vector is y(s, t) = [ε̃, u, v,w, φ̃, θ̃]>, M and K are mass and stiffness matrices, and f is the nodal106

force vector. They are given as below107

K =



EA 0 0 0 0 0
0 0 0 0 EAε cos θ 0
0 0 0 0 0 −EAε
0 1 0 0 −v cos θ w
0 0 1 0 u cos θ + w sin θ 0
0 0 0 1 −v sin θ −u


(27)

108

M =



EAβ −m 0 0 mv cos θ −mw
0 0 −(m + ma) 0 M2,5 0
0 0 0 −(m + ma) M3,5 M3,6
−1 0 0 0 0 0
0 0 0 0 M5,5 0
0 0 0 0 0 1 + ε


(28)

where109

M2,5 = −m(w sin θ + u cos θ) −Cmρw
πd2

4
(Uc cos φ + Vc sin φ)

M3,5 = mv sin θ −Cmρw
πd2

4
(Uc sin φ sin θ − Vc cos φ sin θ)

M3,6 = mu + Cmρw
πd2

4
(Uc cos φ cos θ + Vc sin φ cos θ −Wc sin θ)

M5,5 = −(1 + ε) cos θ

6
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and the force vector f =
[
f1 f2 f3 f4 f5 f6

]>
110

f1 = − w0 cos φ cos θ + Fdt + EA
dε̄
ds

(29)

f2 =w0 sin φ + Fdn − EAε cos θ
dφ̄
ds

(30)

f3 = − w0 cos φ sin θ + Fdb − EAε
dθ̄
ds

(31)

f4 = − v cos θ
dφ̄
ds

+ w
dθ̄
ds

(32)

f5 = (u cos θ + w sin θ)
dφ̄
ds

(33)

f6 = − v sin θ
dφ̄
ds

+ u
dθ̄
ds

(34)

Noting that M,K and f depend on y, for the convenience of formulating the harmonic balance analysis, the111

governing equations are rewritten by collecting all the y-dependent terms in the nodal force vector such that112

M̄
∂y
∂t

+ K̄
∂y
∂s

+ M̃(y)
∂y
∂t

+ K̃(y)
∂y
∂s

+ f(y) = 0 (35)

The mass and stiffness matrices, and force vector thus become113

M̄ =



EAβ −m 0 0 0 0
0 0 −m − ma 0 0 0
0 0 0 −m − ma 0 0
−1 0 0 0 0 0
0 0 0 0 −(1 + ε̄) cos θ̄ 0
0 0 0 0 0 1 + ε̄


(36)

114

K̄ =



EA 0 0 0 0 0
0 0 0 0 EAε̄ cos θ̄ 0
0 0 0 0 0 −EAε̄
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


(37)

and115

M̃ =



0 0 0 0 mv cos θ −mw
0 0 0 0 M2,5 0
0 0 0 0 M3,5 M3,6
0 0 0 0 0 0
0 0 0 0 M5,5 + (1 + ε̄) cos θ̄ 0
0 0 0 0 0 ε̃


, K̃ =



0 0 0 0 0 0
0 0 0 0 EAε cos θ − EAε̄ cos θ̄ 0
0 0 0 0 0 −EAε̃
0 0 0 0 −v cos θ w
0 0 0 0 u cos θ + w sin θ 0
0 0 0 0 −v sin θ −u


(38)

As in [13–16], Eq. (26) along with boundary conditions can be discritized in both time and space using the finite116

difference method and then solved using the relaxation method [46]. For formulating the multi-HB analysis, the117

equation is only spatially discretized using the finite difference method.118

2.4. Spatial discretization119

For spatial discretization, the spatial derivatives Eq. (26) are replaced by the central differences [13, 16]. Let the120

cable be discretized into N − 1 segments with N nodal points in total along the cable length. The first node is at the121

7
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seabed origin and the Nth node is at the cable top end. Hence, a set of N − 1 matrix equations (one equation per half122

grid) can be obtained as123

[
M̄n−1 M̄n

] { ẏn−1
ẏn

}
+

1
∆sn−1

[
−K̄n−1 − K̄n K̄n−1 + K̄n

] { yn−1
yn

}
+

[
M̃n−1 M̃n

] { ẏn−1
ẏn

}
+

1
∆sn−1

[
−K̃n−1 − K̃n K̃n−1 + K̃n

] { yn−1
yn

}
+ fn−1 + fn = 0

(39)

which is further written as124 [
M̄n−1 M̄n

] { ẏn−1
ẏn

}
+

[
−K̄n−1/2 K̄n−1/2

] { yn−1
yn

}
+ f̃n−1/2 = 0 (40)

with125

K̄n−1/2 =
(
K̄n−1 + K̄n

)
/∆sn−1,

f̃n−1/2 =
[
M̃n−1 M̃n

] { ẏn−1
ẏn

}
+

1
∆sn−1

[
−K̃n−1 − K̃n K̃n−1 + K̃n

] { yn−1
yn

}
+ fn−1 + fn

(41)

2.5. Boundary conditions126

The cable is often fixed at the seabed anchor such that the velocity at the first node is constantly zero127

u1 = 0, v1 = 0,w1 = 0 (42)

On the other hand, the fairlead is subjected to excitations resulting from platform motion. Let the excitation velocity128

be represented by its three components in the fixed cable coordinate system, i.e. U(t), V(t) and W(t) respectively.129

Hence, the boundary equations at the fairlead node are given at time t as130

0 =uN cos φN cos θN − vN sin φN + wN cos φN sin θN − U(t) (43)
0 =uN sin φN cos θN + vN cos φN + wN sin φN sin θN − V(t) (44)
0 = − uN sin θN + wN cos θN −W(t) (45)

Correspondingly the cable tension at the fairlead has three components in the fixed cable coordinate system, as illus-131

trated in Fig. 1, given as132

FX(t) =EAεN cos φN cos θN (46)
FY (t) =EAεN sin φN cos θN (47)
FZ(t) = − EAεN sin θN (48)

In cases where the fairlead force is known, the preceding three equations are the boundary conditions at the fairlead.133

This is usually the case for static analysis.134

The mooring cable usually lies partly grounded on the seabed to avoid the lift force to the anchor. For considering135

the cable-seabed contact effect, the method proposed in [15] is adopted herein. Flat seabed is considered and it is136

modeled as elastic spring with stiffness ksb which provides a vertical support force when the cable is grounded. This137

can be easily accounted for by modifying the effective submerged cable weight. In other words, the effective weight138

per unit length at node n is given as wn
e = w0 +ksbX(sn) and 0 ≤ wn

e ≤ w0 for static problem. In solving the PDEs using139

iterative method, to consider the seabed effect, w0 in Eqs. (29-34) is replaced by wn
e which is evaluated based on the140

cable nodal position obtained in the previous iteration step. After solving the equations in the Lagrangian coordinate141

system, the cable nodal displacement and position can be integrated node by node from the seabed anchor using s, φ142

and θ [13, 15].143
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3. Multi-harmonic balance analysis144

The nonlinear ordinary equation (39) can also be solved in time domain by replacing the time derivatives using145

finite differences [16]. However, the time domain method may be subjected to numerical stability issues and to obtain146

the steady-state responses and a long time simulation may be required to arrive the steady state. This section therefore147

formulates the multi-HB method for efficiently solving the cable responses when it is subjected to periodic fairlead148

excitations.149

3.1. Governing equations in frequency domain150

Considering the cable subjected to a periodic excitation with a period T f and the corresponding characteristic151

angular frequency ω = 2π/T f at its fairlead, the periodic cable response yn is pursued herein and hence the nodal152

force fn is also periodic. Therefore, they can be approximated using truncated Fourier series as follows,153

yn(t) ≈
cyn

0
√

2
+

Nh∑
k=1

(
syn

k sin
kωt
υ

+ cyn
k cos

kωt
υ

)
(49)

154

f̃n−1/2(t) ≈
c fn−1/2

0
√

2
+

Nh∑
k=1

(
s fn−1/2

k sin
kωt
υ

+ c fn−1/2

k cos
kωt
υ

)
(50)

in which the index k represents the kth harmonic component and Nh = the number of harmonics retained. Noting155

that generally the constant terms need to be retained since the presence of the current may induce constant drift of the156

solution. The total number of coefficient for each degree of freedom is denoted by Nc = 2Nh + 1 for general cases and157

Nc = 2Nh if the constant term is omitted. The integer υ accounts for subharmonics of the excitation frequency ω. The158

coefficients c( )
k and s( )

k can be reshaped to NcNy × 1 vectors as159

zn =
[
cyn,1

0 syn,1

1 cyn,1

1 · · · syn,1
Nh

cyn,1
Nh
· · · s

yn,Ny

Nh
c

yn,Ny

Nh

]>
(51)

160

bn−1/2 =

[
c fn−1/2,1

0 s fn−1/2,1

1 c fn−1/2,1

1 · · · s fn−1/2,1

Nh
c fn−1/2,1

Nh
· · · s

fn−1/2,Ny

Nh
c

fn−1/2,Ny

Nh

]>
(52)

where Ny denotes the number of variables at each node, i.e. Ny = 6 here. Note that the coefficient arrangements here161

are different from [47] for the convenience of using relaxation method in the subsequent solving procedure [46]. Then162

the nodal response and force can be recast into a compact form as163

yn(t) =
[
INy ⊗ q(t)

]
zn (53)

fn−1/2(t) =
[
INy ⊗ q(t)

]
bn−1/2 (54)

where ⊗ stands for an operation on two matrices which gives another matrix that is formed by multiplying the second164

matrix by each element of the first matrix (known as Kronecker product of two matrices, see Appendix A for an165

example). The matrix INy is an identity matrix of size Ny × Ny, and q(t) is a row vector containing the sine and cosine166

series167

q(t) =

[
1
√

2
sin

ωt
υ

cos
ωt
υ
· · · sin

kωt
υ

cos
kωt
υ
· · · sin

Nhωt
υ

cos
Nhωt
υ

]
(55)

From Eq. (53), one obtains168

ẏn(t) =
[
INy ⊗ q̇(t)

]
zn =

{
INy ⊗

[
q(t)Θ

]}
zn (56)

in which the matrix Θ is given as169

Θ =



Θ1
. . .

Θk
. . .

ΘNh


(57)
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with block entries that170

Θk =

[
0 −kω/υ

kω/υ 0

]
(58)

Substituting expressions (53,56) into Eq. (39), one obtains171

[
M̄n−1 M̄n

] {
INy ⊗

[
q(t)Θ

]} { zn−1
zn

}
+

[
−K̄n−1/2 K̄n−1/2

]
INy ⊗ q(t)

{
zn−1
zn

}
+

[
INy ⊗ q(t)

]
bn−1/2 = 0Ny×1 (59)

where 0Ny×1 represents a vector of size Ny containing zeros. The preceding equation can be further simplified as172

{[
M̄n−1 M̄n

]
⊗

[
q(t)Θ

]} { zn−1
zn

}
+

{[
−K̄n−1/2 K̄n−1/2

]
⊗ q(t)

} { zn−1
zn

}
+

[
INy ⊗ q(t)

]
bn−1/2 = 0Ny×1 (60)

To eliminate the time dependency of the preceding equation, a Galerkin procedure projects the preceding equation173

on the orthogonal trigonometric basis of q(t), namely174 {[
M̄n−1 M̄n

]
⊗

[
2

T f

∫ T f

0
q>(t)q(t)dtΘ

]
+

[
−K̄n−1/2 K̄n−1/2

]
⊗

[
2

T f

∫ T f

0
q>(t)q(t)dt

]} {
zn−1
zn

}
+

{
INy ⊗

[
2

T f

∫ T f

0
q>(t)q(t)dt

]}
bn−1/2 = 0Ny×1

(61)

Note that175

2
T f

∫ T f

0
q>(t)q(t)dt = INc

The governing equations are eventually expressed in frequency domain as176 {[
M̄n−1 M̄n

]
⊗Θ +

[
−K̄n−1/2 K̄n−1/2

]
⊗ INc

} { zn−1
zn

}
+ bn−1/2 = 0NcNy×1 (62)

The the left-hand side of the preceding equation is defined as the residual, i.e.177

hn−1/2 =
[
M̄n−1 ⊗Θ − K̄n−1/2 ⊗ INc M̄n ⊗Θ + K̄n−1/2 ⊗ INc

] { zn−1
zn

}
+ bn−1/2 (63)

for each intermediate node 1 < n ≤ N. Similarly, for the boundary nodes, it reads178

h1 = b1, hN = bN (64)

For implementation of multi-HB method, it is crucial to determine bn and also the Jacobian matrix for gradient based179

correction of the solution. The AFT method is applied [32], as detailed in the following subsection.180

3.2. AFT technique for handling nonlinearity181

The expressions for the nonlinear nodal forces as expressed in Eq. (29-34) are difficult to be analytically trans-182

formed into frequency domain to obtain the coefficients in the Fourier series. The AFT technique offers a convenient183

procedure as184

zn, zn−1
F −

→ yn, yn−1, ẏn, ẏn−1 → f̃n−1/2
F +

→ bn−1/2 (65)

where F − denotes the inverse FFT operator and correspondingly the FFT operator is denoted by F +. In other words,185

in each iteration step, the nonlinear nodal force is obtained by evaluating Eq. (29-34) in time domain, using time186

series of the nodal state which are transformed from zn and zn−1 using inverse FFT, and further the nodal force time187

series are transformed into frequency domain for bn and bn−1 via FFT.188
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Let the time period be discretized by Nt equally distributed sampling points in the FFT. One can define vectors ŷ189

and f̂ containing the concatenated Nt · Ny time samples of the nodal states and the forces, respectively. For the nth190

node, one thus obtains191

ŷn =
[
yn,1(t1) · · · yn,1(tNt ) · · · yn,Ny (t1) · · · yn,Ny (tNt )

]>
(66)

f̂n−1/2 =
[
f̃n−1/2,1(t1) · · · f̃n−1/2,1(tNt ) · · · f̃n−1/2,Ny (t1) · · · f̃n−1/2,Ny (tNt )

]>
(67)

The inverse FFT can then be written as a linear operation192

ŷn = F −zn, f̂n−1/2 = F −bn−1/2 (68)

with the sparse operator193

F − = INy ⊗Q(ω) (69)

where Q(ω) is the matrix of the time samples of trigonometrical functions194

Q(ω) =



1
√

2
sin ωt1

υ
cos ωt1

υ
· · · sin Nhωt1

υ
cos Nhωt1

υ
1
√

2
sin ωt2

υ
cos ωt2

υ
· · · sin Nhωt2

υ
cos Nhωt2

υ

...
...

...
. . .

...
...

1
√

2
sin ωtNt

υ
cos ωtNt

υ
· · · sin NhωtNt

υ
cos NhωtNt

υ


(70)

Similarly, the FFT to obtain the Fourier coefficients is written as195

zn = F +ŷn,bn−1/2 = F +f̂n−1/2 (71)

where the FFT operator is computed by F + = (F −)>
[
F −(F −)>

]−1.196

The Jacobian matrix of the residual function (63) with respect to zn−1 and zn can be obtained as197

∂hn−1/2

∂zn−1
=

(
M̄n−1 ⊗Θ − K̄n−1/2 ⊗ INc

)
+
∂bn−1/2

∂zn−1
(72)

198

∂hn−1/2

∂zn
=

(
M̄n ⊗Θ + K̄n−1/2 ⊗ INc

)
+
∂bn−1/2

∂zn
(73)

The difficulty in evaluating the Jacobian matrix lies in the computation of ∂bn−1/2/∂zn. This also requires the AFT199

technique. Noting that f̃n−1/2 is a function of both yn and ẏn so that the Jacobian matrix computation needs to be200

written as201

∂bn−1/2

∂zn
=
∂bn−1/2

∂f̂n−1/2

∂f̂n−1/2

∂zn
= F + ∂f̂n−1/2

∂zn

= F +

∂f̂n−1/2

∂ŷn

∂ŷn

∂zn
+
∂f̂n−1/2

∂ ˙̂yn

∂ ˙̂yn

∂zn

 = F + ∂f̂n−1/2

∂ŷn
F − + F + ∂f̂n−1/2

∂ ˙̂yn

{
INy ⊗ [Q(ω)Θ]

} (74)

Similar procedure is applicable for computing ∂bn−1/2/∂zn−1. The same method is also applied for handling the202

boundary nodal equations (64) but it is noteworthy that the FFT operator for boundary equations is of size Nc × 3Nt203

here. From Eqs. (29-34) ∂f̃n−1/2/∂yn and ∂f̃n−1/2/∂ẏn can be derived analytically (see Appendix B), which are then204

evaluated at the sampled time instances in a period and further rearranged to obtain ∂f̂n−1/2/∂ŷn and ∂f̂n−1/2/∂ ˙̂yn.205

Once the residual and Jacobian matrix are available, Newton’s method can be used for iteration to solve the equation.206

In addition, for this two-point boundary valued problem spatially discretized using the first-order finite difference,207

only the two neigboring nodes are coupled and hence the problem can be solved from the fairlead node by node208

without assembling the global mass, stiffness matrices and the force vector. In iteration for solving the equations, the209

coefficient vector zn for all the nodes are updated by210

zi+1
n = zi

n + γ∆zi
n (75)
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where ∆zi
n is the state increment, γ is the relaxation factor which is in the range of 0 and 1 to slow the update, and i is211

the iteration step index. The adjustment method of the relaxation factor proposed in [16] is applied here.212

The error is defined as [16]213

ei =
1

NcN

N∑
n=1

Nc∑
j=1

∣∣∣∆zi
n, j

∣∣∣ (76)

3.3. Solving procedure214

Providing the cable and environmental parameters and the cable static solution, the presented method can be used215

to conduct periodic responses analysis. Given the forced motion frequency, the FFT and inverse FFT operators can be216

prepared for use. The solving procedure is summarized as below.217

i Evaluate M̄n and K̄n for 1 ≤ n ≤ N from the static solution using Eqs. (36,37);218

ii Initialize zn for all nodes;219

iii Evaluate ŷn and ˙̂yn using the inverse FFT, Eq. (68), and rearrange the vector to obtain yn(t j) and ẏn(t j) for all220

nodes and time instances;221

iv Evaluate M̃n, K̃n and fn for all nodes using Eqs. (38,29–34);222

v Evaluate f̃n−1/2, ∂f̃n−1/2/∂yn, ∂f̃n−1/2/∂yn−1, f̃n−1/2/∂ẏn and f̃n−1/2/∂ẏn−1 using Eq. (40) and for boundary nodes223

using Eqs. (42-45);224

vi Rearrange f̃n−1/2 for all nodes and time instances to obtain f̂n−1/2 and rearrange f̃n−1/2/∂yn and f̃n−1/2/∂yn−1 to225

obtain f̂n−1/2/∂ŷn, f̂n−1/2/∂ŷn−1, f̂n−1/2/∂ ˙̂yn−1 and f̂n−1/2/∂ ˙̂yn−1;226

vii Obtain hn−1/2 using Eq. (63) and h1 and hN using Eq. (64) and ∂hn−1/2/∂zn and ∂hn−1/2/∂zn using Eqs. (72,73)227

with the FFT and inverse FFT operators;228

viii Solve ∆zn and evaluate the error and update zn using Eq. (75);229

ix Check the error using Eq. (76) and repeat steps 3-8 before convergence.230

x Stop if convergence is achieved or the maximum number of iterations is reached.231

The method is implemented in C++ with Eigen library [48] for handling linear algebra, matrix and vector operations.232

4. Application and discussion233

In this section, a typical mooring cable is analyzed using the presented method and the results are compared with234

corresponding time-domain analysis results. The open-source mooring system simulation program developed by the235

authors, named OpenMOOR, which has been verified and applied in [7, 49], is used for the time-domain analysis.236

The generalized-α method is used for time stepping [50].237

4.1. Description of the simulated mooring cable238

The mooring cable of the OC3 Hywind platform for the spar-type floating offshore wind turbine is used [51, 52].239

The cable properties are listed in Table 1 along with the hydrodynamic coefficients which are adopted following [5].240

In the following numerical analyses, to focus on the multi-HB method, the cable is considered to be in still water and241

the seabed interaction is ignored here. In this case, the constant terms in the Fourier expansion, i.e. Eqs. (49,50), are242

omitted. Hence Nc = 2Nh and correspondingly the first column of the matrix Q(ω) in Eq. (70) is also eliminated.243

The cable static profile is shown in Fig. 2 which is solved using a shooting procedure [15]. The cable is divided244

into 49 segments with 50 nodes. For a fair comparison of the computation efficiency, in using the time-domain method,245

the static solution is used as the starting point. In harmonic balance analysis, the static solution is used along with246

zero dynamic responses as initial guess, i.e. zn = 0.247
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Figure 2: Static profile of the simulated cable (circles indicate the node position).

Table 1: Cable properties and environmental parameters

Parameter Symbol Unit Value

Diameter d m 0.09
Unstretched length L0 m 902.2

Mass per unit length m kg/m 77.7066
Submerged weight per unit length w0 N/m 698.094

Elastic stiffness EA N 3.84243E8
Static cable depth h m 250
Static cable radius l m 848.67

Added mass coefficient Ca - 1.0
Drag coefficient Cdt,Cdn,Cdb - 0, 1.6, 1.6

4.2. Convergence of the multi-HB method248

The convergence of the presented method is first studied. The cable is forced with harmonic motions at the249

fairlead in the Y direction (surge motion). The frequency is considered to be 0.05 Hz when the non-linearity effect250

can be clearly seen in the following results. In using the multi-HB method, the integer v = 1 is adopted since no sub-251

harmonic responses have been observed in this case; the initial relaxation factor is set to be 1.0, and the convergence252

tolerance is considered to be 10−10. The first case considers the amplitude of the fairlead displacement to be 5.0 m and253

in a second case, the amplitude is increased to 9.0 m. The error evolution with respect to the iteration step is plotted in254

Fig. 3 and the obtained cable tensions, EAε, at the fairlead are plotted in Fig. 4. Results solved using different values255

of the harmonic balance parameters are presented for comparison.256

It can be seen from Fig. 3 that for all the cases, the computation is able to achieve a fast convergence within257

ten steps. Generally, more iterations are required when higher-order harmonics are included and a larger number of258

time points are used. More importantly, even for the difficult case when cable tension becomes non-positive during259

the cable motion, which is known as an ill-posed problem for perfectly flexible cables [53], convergence can still260

be achieved with the multi-HB method, as shown in Fig. 4 for the case when the forced motion has an amplitude261

of 9.0 m and the fairlead tension is zero around t = 15 s. This is because the Jacobian matrix of the multi-HB262

method is constructed from all the time instances in one period and therefore it is nonsingular even if the Jacobian263

matrix of the time-domain equation is singular for some time instances. In Fig. 4, by comparing the results obtained264

using 9 harmonics and more, it can be concluded that the solution is converged with 9 harmonics in these two cases.265

Actually, with 3 harmonics the method can already achieve a quite high accuracy as compared to those obtained using266

9 harmonics.267
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Figure 3: Error evolution in the multi-HB analysis (left) forced fairlead motion in Y direction of amplitude 5.0 m; (right) forced fairlead motion in
Y direction of amplitude 9.0 m.
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Figure 4: Fairlead tensions solved using the multi-HB method (left) forced fairlead motion in Y direction of amplitude 5.0 m; (right) forced fairlead
motion in Y direction of amplitude 9.0 m.

4.3. Comparison of time- and frequency-domain methods268

To verify the presented method and to show its advantages, simulations are carried out with the comparison to269

the time-domain method. As shown in the preceding section, Nh = 9 and Nt = 32 are sufficient for the convergence270

of the multi-HB analysis and they are thus adopted in the following analysis. In using the time-domain method, the271

convergence tolerance is also set to be 10−10. Time domain analyses commonly start with the static solution with272

zero displacements and zero velocity, and hence some time is required to dissipate the transient responses so that273

the cable motion can reach the steady state. In the analysis, the displacement is ramped to the target value in half274

of a period and therefore at least two periods are required. The time needed for the transient responses to dying out275

depends on the system damping. For mooring cables, due to the hydrodynamic drag effect, several periods may be276

sufficient. As shown in Fig. 5, with the transverse drag coefficient of 1.6 in Table 1, the solution reaches the steady277

state in 3 periods, while decreasing the drag coefficient to 0.1, at least four periods are required. The accuracy and278

computational efficiency also depend on the time step, a test shows that a time step of 0.1 s is the minimum step to279

prevent the numerical drift of the cable displacement at the fairlead which is a known issue of this finite difference280

cable modal [16]. In the following, the time step is considered to be 0.1 s and the time-domain analysis is performed281

for three periods of the forced motion. The cable responses in the third period are assumed to be the steady responses282

to be compared with the harmonic balance analysis results.283

Four cases are studied for comparison. In the first three cases, a forced motion of a displacement amplitude of 5.0284

m and frequency of 0.05 Hz is considered respectively in Y , X, and Z directions. In the last case, the forced motion285

is considered in both Y and Z directions: the motion in the Y direction has a displacement amplitude of 2.5 m and286
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frequency of 0.1 Hz and the motion in the Z direction is of a displacement amplitude of 5.0 m and a frequency of287

0.05 Hz. The computation times to obtain the steady-state response using the time-domain method and the multi-HB288

method are compared in Table 2. Note that the value listed for the time-domain method is the time taken to complete289

a three-period simulation. The computations were performed on a 16-core Windows desktop (Intel i7-8700 CPU @290

3.20 GHz). It is seen that the multi-HB method is much efficient and the computational time is almost equivalent to291

the time needed to run the time-domain method for one period. Additionally, for such a nonlinear system, the time292

required for the system to reach the steady state is not known beforehand and for systems with less damping, more293

time is required as shown in Fig. 5.294
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Figure 5: Fairlead tension time history solved using the time domain method (left) with hydrodynamic drag coefficients Cdt = 0 and Cdn = Cdb =

1.6; (right) with hydrodynamic drag coefficients Cdt = 0 and Cdn = Cdb = 0.1.

Table 2: Computational efficiency comparison

Case no. Time-domain computation (s) Multi-HB computation (s) Description

1 6.03 1.40 motion in Y direction
2 6.07 1.40 motion in X direction
3 6.47 2.43 motion in Z direction
4 6.74 3.01 motion in both Y and Z direction

The cable responses solved using the time-domain method and the multi-HB are compared in Figs. 6–9 where the295

fairlead tension and the nodal solution corresponding to the 25th node (with s = 441.11 m) are plotted. In most of the296

graphics, results obtained using the two methods are found to be pretty consistent. Relatively observable differences297

are seen in the fairlead tension and the nodal strain of Fig. 8 when the forced motion is in the out-of-plane direction.298

This is because the overall tension/strain variation is small since the forced motion is in the out-of-plane. Besides, the299

super-harmonic responses are clearly captured in the cable tension, as also reported in the numerical study using time300

domain methods by [54].301

The numerical results clearly demonstrate that in the analyzed cases, the multi-HB method has achieved compa-302

rable accuracy as the time-domain analysis while it is more efficient. In addition, as seen from the solving procedure303

given in Section 3.3, the AFT technique requires the FFT and inverse FFT operations for all nodes which can be done304

in parallel for further improving the computational efficiency. To summarize, the multi-HB method is found to be305

advantageous for periodic analyses of mooring cables.306

5. Conclusion307

This study has proposed and formulated a multi-HB method for a three-dimensional mooring cable under periodic308

fairlead motion. The governing equations of the cable are first represented in an incremental form and then spatially309

discretized using the finite difference method. The nodal equations are transformed into the frequency domain by310
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Figure 6: Comparison of the fairlead tension and nodal solution corresponding to the 25th node with s = 441.11 m when the forced motion is in Y
direction. Lines correspond to the time-domain analysis results and symbols indicate the multi-HB analysis results.

Fourier expansion. The AFT technique is applied to handle the geometrical and hydrodynamic non-linearity accu-311

rately. The presented method is implemented and compared with a time domain method based on numerical studies312

of a typical mooring cable. The following conclusions can be drawn:313

i The multi-HB method together with the AFT technique is promising to solve periodic mooring cable motion. It314

can handle the geometric and hydrodynamic nonlinearity and the case when cable tension becomes zero.315

ii The multi-HB method is accurate and more efficient as compared to the time-domain method for analyzing the316

periodic cable responses.317

iii The method is able to capture the super-harmonic cable responses and is promising for further parametric analyses318

of mooring cables.319

Future studies will focus on local and global stability analysis of mooring cables with nonlinear hydrodynamics based320

on the presented method.321
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Figure 7: Comparison of the fairlead tension and nodal solution corresponding to the 25th node with s = 441.11 m when the forced motion is in X
direction. Lines correspond to the time-domain analysis results and symbols indicate the multi-HB analysis results.

Appendix A. Kronecker product327

The Kronecker product of two matrices is calculated by

A ⊗ E =


a11 a12 · · · a1q

a21 a22 · · · a2q
...

...
. . .

...
ap1 ap2 · · · apq

 ⊗ E =


a11E a12E · · · a1qE
a21E a22E · · · a2qE
...

...
. . .

...
ap1E ap2E · · · apqE


where a(·,·) ∈ R is an element of matrix A (p × q).328

Appendix B. Matrix differentiation329

In the derivation of ∂f̃n−1/2/∂y, the following matrix differentiation expression is used330

∂M(y)x
∂y

=


...

x> ∂m>p
∂y
...

 (B.1)

where x is a vector and mp denotes the pth row of the M matrix.331
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Figure 8: Comparison of the fairlead tension and nodal solution corresponding to the 25th node with s = 441.11 m when the forced motion is in Z
direction. Lines correspond to the time-domain analysis results and symbols indicate the multi-HB analysis results.
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