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21 Significance: This study did not show any significant effect of experimental stress on pain 

22 sensitivity or conditioned pain modulation (CPM), but a correlation was found between 

23 changes in conditioned pain sensitivity and cortisol levels. Mechanisms regulating cortisol 

24 levels may interact with the effectiveness of a conditioning stimulus, and thus reduces the 

25 effectiveness of CPM. 
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1 ABSTRACT

2 Objectives. Stress and pain have been interrelated in clinical widespread pain conditions. 

3 Studies indicate that acute, experimental stress in healthy volunteers has a negative effect 

4 on the descending inhibitory pain control system and thus the ability to inhibit one painful 

5 stimulus with another (conditioned pain modulation, CPM) although without effect on 

6 general pain sensitivity. CPM-effects can be assessed immediately after the stress-

7 induction, whereas some physiological stress responses (e.g. cortisol release) are delayed 

8 and longer lasting. It is unclear whether CPM may relate to stress-induced increases in 

9 cortisol.

10 Design. Twenty-five healthy men had CPM-effects measured over a period of 10 minutes. 

11 Pain detection thresholds (PDT) was assessed by repeated test-stimuli with cuff algometry 

12 on one leg, with and without painful cuff-pressure conditioning on the contralateral leg. 

13 CPM-effects, assessed as the increase in PDT during conditioning stimulation compared 

14 to without, were measured before and after experimental stress and a control condition 

15 (Montreal Imaging Stress Task, MIST). Saliva cortisol levels and self-perceived stress 

16 were collected. 

17 Results. Participants reported MIST to be more stressful compared with MIST-control but 

18 cortisol levels did not change significantly from baseline. In all sessions, PDT increased 

19 during conditioning (P=0.001) although MIST compared with MIST-control, had no 

20 significant effect on PDT or CPM-effects. A negative correlation between changes in 

21 cortisol and conditioned PDT was found when applying MIST (P<0.03). 

22 Conclusion. No significant effect of stress was found on CPM compared to a matched 

23 control-condition. Individual changes in experimental stress and in conditioned pain 

24 sensitivity may be linked with cortisol. 

25
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1 INTRODUCTION 

2 People with chronic musculoskeletal pain have increased risk of comorbid diseases[1,2], 

3 including stress[3], and impairment of the descending pain modulatory systems[4-6]. 

4 Conditioned pain modulation (CPM) paradigms assess the net-effect of descending pain 

5 modulation[7,8] and CPM-efficacy is generally reduced in chronic pain patients[7]. CPM-

6 efficacy is measured as the change in pain sensitivity during compared to before a painful 

7 conditioning stimulation applied extra-segmentally to the pain assessment site[9]. The 

8 user-independent pressure-cuff model is a reliable method to assess CPM[10-12] and 

9 studies indicate that repeated assessment with short interval may give a more subtle 

10 picture of the descending modulatory system compared to a single test[13,14].

11 Stress occurs when external demands exceed the adaptive capacity of the 

12 individual[15] and stress may lead to analgesia[16] via mechanisms that involve 

13 descending modulation[17-19]. Studies have often used arithmetic tasks in combination 

14 with negative feedback to induce acute stress and study pain sensitivity in healthy 

15 volunteers[20-30]. The majority of studies report no effect of stress on pressure pain 

16 sensitivity[20,21,23-25,31-33] but two studies found heat-hyperalgesia after stress[22,28]. 

17 Four studies showed a reduction in CPM during mental stress[20-23] and two did 

18 not[23,26]. One of these could not analyze data due to carry-over effects between 

19 sessions[23] and the other measured CPM as the effect of a conditioning stimulus on 

20 temporal summation of pain[26]. 

21 In humans, saliva cortisol is a commonly used biomarker for stress[32,34], although 

22 the relationship between cortisol and perceived stress is not linear[35]. Increased saliva 

23 cortisol levels have been found at different time-points from 10 to 40 minutes after a 

24 stressor[36,37]. Yet, most studies measure pain sensitivity and CPM within a few minutes 

25 after the stressor[20-29,38] possibly missing a cortisol-induced influence on pain 
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1 sensitivity[30]. Pharmacologically suppressed cortisol-levels in twins show an association 

2 between cortisol regulation and reduced CPM-effect[33], indicating that dysregulation of 

3 cortisol can lead to a reduction in CPM-effectiveness. A commonly used mental stress 

4 test, the Montreal Imaging Stress Task (MIST), which can reliably induce acute stress in 

5 healthy volunteers[20,31,39], has been used to show an association between increases in 

6 perceived stress and cortisol during the stress task[20-22]. 

7 Previously, pain and cortisol responses during stress have been compared to 

8 baseline[20-22,24], quiet rest[20-22,27,38], book reading[23] or to patients[25,26]. 

9 However, a recent study compared stress-related changes in PDT in one group to a 

10 control condition in a different group and found no differences in pain threshold 

11 immediately after the stress and control sessions [30], indicating that previous results 

12 could depend on control-conditions. 

13 The present study aimed to explore the effect of a stressful mental task on pressure 

14 pain sensitivity and CPM, and to compare these effects to a comparable control-condition. 

15 It was hypothesised that pressure-induced CPM was reduced more by stress than a 

16 comparable control condition.

17

18 METHODS

19 Subjects

20 Geva et al (2014) found a reduced CPM-effect during stress of approximately 50% and 

21 based on a sample size calculation with a significance level at 0.05 and a statistical power 

22 of 70% the total sample size should be at least 25 subjects for a 50% CPM reduction. 

23 Twenty-five healthy men between 22 and 72 years participated (average 30.3 years, 

24 standard deviation 10.9 years). Exclusion criteria were 1) diagnosis of sleep, neurological, 

25 mental or musculoskeletal disorders, 2) pain within the last 48 hours or any use of sleep or 

Page 4 of 30

Official Journal of the American Academy of Pain Medicine

Pain Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

5

1 pain medication in this period, 3) any history of chronic stress or chronic pain, or skin 

2 lesions in the test-areas (lower legs), 4) less than 6 hours of sleep over the last 24 hours, 

3 and 5) smoking, exercise, food or any drinks other than water for the two hours prior to the 

4 study. All participants received oral and written information about the experiment and gave 

5 their verbal and written consent prior to the study. Exclusion criteria were verbally 

6 confirmed after consent was given. The study was approved by the local Ethics Committee 

7 (N-20170033) and was performed in accordance with the Helsinki Declaration.

8

9 Experimental procedures

10 The study was conducted in a two-hour session at either 08.30 or 10.30 am to control for 

11 diurnal changes in freely available cortisol[40]. At baseline participants gave a saliva 

12 sample, completed the pain catastrophizing questionnaire[41], and rated how they 

13 perceive their math-skills on a numerical rating scale (NRS) from 0 (‘I’m exceptionally bad 

14 at math’) to 10 (‘I’m exceptionally good at math’). Previous studies, randomizing 

15 participants to the order of stress and control conditions, find similar results[23,24,38] as 

16 those who have not [20-22,25-29]. To avoid expectations of intentional stress during the 

17 experiment, participants were informed that they would be exposed to arithmetic tasks 

18 during painful stimuli. Consequently, assessment of perceived stress was done during 

19 debriefing rather than during the stress task. Four samples of saliva cortisol were obtained 

20 in addition to the baseline sample (Fig 1). 

21 Experimental procedures were done with participants positioned in an inclined bed 

22 where they also remained during rest. The Montreal Imaging Stress Task (MIST) was used 

23 to induce acute, experimental stress[39]. The protocol included a non-stressful training 

24 session (60 s), the stress-induction (MIST) consisting of two rounds of arithmetic in 

25 combination with social, visual and auditory stressors (2 x 360 s, separated by a three 
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1 minute break), and a control (MIST-control) lasting for 360 s. MIST-control was similar in 

2 terms of difficulty of the arithmetic tasks but without the stressful context. Pain sensitivity 

3 assessment was performed by cuff algometry[12] at baseline, before and after MIST, and 

4 before and after the MIST-control (Fig 1). 

5 After the experiment, participants were thoroughly debriefed and informed about the 

6 nature of the study. During debriefing, participants were asked to verbally confirm or reject 

7 feeling ‘very stressed’ during the MIST and MIST-control, respectively[23]

8

9 The Montreal Imaging Stress Task 

10 The MIST is a software algorithm developed[39] to adjust time and difficulty of a series of 

11 arithmetic tasks. The paradigm included a stress-condition (MIST) and a control condition 

12 (MIST-control). During the stress task, the program restricted the time for each participant 

13 to answer questions when they had three correct answers in a row. Furthermore, social 

14 aspects were added, including standardized negative feedback (verbal and visual) and a 

15 high, ramping tone. The tone intended to make participants aware how quickly time was 

16 running out and thus to give additional pressure onto the participant. The visual feedback 

17 was provided via a real-time performance indicator in green (performing average or 

18 above), yellow (below average) and red (insufficient performance). Verbal feedback was 

19 provided by the investigator in accordance with a written manuscript. The content of the 

20 verbal feedback gave the participant the impression that ‘red’ on the performance indicator 

21 was insufficient for the data to be included into the study. In the control-condition, 

22 participants were not given any negative (or positive) visual, auditory or verbal feedback 

23 although time was still restricted but not reduced by correct answers[39]. 

24 Participants had time to familiarize themselves with the software and hardware for 60 

25 s at baseline, which was found to be sufficient during pilot testing. Instructions were 
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1 developed by a psychologist, with experience from similar paradigms, to match the context 

2 of the study. The training-session included a trial-run at the arithmetic task but did not 

3 include any of the stressors. After the training-session, questions or comments from the 

4 participant were addressed by the investigator, and the participant was instructed to ‘solve 

5 as many calculations as possible and to be as correct as possible’. 

6 During MIST and MIST-control the investigator left the room but participants were 

7 informed that they would be monitored[39]. The investigator re-entered the room 

8 approximately 30 s before the end of the first round of arithmetic tasks. After the first round 

9 the investigator briefly revised the results and, as negative feedback, the participant was 

10 reminded that he was expected to get 80-90% of the tasks correct (although the algorithm 

11 makes it impossible)[39]. Measures of successful MIST was the percentage of correct 

12 calculations during MIST (approximately 45%) and MIST-control (approximately 90%), 

13 respectively[21,39].

14

15 Saliva cortisol

16 Saliva samples were collected using Cortisol-Salivette® with a citric-acid, which helped to 

17 facilitate saliva production (SARSTEDT AG & Co., Nümbrecht, Germany). The participants 

18 were instructed to chew on the cotton swap for one minute and then place it back into 

19 the Salivette® tube. The samples were put in a thermos-box with ice until saliva was 

20 recovered from the cotton swap by centrifugation for 2 minutes at 1000 rpm (no more than 

21 four hours after collection). Once saliva was extracted the cotton bud and inner tube was 

22 discarded and the saliva sample, was frozen at -80°C until further analysis. The samples 

23 were analyzed using a standardized ELISA-kit (SA E-6000, LDN Labor Diagnostika Nord, 

24 Germany). Samples were diluted if values were outside the standard curve (0 - 30 ng/ml). 

25 Based on manufacturer guidelines the kit has a 95% confidence intervals of 1-11.3 ng/ml 
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1 (n = 234) for morning cortisol in otherwise healthy humans[42]. For data-analysis the 

2 absolute change in cortisol (Δ-cortisol 1-4) was calculated (e.g. Δ-cortisol 1 = Saliva 1 

3 minus Baseline). Negative values indicate an decrease in cortisol from one measurement 

4 to the following.

5

6 Pain sensitivity assessment by cuff algometry

7 Test and conditioning stimulations were delivered by a computer-controlled cuff pressure 

8 algometer (NociTech, Denmark), consisting of a computer-controlled air compressor with 

9 two independent 7.5 cm tourniquets (silicone high-pressure cuff, VBM Medizintechnik 

10 GmbH, Sulz, Germany)[12,43]. The cuff pressure algometer affects nociceptors in deep 

11 tissue rather than superficial tissue[44]. The system was connected to an electronic visual 

12 analogue scale (VAS, 0-10 cm) and a stop button, which could be used by the participants 

13 to terminate inflation of the cuffs (Aalborg University, Denmark). Endpoints of the VAS 

14 were defined as 0 being ‘no pain’ and 10 cm being ‘maximal pain’. Cuffs were mounted 

15 bilaterally on the most prominent part of the calf and the upper and lower boarders of the 

16 cuffs were marked on the skin using a permanent marker. These marks were used to 

17 visually confirm that the cuffs did not move between the trials. 

18 For assessment of pain sensitivity, cuff inflation (1 kPa/s) was applied until subjects 

19 pressed the stop button to indicate pressure pain tolerance (PTT) or until maximum 

20 stimulation intensity (100 kPa). During the cuff inflation subjects rated the cuff-induced 

21 pain intensity on the electronic VAS. The pressure equal to 1 cm VAS was considered the 

22 pain detection threshold (PDT) whereas pressure-pain tolerance threshold (PTT) was 

23 defined as equal to the pressure when subjects stopped the cuff inflation[12]. Pressure 

24 pain sensitivity was measured in four trials: pre-MIST, post-MIST, pre-MIST-control, and 

25 post-MIST-control. Each trial lasted approximately 15 minutes and trials were separated by 
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1 at least 10 minutes. A trial consisted of six painful cuff test stimuli (Fig 1: TS1-6) applied to 

2 the dominant lower leg. For each test-stimulus the cuff was inflated (1 kPa/s) and the pain 

3 detection threshold (PDT) was extracted. For analysis, the average of unconditioned PDTs 

4 in each trial was calculated (PDTavg). 

5

6 Conditioning pain modulation assessed by cuff algometry

7 In parallel to the 4th and 6th test stimuli a constant, painful conditioning stimulus on the 

8 non-dominant leg was applied. During baseline-testing PDT and PTT were recorded (see 

9 above) on the non-dominant leg. The conditioning intensity used throughout the study was 

10 70% of baseline PTT[10] and the duration of the conditioning was maximally 104 seconds 

11 (conditioning was terminated a few seconds after the test-stimulus was terminated). 

12 Participants verbally reported the perceived pain intensity of the conditioning stimulus at 

13 the beginning and immediately after the test-stimulus was terminated. Pain intensity was 

14 scored on a NRS (0-10) with 0 defined as ‘no pain’ and 10 ‘maximal pain’. 

15 For analysis the average of PDTs during conditioning (PDT-CSavg) was extracted. 

16 Moreover, the CPM-effects were calculated based on the change in PDT during 

17 conditioning (PDT-CSavg) compared to the average of the four unconditioned PDT 

18 recordings (PDTavg). As a consequence, a positive CPM-effect reflects that PDTs 

19 increased (reduced pain sensitivity) during conditioning.

20

21 Statistics

22 Unless otherwise specified, results are presented as mean and standard error of the mean 

23 (SEM). Q-Q plots were used to confirm normal distribution (IBM® SPSS® Statistics 

24 version 23) by visual inspection. Parameters were normally distributed or otherwise log-

25 transformed. 
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1 Correct answers during MIST (average of both rounds) and MIST-control were 

2 analysed in a two-way analysis of variance (ANOVA) with number of correct answers 

3 (MIST, MIST-control) as within-subject factor and math-skills (high, low) as between-

4 subject factor. A median split based on math-skills would have caused to uneven-sized 

5 groups. Thus, for analysis the group was divided by rank into similar-sized groups by score 

6 and subsequently by participation number. The change in saliva cortisol levels (Δ-cortisol) 

7 between the five measurements were analysed in a two-way repeated-measures ANOVA 

8 with the four samples as within-subject factor (Δ-cortisol 1 - Δ-cortisol 4) and starting time 

9 of the trial (08.30 am, 10.30 am) as between-subject factor.

10 An average of unconditioned PDT (PDTavg) was analysed in a two-way repeated-

11 measures ANOVA with time (pre, post) and session (MIST, MIST-control) as factors. The 

12 effect of a conditioning stimulus (i.e. CPM) was analysed in a three-way repeated-

13 measures ANOVA with within-subject factors session (PDTavg, PDT-CSavg) and time 

14 (preMIST, postMIST, preMIST-control and postMIST-control) and between-subject factor 

15 math-skills (high, low). The CPM-effects were analysed in a two-way repeated-measures 

16 ANOVA with time (pre, post) and session (MIST, MIST-control) as factors.

17 Greenhouse-Geisser corrections were applied to all ANOVAs if sphericity was 

18 violated. Significant interactions and main effects were adjusted for multiple comparisons 

19 with post-hoc Bonferroni (Bon) tests. 

20 Linear regression analysis were used to analyse associations between the relative 

21 change in PDTavg (post-MIST minus pre-MIST) and PDT-CSavg (post-MIST minus pre-

22 MIST), respectively, with Δ-cortisol after MIST (post-MIST minus baseline)[29]. In the 

23 regression analysis Δ-cortisol was the predictor (constant variable) and PDTavg or PDT-

24 CSavg, respectively, were dependent variables.

25
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1 RESULTS

2 Validation of the stress response

3 Perceived stress was verbally confirmed by all participants (‘very stressed’ by the MIST 

4 and ‘not stressed’ by MIST-control, respectively). Participants perceived their math-skills to 

5 be 7/10 (median). All participants completed MIST and MIST-control. During MIST the 

6 mean of correct answers was 45.3 ± 0.6% compared to 90.1 ± 2.1% during MIST-control, 

7 indicating a successful implementation of the protocol. 

8 Initial analysis of saliva cortisol found concentrations beyond 30 ng/ml, which were 

9 above the standard curve for the ELISA-kit. After samples were diluted and re-analyzed, 

10 variability in the results and the baseline cortisol remained higher than expected in some 

11 subjects when comparing to manufacturer reference values[42]. The change in cortisol 

12 over time (Δ-cortisol 1: - 2.86 ± 2.4 ml/ng, Δ-cortisol 2: - 1.08 ± 2.3 ml/ng, Δ-cortisol 3: - 

13 1.02 ± 1.8 ml/ng and Δ-cortisol 4: - 0.91 ± 1.8 ml/ng) was not significant (ANOVA; F(3, 69)

14 = 0.164, P = 0.85) and there were no interactions (P = 0.44) or indication of difference 

15 between the participants tested early or late in the day (P = 0.22). 

16

17 Pain detection thresholds of unconditioned test-stimuli 

18 There were no differences in PDTavg across time (Fig 2; ANOVA: F(1, 24) = 2.92, P = 0.1, 

19 ηp
2 = 0.11) or session (ANOVA: F(1, 24) = 0.87, p = 0.36, ηp

2 = 0.04), indicating that 

20 neither MIST nor MIST-control had any influence on PDTavg. 

21

22 Conditioned pain modulation

23 The ANOVA showed a difference between PDTavg and PDT-CSavg (Fig 2; ANOVA: F(1, 24) 

24 = 15.18, P = 0.001, ηp
2 = 0.40) without any interactions with time or math-skills, indicating 

25 that there was a significant CPM-effect, which was unaffected by MIST. The mean CPM-
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1 effect was 5.9 ± 1.5 kPa and the CPM-effects did not interact or change significantly over 

2 time (ANOVA: F(1, 24) = 0.18, P = 0.68, ηp
2 = 0.01) or between sessions (ANOVA: F(1, 

3 24) = 0,88, P = 0.36, ηp
2 = 0.04).

4

5 Change in cortisol during MIST correlates with change in conditioned PDT

6 The linear regressions showed that Δ-cortisol 1 (i.e. changes in cortisol from baseline to 

7 postMIST) could predict the change in conditioned PDT (PDT-CSavg) during MIST. This 

8 correlation explained 19% of the variance (Fig 3a; R2 = 0.19, F(1, 23) = 5.23, P = 0.03) 

9 and unstandardized coefficients (B = - 0.36 ± 0.16, P = 0.03) suggest that the change in 

10 cortisol was inversely related to the change in PDT-CSavg during MIST (i.e. an increase in 

11 cortisol reduced PDT-CSavg). The effect size of this correlation is equal to approximately 

12 0.5 standard deviation and considered ‘moderate’[45]. No significant correlations were 

13 found for changes in PDTavg versus cortisol during MIST (Fig 3b: B = - 0.03 ± 0.28, P = 

14 0.9).

15

16 DISCUSSION

17 In this study stress did not have any significant effect on pressure-induced pain sensitivity 

18 or CPM. However, an increase in cortisol during experimental stress was correlated with 

19 less efficient pain modulation from a conditioning stimulus. The relationship between 

20 cortisol and CPM appears to be multifactorial and cortisol-levels can explain 19% of the 

21 variance. Furthermore, this study supports the extensive literature that mental stress has 

22 no effect on pressure pain sensitivity.

23
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1 Experimental stress and pain sensitivity

2 Activation of the hypothalamic-pituitary-adrenal (HPA) axis is the key mechanism behind a 

3 physiological stress response and the release of stress-induced cortisol, however, the 

4 interaction between the HPA-axis and pain is highly complex and likely involves the entire 

5 neuroaxis[3]. At a system level, stress-induced analgesia is believed primarily to engage 

6 endocannabinergic pathways[45,46] whereas stress-induced hyperalgesia seems to be 

7 more related to the descending modulation through the rostral ventromedial medulla 

8 (RVM)[47]. At a mechanistic level, cortisol-related modulation of nociception is likely to 

9 appear directly in the dorsal horn through co-location of glucocorticoid receptors, 

10 substance P-receptors and CGRP-receptors[48] as well as through regulation of 

11 cannabinoids[3]. 

12 In the current study, there was no significant change in pain sensitivity during stress 

13 compared to before stress, or compared to the control session. These findings support the 

14 majority of the existing literature demonstrating that pressure-induced[26,27], cold-

15 induced[24,29,49] and heat-induced[20,29,30,38] pain sensitivity does not change 

16 immediately after experimental stress and thus seems independent of modality. One 

17 reason for this may be that the pain threshold is a relatively robust measure[50-52] and 

18 that acute pain has saliency even during social stress[53]. Another reason that the pain 

19 sensitivity did not change during stress could be that changes in cortisol during 

20 experimental stress is either insufficient or unrelated to the pain detection threshold[38,54]. 

21 Interestingly, pain sensitivity can be reduced 15 minutes after a combination of mental 

22 stress, negative feedback and repeated, painful stimulations[30], but not instantly after the 

23 stressful conditions. This could indicate a link between pain sensitivity and cortisol. Indeed, 

24 diurnal changes have previously been found to have an effect on heat and cold-induced 

25 pain, albeit not on mechanical-induced pain[55]. Including the current study, six studies on 
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1 arithmetic-stress tests have taken circadian variations into account[20-22,29,30] and the 

2 majority found that time-of-day had no effect on pain sensitivity[20,21,29,30]. This could 

3 indicate that diurnal rhythm has a very little effect on PDT. 

4

5 Experimental stress and CPM

6 In this study, MIST did not change the CPM-effect after stress compared to before and 

7 compared to a matched control condition. This mimics the results of Cathcart et al.[25] and 

8 partly those of Nilsen et al.[23]. The latter was able to show an effect of stress on CPM 

9 with heat-induced pain as test-stimulus but only a negligible change in pressure-pain 

10 threshold from baseline (367 ± 138 kPa) to post-stress (370 ± 101 kPa), indicating that no 

11 statistical or clinically relevant changes occurred. The three studies, which showed 

12 reduced CPM-efficiency during stress [20-23] have used heat, rather than pressure, to 

13 induce pain but neither of them compared CPM during stress to a comparable control-

14 session. Nonetheless, this could support a hypothesis of modality specificity, meaning that 

15 although CPM induced by superficial nociceptive signals (heat) is affected during and 

16 immediately after mental stress, this does not seem to be the case for deeper tissues. 

17 Mechanistic explanations for this are not obvious since nociceptive signals from the deep 

18 tissues converge with superficial nociceptors in the dorsal horn[56]. However, 

19 dissimilarities do exist and one possible pathway for the different responses of heat and 

20 pressure-induced CPM to stress is a subset of muscle primary afferent located in the 

21 lateral spinal nucleus of the spinal cord, which respond only to pressure to deep tissue and 

22 not to pressure or heat from the skin[57]. It is possible that noxious stimuli transmitted 

23 through this pathway is differently affected by descending modulation than the traditional 

24 pathways described above. 
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1 The present study was done at 08.30 or 10.30 in the morning and time-of-day did not 

2 correlate or interact with the CPM effects. In line with this, Aviram and colleagues did not 

3 find any diurnal involvement in the effectiveness of CPM[55]. However, two other studies 

4 on CPM during stress, which did not restrict data collection to account for diurnal changes, 

5 show either no effect of stress on CPM[26] or reduced CPM during stress[23]. In favor of 

6 involvement of circadian variations are the studies from Geva and colleagues[20-22] who 

7 started data collected at 1 pm on all participants, and found reduction in CPM during stress 

8 in all three studies. It is therefore possible that the circadian rhythm (including cortisol 

9 levels) may play a role in CPM-effect although no significant association between cortisol 

10 levels during stress and the reduction of CPM was reported in any of the studies.

11

12 Stress vs control-condition

13 A recent study on mental stress and pain sensitivity compared results to a control group, 

14 which was exposed to a comparable, non-stressful, condition[30]. In the current study, all 

15 participants were exposed to a stress-task as well as a comparable control condition[39] 

16 and had pain sensitivity and CPM measured before and after both. In disagreement with 

17 the hypothesis, there were no significant differences between the stress-condition and the 

18 control-condition. These results are also in line with the study by Timmers and 

19 colleagues[30], who found no difference in PDT between a ‘control-group’ and a ‘stress-

20 group’ immediately after control or stress condition, respectively. Only studies, which 

21 compared pain sensitivity after stress with baseline and recovery[21-23] found reduced 

22 CPM-effects after stress. Confounding factors such as distraction[58] could explain some 

23 of this inconsistency. Also, it must be considered that this study, as well as the one by 

24 Timmers et al.[30], were accomplished early in the day, and the studies by Geva et al.[20-
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1 22] were done at 1 p.m. making a case for possible differences in diurnally related cortisol

2 levels.

3

4 Cortisol and CPM

5 Although there was no significant increase in cortisol during stress in this study, a negative 

6 correlation between change in cortisol from baseline to post-MIST and the effectiveness of 

7 a conditioning stimulus (i.e. PDT-CS before minus after MIST) was found. This suggests 

8 that the ability of a conditioning stimulus to reduce pain sensitivity (i.e. positive CPM-effect) 

9 is increasingly compromised with increases in cortisol-levels after mental stress. 

10 Measuring stress-related changes in cortisol levels is not trivial[37,59] and the peak 

11 in morning cortisol may counteract with the measurable effects of mental stress and 

12 increase the risk of insignificant findings[59]. Geva and colleagues could not show a 

13 correlation between cortisol and CPM[20-22] but they found negative correlations between 

14 perceived stress and CPM, i.e. inhibition of the CPM-effect during stress, similar to the 

15 result in the present study when using cortisol changes as a marker of stress. 

16 Results in the present study and others[22-24,57] imply that cortisol can only account 

17 for a small part of the variation in CPM-response and other factors such as melatonin[60] 

18 and attention[38] may also interfere with pain modulation and/or cortisol. Therefore, it 

19 seems likely that the interaction between mental stress and pain modulation is 

20 multifactorial with a high degree of interpersonal variance[23,31,57]. 

21

22 Repeated stimulations after stress

23 This is the first study to implement repeated test-stimuli into a stress-protocol. It has been 

24 suggested that while CPM is considered a ‘dynamic’ measure of pain[50], it normally only 

25 measures CPM in a small temporal window. The present study also intended to analyze 
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1 dynamic (CPM) and static (PDT) measures of pain sensitivity for 10 minutes after acute 

2 stress in a previously validated paradigm[13]. However, no differences in PDT or CPM 

3 were found after MIST or any interactions over time within the 10 minutes (data analysis 

4 not shown). No studies have previously looked into the temporal changes in PDT and or 

5 CPM after stress. Based on the data in this study, it seems that repeated measures during 

6 the expected rise in cortisol after MIST, compliments the findings from single 

7 measurements in similar paradigms. 

8

9 Limitations

10 This explorative study was conducted only on healthy, male participants and may not be 

11 an accurate indicator for CPM or pain sensitivity during stress for healthy female 

12 participants. Importantly, it is not likely that experimental, acute stress assimilates real-life 

13 stress, which is why the results should be extrapolated to real-life situations or patients 

14 suffering from chronic pain. The study was designed to reduce any expectations of stress, 

15 which could influence the results, however, at the same time it serves as a limitation that 

16 this design did not allow for real-time measurement of perceived stress. There are 

17 strengths to the laboratory-based assessments such as the strict control over events 

18 during the stressor making comparison between studies possible. This study did not 

19 include a rest period before baseline cortisol measurement, which may have contributed to 

20 the variability in responses. However, analysis are based upon individual changes so it is 

21 unlikely that this has impacted the results. It serves as a strength to this study that the 

22 results are compared to a control-condition designed to match the stress-condition, and 

23 that both conditions were tested on the same cohort. The included number of participants 

24 was based on a priori power calculation, however, power calculations are based on an 

25 estimate and statistical power was set at 70%, which means that results in the present 
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1 study should be viewed in the context of the complete body of evidence in this area, 

2 including future studies.

3

4 Conclusion

5 In this study, no significant differences in pain sensitivity and CPM could be measured 

6 after a brief episode of experimental stress compared to before or after a control-stress 

7 condition. This may be partly modality related since other studies have found a reduction 

8 in CPM after mental stress when CPM was induced by thermal stimuli. However, this study 

9 showed a correlation between the changes in pain sensitivity during the conditioned test-

10 stimulus and cortisol levels during experimental stress. The effect size of this correlation is 

11 moderate, which suggests that cortisol could influence on the effectiveness of the 

12 descending pain modulatory system under stress, and thus indicate that cortisol and 

13 descending pain modulation rely on overlapping mechanisms.
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1 FIGURE LEGENDS

2

3 Figure 1. Overview over the study. Saliva was sampled at baseline before questionnaires 

4 and cuff pressure test-stimuli (TS) on the dominant leg (blue cuff) and conditioning stimuli 

5 (CS) on the non-dominant leg (red cuff). The Montreal Imaging Stress Task (MIST) was 

6 performed after the first trial of six cuff test-stimuli (pre-stress) and was followed by post-

7 stress test-stimuli. The Control was an arithmetic task without a social stress component.

8

9 Figure 2. Mean (+SEM, n = 25) pressure detection thresholds (PDT) recorded with and 

10 without conditioning on the contralateral leg. The average of unconditioned PDTs (PDTavg) 

11 and conditioned PDTs (PDT-CSavg) is presented. There was an increase in PDT-CSavg 

12 compared to the unconditioned PDTavg equal to a significant CPM-effect (*, p = 0.001, ηp
2 

13 = 0.40).

14

15 Figure 3. A scatter-plot and linear regression comparing the change in cortisol (Δ-cortisol) 

16 after MIST and (a) conditioned pain detection thresholds (Δ-PDT-CS) after MIST or (b) 

17 unconditioned pain detection thresholds (Δ-PDT) after MIST. The linear regressions show 

18 that increased cortisol during MIST predicts decreased PDT during conditioning (a) but not 

19 without conditioning (b).  
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1 FIGURES

2 Figure 1: Timeline

3

4

5 Figure 2: Effect of conditioning
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1 Figure 3: Linear regression
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Figure 1. Overview over the study. Saliva was sampled at baseline before questionnaires and cuff pressure 
test-stimuli (TS) on the dominant leg (blue cuff) and conditioning stimuli (CS) on the non-dominant leg (red 

cuff). The Montreal Imaging Stress Task (MIST) was performed after the first trial of six cuff test-stimuli 
(pre-stress) and was followed by post-stress test-stimuli. The Control was an arithmetic task without a 

social stress component. 
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Figure 2. Mean (+SEM, n = 25) pressure detection thresholds (PDT) recorded with and without conditioning 
on the contralateral leg. The average of unconditioned PDTs (PDTavg) and conditioned PDTs (PDT-CSavg) is 

presented. There was an increase in PDT-CSavg compared to the unconditioned PDTavg equal to a 
significant CPM-effect (*, p = 0.001, ηp2 = 0.40). 
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For Review OnlyFigure 3. A scatter-plot and linear regression comparing the change in cortisol (Δ-cortisol) after MIST and 
(a) conditioned pain detection thresholds (Δ-PDT-CS) after MIST or (b) unconditioned pain detection

thresholds (Δ-PDT) after MIST. The linear regressions show that increased cortisol during MIST predicts 
decreased PDT during conditioning (a) but not without conditioning (b).  
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For Review OnlyFigure 3. A scatter-plot and linear regression comparing the change in cortisol (Δ-cortisol) after MIST and 
(a) conditioned pain detection thresholds (Δ-PDT-CS) after MIST or (b) unconditioned pain detection

thresholds (Δ-PDT) after MIST. The linear regressions show that increased cortisol during MIST predicts 
decreased PDT during conditioning (a) but not without conditioning (b).  
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