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Abstract

In order to understand the degradation potential of plastics in the marine environment,

microorganisms that preferentially colonize and interact with plastic surfaces, as opposed to

generalists potentially colonising everything, need to be identified. Accordingly, it was

hypothesized that i.) plastic “specific” microorganisms are closely attached to the polymeric

surface and ii.) that specificity of plastics biofilms are rather related to members of the rare

biosphere. To answer these hypotheses, a three phased experiment to stepwise uncover

closely attached microbes was conducted. In Phase 1, nine chemically distinct plastic films

and glass were incubated in situ for 21 months in a seawater flow through system. In Phase

2, a high-pressure water jet treatment technique was used to remove the upper biofilm lay-

ers to further, in Phase 3, enrich a plastic “specific” community. To proof whether microbes

colonizing different plastics are distinct from each other and from other inert hard substrates,

the bacterial communities of these different substrates were analysed using 16S rRNA gene

tag sequencing. Our findings indicate that tightly attached microorganisms account to the

rare biosphere and suggest the presence of plastic “specific” microorganisms/assemblages

which could benefit from the given plastic properties or at least grow under limited carbon

resources.

Introduction

Since the middle of last century the increase of global plastics production is accompanied by

an accumulation of plastic litter in the marine environment [1, 2]. Persistent plastic items are

rarely degraded but become fragmented over time and are dispersed by currents and wind [1,

3, 4]. Consequently, marine plastic litter can be found in marine waters all over the globe.

In contrast to interactions of larger organisms with plastics, which are mainly characterised

by the consequences of ingestion or entanglement, the interaction of microorganisms and

plastics are of completely different nature. Plastics function as habitats and are rapidly colo-

nized by marine microorganisms which form dense biofilms on the plastic surface, the so

called “Plastisphere” [5]. Therefore, plastic litter is a substrate which can serve as a vector for

the widespread distribution of a variety of organisms, including harmful algae species,
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barnacles, bryozoans [6, 7] as well as potentially pathogenic Vibrio species [5, 8]. The persis-

tence of plastics in marine environments is a matter for debate, and estimates range from hun-

dreds to thousands of years depending on the chemico-physical properties of the plastic type

[4]. “Biofouling refers to the undesirable accumulation of a biotic deposit on a surface” [9] and

can play a major role in controlling plastic buoyancy [10]. Additionally, biofouling also lead to

deterioration resulting in fragmentation of larger plastic items and may also result in degrada-

tion of the polymers [11, 12].

Based on culture-independent approaches, the current state of knowledge regarding the

“Plastisphere” is as follows; microbial communities on marine plastic debris differ consistently

from the surrounding seawater communities [5, 13–15], the plastics community composition

is driven by spatial and seasonal effects [13], the community composition varies with the sub-

strate type [15, 16], and plastics biofilm composition is dependent on the habitational condi-

tions, e.g. harbour vs. offshore [17]. Overall, the composition of marine plastics biofilms is

probably resulting from a unique interaction of various factors such as the substrate type, the

surrounding environment, the geographical location and the seasonal variation of environ-

mental parameters. However, it is well established that several prokaryotic families build the

general plastic biofilm community. These include Flavobacteriaceae, Erythrobacteraceae,
Hyphomonadaceae and Rhodobacteraceae found in the North Sea, the coastal Baltic Sea, multi-

ple locations in the North Atlantic, and freshwater systems [5, 17, 18].

Recent studies investigated the specificities of plastics communities comparing different

types of plastics with other substrates such as wood or glass [14, 16, 18, 19]. Comparing the

PET and glass associated microbiome, Oberbeckmann et al. [14] could not detect significant

differences in community composition after 5 to 6 weeks of incubation. In contrast, Kirstein

et al. [16] found significant differences between the community composition associated to

diverse plastics and glass investigating mature biofilms (15 month). However, the differences

in community composition were generally low, indicating that the shared core of the various

biofilms is rather substrate unspecific. Furthermore, the strongest contribution to the total dis-

similarity between the diverse substrates was often given by less abundant operational taxo-

nomic units (OTUs). All this points towards the importance of rather rare species in plastic

associated marine biofilms [16]. Considering that the competition pressure in mature biofilms

can be particularly high (e.g. for space or nutrients), uncovering those rare species is a neces-

sary first step to identify microbes that are closely associated/interact with the polymeric sur-

face, which will select for species able to survive better when the competition pressure

decreases.

To date, researchers of the “Plastisphere” have discussed the potential of plastic “specific”
organisms/assemblages to be involved in biodegradation [5, 13–15, 17, 18, 20, 21]. Here, a plas-

tic “specific” organism/assemblage is discriminating a respective plastic type from another

substrate type. Several microorganisms, including bacteria and fungi, were isolated from vari-

ous environments and were reported to have a degradative effect on specific plastic types [22,

23]. Regarding assemblages, recently Syranidou and colleagues developed tailored micro-con-

sortia suggesting that those are capable of degrading weathered polystyrene (PS) and polyeth-

ylene (PE) fragments, respectively [24, 25].

Microbes generally have the potential to degrade complex organic compounds in various

environments. This is raising the question, why significant differences between diverse plastics

and other inert substrates could not be detected comparing young marine biofilms [14, 18, 19]

or were found to be generally low between mature marine glass and diverse plastic biofilms

[16]. Kirstein et al. [16] has evidence for a general marine biofilm core community of abundant

bacterial taxa, which serve as shared core among diverse substrates, indicating that plastic “spe-

cific” microorganism might be represented by rather rare species. Assuming that these
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specificities of plastic biofilms are referring to microbes of the rather rare biosphere and that

plastic “specific” microorganisms are closely attached to the polymeric surface; a three phase

stepwise uncovering experiment was conducted. In Phase 1, nine distinct plastic films and

glass as control were incubated in situ for 21 months in a natural seawater flow-through sys-

tem. In Phase 2, a high-pressure water jet treatment technique was applied to remove the

upper loosely attached biofilm layers, to unveil potential plastic “specific” microorganisms.

Thereafter, in Phase 3, those treated films were used as a source for colonisation of the same

type of sterile plastic strips. Illumina sequencing of the hypervariable V3/V4 region of the 16S

rRNA gene was applied to analyse and compare the prokaryotic communities attached to the

various substrates. In addition attached cells were visualized via Scanning Electron

microscopy.

Materials and methods

Biofilm formation

A three phased experiment to stepwise uncover closely attached rare microbes was conducted

(Fig 1). In Phase 1, biofilm formation was performed on 9 distinct plastic substrates such as

high-density polyethylene (HDPE) (ORBITA-FILM GmbH), low-density polyethylene

(LDPE) (ORBITA-FILM GmbH), polypropylene (PP) (ORBITA-FILM GmbH), polystyrene

(PS) (Ergo.fol norflex GmbH), polyethylene- terephthalate (PET) (Mitsubishi Polyester Film),

polylactic acid (PLA) (Folienwerk Wolfen GmbH), styrene-acrylonitryle (SAN) (Ergo.fol nor-

flex GmbH), polyurethane prepolymer (PESTUR) (Bayer), polyvinyl chloride (PVC) (Leitz)

(S1 Table). The term substrate refers here, to a surface on which an organism grows or is

attached and which might serve as a carbon source. These substrates, highly abundant in the

marine environment and on glass slides as a neutral control for 21 month in the dark (max.

light intensity 0.1033 μmol/m2/s) in a natural seawater flow-through system located at the

“Biologische Anstalt Helgoland” approximately 60 km off the German coastline. North Seawa-

ter was directly pumped through the system (flow rate of approx. 5800 l/day).

Removal of the “upper” biofilm layers by high pressure treatment

In order to remove the upper biofilm layers in Phase 2 of our stepwise experiment (Fig 1), a

high-pressure treatment technique was developed to remove the loosely attached biofilm lay-

ers. This was performed with a mini high-pressure cleaning device (Lico-Tec; Arnstorf, Ger-

many) established to shot (Fig 2A) sterile seawater (0.2 μm filtered and autoclaved) vertically

onto the biofilm associated to the different substrates. Seawater was shot with a working dis-

tance of 1 cm for 2 minutes at 4 bar. Next, to evaluate and compare how many cells were still

attached on each substrate after the high-pressure treatment, cell counting of all samples was

performed. Therein, staining with propidium iodide (PI) and SYBR Green allowed distin-

guishing between membrane intact and membrane damaged cells (Fig 2G and 2H). The treat-

ment was repeated 9 times on each plastic foil with every sample in triplicates. Fluorescence

microscopy was investigated with the optical microscope Axioplan2, imaging (Zeiss; Oberko-

chen, Germany). Detection of the total cell number stained with fluorescent dye SYBR Green

was performed with the filter set 09 (Zeiss; Oberkochen, Germany). To evaluate the proportion

of damaged cells, the filter set 20 has been applied (Zeiss; Oberkochen, Germany). Detailed

information on the development of the high-pressure treatment technique, staining, and visu-

alization can be found in the supplement (S1 Appendix, S2 Table). ImageJ has been used for

cell counting [26].
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Selective enrichment on distinct plastics

In order to enrich the uncovered potential plastic “specific” microorganisms a re-colonization

experiment was designed. Therefore a strip of * 1 cm2 with associated 21 month old biofilm

Fig 1. Experimental design. Schematic presentation of the three phased stepwise uncovering experiment of potential plastic “specific” bacteria.

https://doi.org/10.1371/journal.pone.0215859.g001

Fig 2. High-pressure water Jet treatment with the a) high pressure treatment device. b) Barplot of the enumerated

mean of adherent membrane intact (green) and membrane damaged (red) cells after a high pressure treatment at 4 bar

for 2 minutes, vertical bars denote the Standard Error. Photograph of the 21 month old biofilm attached to c)

Polylactic acid and d) Low density polyethylene. Resulting spots e; f) in respective biofilms after high pressure

treatment. Double stained (SYBR Green & PI) cells on respective substrate g; h) after high pressure treatment with,

scale bars are 10 μm.

https://doi.org/10.1371/journal.pone.0215859.g002
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of each of the substrates was treated for 2 minutes at 4 bars with the high-pressure device by

moving the strip slowly under the stream. These strips with the remaining closely surface

attached microorganisms were transferred into sterile glass Petri dishes with 40 ml sterile fil-

tered and autoclaved North Seawater. For each of the nine plastic types and glass, new ethanol

sterilised strips of the same size were added to these Petri dishes and incubated at 18˚C in the

dark. All different substrate strips were sterilized in 70% ethanol and air dried before being

placed in the Petri dishes. After six weeks the re-colonization source was removed (short-

term). Due to manageable sample numbers only the second stage of experiments in Phase 3,

the long-term incubation was carried out in replicates. Fresh sterile seawater was provided

every four weeks. After 60 days one strip of each substrate was taken for visualization via SEM.

After five months of incubation five replicates of each long-term incubated substrate were

taken for DNA extraction followed by 16S gene tag sequencing.

Scanning electron microscopy

Scanning electron microscopy was used to visualize the colonized plastics. Strips of each re-

colonized substrate of about 0.5 cm2 with the attached cells were fixed at 4˚C in sterile seawater

containing 2.5% glutaraldehyde and 50 mM sodium cacodylate (pH 7.2). Samples were stored

in the fixative at 4˚C (4–10 days) until processing for scanning electron microscopy. The sam-

ples were stepwise dehydrated with ethanol bath series of 10 min each at concentrations of

30%, 50%, 70%, 90%, followed by 3 baths of 10 min in 100% ethanol. Samples were immedi-

ately critical point dried (BAL-TEC CPD 030). All samples were sputter coated (BAL-TEC

SCD 005) with gold-palladium before observing with a field emission scanning electron micro-

scope (JEOL JSM-7500F) with the in-lens detector (SEI-detector) at 5kV and a working dis-

tance of 8 mm [16].

DNA extraction & 16S Illumina tag sequencing

After five month of selective enrichment, the DNA of microbial biofilms of the nine different

short- and long-term incubated substrates was extracted using the PowerBiofilm DNA Isola-

tion Kit (MOBIO Laboratories, Carlsbad, CA) according to the manufacturer’s protocol,

including mechanical pulping (FastPrep FP 120, ThermoSavant,Qbiogene, United States) for

40 seconds on level 4.0. DNA quantity was determined photometrically with a PicoGreen

assay (Invitrogen, Waltham, MA) in duplicates using a Tecan Infinite M200 NanoQuant

microplate reader (Tecan, Switzerland).

16S rRNA gene tag sequencing of the V3 / V4 fragment of the 16S rRNA was performed at

LGC Genomics GmbH (Berlin, Germany). DNA fragments were amplified using amplification

primers 341F (5’-CCTACGGGNGGCWGCAG-3’) and 785R (5’-GACTACHVGGGTATCTAA
TCC-3’) [27]. Primers also contained the Illumina sequencing adapter sequence and a unique

barcode index. Resulting amplicons were paired-end sequenced 2 x 300 bp on an Illumina

MiSeq platform. Paired-end reads were merged using BBMerge 34.48 software (http://bbmap.

sourceforge.net/) and processed through the SILVAngs pipeline [28]. Sequences were de-repli-

cated at 100% identity and further clustered with 98% sequence identity to each other. Repre-

sentative sequences from operational taxonomic unit clusters (OTUs) were classified up to

genus level against the SILVA v128 database using BLAST as first described by Ionescu et al.

[29]. Sequences having an average BLAST alignment coverage and alignment identity of less

than 93% were considered as unclassified and assigned to the virtual taxonomical group “No

Relative" [28]. Finally, 1,307,882 (99.77%) classified sequences were obtained. For following

downstream analyses, classifications on the genus-level were used to generate the final abun-

dance matrixes. All classifications contained the sum of all sequences represented by OTUs
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with the equal taxonomic path. The raw sequence data is available in the European Nucleotide

Archive [30] under the accession number PRJEB30284, using the data brokerage service of the

German Federation for Biological Data [31], in compliance with the Minimal Information

about any (X) Sequence (MIxS) standard [32].

Statistics and downstream data analysis

To see whether the data of the cell counts were normally distributed R statistical software with

the nlme package has been used. Generalized linear models (GLM) were used to explain the

variability of the attached cells during the establishment of the final LicoJet treatment as well

as in the viability assay. GLM are used in statistics to generalize linear regression with variables

that have an error distribution not normally distributed [33].

Species richness (S) of the bacterial communities on different short- and long-term incu-

bated substrates was calculated based on read counts of operational taxonomic units (OTUs).

For beta diversity analysis, first the virtual taxonomical group “No Relative” was removed

from further analysis. Next, counts per classification were normalized by calculating their rela-

tive abundances to the total number of SSU rRNA gene reads per sample. OTUs with a mini-

mal mean relative abundance of less than 0.1% in at least one substrate type were excluded.

Permutational multivariate analysis of variance (PERMANOVA) was used to test for statis-

tically significant variance among the source and re-colonized communities attached to the

different substrates. PERMANOVA was carried out with fixed factors and 9999 permutations

at a significance level of p< 0.05. Homogeneity of dispersion (PERMDISP) was applied, to

test whether data in significant PERMANOVA results were not over dispersed, using 9999 per-

mutations at a significance level of p < 0.05. To visualize patterns of samples regarding various

substrates, source and re-colonized communities, principal coordinates analysis (PCO) using

Hellinger distance (D17; [34]) was performed.

To determine OTUs that discriminated the various re-colonized substrates from each other

similarity percentage analysis (SIMPER) was applied. SIMPER was performed using Bray Cur-

tis similarity (S17) with fourth root transformed relative abundances.

For shade plot creation of unveiled plastic “specific” taxa, first all OTUs with a mean relative

abundance of at least 0.1% present on both, plastics and glass, were rejected. Next, OTUs con-

tributing most (> 3%) to the total dissimilarity between different plastic groups (SIMPER anal-

ysis) were subjected into cluster analysis. This trimmed data set resulted in 23 OTUs to that

the moderate square root transformation was applied. To determine which groups of plastics

cluster together in respect of plastic “specific” taxa, hierarchical cluster analysis was performed

using Bray Curtis similarity (S17) using square root transformed relative abundances. To test

our hypothesis that specificities of plastics biofilms might be related to members of the rather

rare biosphere the plastic “specific” OTUs were compared with a former dataset of 15 month

old biofilms origin of the same experimental set up (Sequence data deposited in the European

Nucleotide Archive under the accession number PRJEB22051).

Alpha diversity, PERMANOVA, PERMDISP, PCO, SIMPER and CLUSTER analysis were

carried out with the Primer 7 software package plus the add-on package PERMANOVA+

(PRIMER-E Ltd, UK).

Results

Evaluation of adherent cells

Cell counts revealed that after the high-pressure treatment both, cells with intact and damaged

membranes were still attached to the different plastics (Fig 2B). A total cell count of the adhe-

sive cells on each substrate revealed that attachment occurred to the largest extent on PP
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followed in the range of LDPE, PS, HDPE, PESTUR, PVC, SAN, PLA, PET and at least on

glass. Furthermore it is noticeable that mostly the mean of membrane damaged cells exceed

the mean membrane intact cells except for PP, PET and PLA. The mean cell numbers of PP by

far outnumbered the cell counts of all other substrates (Fig 2B). Both states, of membrane dam-

aged and intact cells were significantly dependent on the substrates (S3 Table).

Scanning electron microscopy of colonized plastics

To prove successful colonization, after 60 days of incubation in sterile seawater, plastic strips

were visualized by SEM (Fig 3). Examination of the plastic strips by SEM confirmed re-coloni-

zation of all substrates and provided a closer picture of the microbes attached to the diverse

substrate surfaces (Fig 3).

Various microbial species of different morphologies connected through a network of EPS

or solely distributed across the surface without visible adhesive structures were observed (Fig

3). Exemplarily, Fig 3A, 3B and 3D are showing morphological diverse bacteria embedded in

EPS building colonies on the polymeric surfaces of PS and PESTUR. Fig 3C) shows rods and

cocci attached to HDPE and on Fig 3E) three single cells of different morphologies present on

PVC are shown.

Selective enrichment & community analysis

For selective enrichment the high-pressure treated plastics (comprising the attached source

community) were incubated with newly provided strips of the same polymer kind. The source

community strips were removed after six weeks (short-term) of incubation and after further

five month (long-term) of selective enrichment the taxonomic composition of the bacterial

communities on the diverse substrates were analysed in detail by 16S rRNA gene tag sequenc-

ing. The species richness of the different samples, analysed by calculating the number of

observed OTUs (number of species (S)) and Margalef‘s species richness (d) (Fig 4, S6 Table),

showed that the short-term communities had a higher richness compared to the long-term

communities on all substrates but glass (Fig 4), what point towards a selection of “specific”

microbes on the respective plastic type.

Principle coordinate analysis was used to visualize the similarities and dissimilarities

between the various short- and long-term communities (Fig 5). First, all samples of all sub-

strates were clearly divided (Fig 5). Second, the short-term communities of HDPE, LDPE, PP,

Fig 3. SEM images of colonized plastics. a) Meshwork of morphological diverse cells embedded in EPS attached to PS. b) Colony attached to PESTUR c) Single cells

of rods and cocci on HDPE d) Consortia of rods and cocci embedded in EPS on PS e) Rod with spore, comma and spiral cells on PVC.

https://doi.org/10.1371/journal.pone.0215859.g003
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PS and PVC clustered nearby their related long-term communities whereas the short-term

community of glass, PLA, PESTUR, SAN and PET clustered more distant to their long-term

communities (Fig 5). However, the first two axes merely represent 38.8% of the total variation

within the analysed communities. PERMANOVA analysis confirmed that the selective

enriched long-term communities differed significantly between all colonized substrate types

(p<0.05; pairwise PERMANOVA, S5 Table).

The bacterial community of short- and respective long-term incubated substrates displayed

a change in community composition during the time of selective enrichment. Overall, Alpha-

(18–53%) and Gammaproteobacteria (20–75%) displayed the highest relative abundances in all

samples of all substrates (Fig 6). Some classes were abundant in the short-term communities

but nearly disappeared over the time of selective enrichment e.g. the class of Epsilonproteobac-
teria on PLA or Cytophagia on SAN (Fig 6). Vice versa, some classes showed lower abundances

in the short- than in the long-term samples e.g. Flavobacteria on PP, PET and glass. The class

of Sphingobacteria appear to be characteristic for PS as this class was nearly equally abundant

in the short- and in the long-term samples (Fig 6).

Uncovered plastic “specific” bacteria

Long-term enriched communities associated with different substrates differed between 35–

66% from each other (S7 Table). For hierarchical clustering OTUs with a mean relative abun-

dance of at least 0.1% present on both, plastics and glass were rejected, resulting in 68 OTUs

Fig 4. Richness of the bacterial communities attached to the diverse substrates based on the number of observed OTUs.

Vertical bars denote the standard deviation (nshort-term = 1; nlong-term = 5).

https://doi.org/10.1371/journal.pone.0215859.g004
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(S3 Fig). To visualize patterns of mostly discriminating members, OTUs jointly contributing

with a minimum of 3% (max. dissimilarity between plastics = 6.07%), to the total dissimilarity

between different plastic groups (SIMPER analysis) were subjected into cluster analysis.

Accordingly, the trimmed data set resulted in 23 mostly discriminating and therefore potential

plastic “specific” OTUs (Fig 7). The hierarchical clustering of the potential plastic “specific”
OTUs indicated closest relatedness of HDPE and LDPE (polyolefins) as well as of PS and SAN

(styrenes), whereas e.g. PVC cluster clearly away from all other plastics (Fig 7). This differences

or similarities are caused by the presence or absence of particular OTUs, or related to differ-

ences in relative abundances of OTUs in common. The main reason for the distinctness of

PVC is an OTU assigned to the genus Flexithrix, with relative abundances of>5% on PVC

(Fig 7 and S3 Fig). The genusHirschia and Erythrobacter contributed to the dissimilarity

between PESTUR and all other plastics (Fig 7 and S3 Fig). Whereas an OUT assigned to the

uncultured Phyllobacteriaceae contributed to the similarity between the polyolefins HDPE,

LDPE and PP.

Comparison of the resulting 23 OTUs with a former dataset of 15 month old biofilms

attached to the same substrates [16] revealed that 16 out of the 23 OTUs related to the rather

rare biosphere (relative abundance <0.1%) including Oceanococcus (OUT 1112), Nannocysta-
ceae (OUT 799), Polycyclovorans (OUT 1045), Phyllobactereacea (OUT 524), Labrenzia (OUT

572),Maricaulis (OUT 463), Simiduia (OUT 885),Winogradskyella (OUT 198), Dokdonia

Fig 5. Principle Coordinate Ordination relating variation in the community composition between different short-

and long-term incubated substrates. PCOs representing similarity of biofilm communities based on relative

abundances of OTUs across samples. OTUs with a mean relative abundance of at least 0.1% in one substrate type

(nshort = 1; nlong = 5) were analysed. The different colours indicate the respective substrate, filled symbols represent

short-term samples, open symbols long-term samples. Arrows connect short- and long-term samples of the respective

substrate.

https://doi.org/10.1371/journal.pone.0215859.g005
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(OUT 156), Spongiibacter (OUT 905), Roseovarius (OUT 611), Congregibacter (OUT 889),

Planctomycetes SPG12-401-411-B72 (OUT 442), Hirschia (OUT 460), Erythrobacter (OUT

687) and Flexithrix (OUT 120). Seven OTUs assigned to Aquibacter (OUT 145), Ulvibacter
(OUT 197), PlanctomycetesOM190 (OUT 406), Planctomycetes BD7-11 (OUT 405), Parvular-
cula (OUT 477) Saprospiraceae (OUT 230) and Rhizobiales OCS 116 (OUT 510) showed rela-

tive abundances >0.1% in the mature biofilms (Fig 7).

Discussion

Identification of microbes that preferentially colonize and interact with plastics surfaces

remains challenging as the differences in community composition of mature biofilms are gen-

erally low [16]. Furthermore, young biofilms (2–6 weeks) appear to be rather unspecific

between different plastic types or other inert substrates like glass [14, 18, 19]. Here, we present

a three phase experimental approach to uncover potential plastic “specific” microbes. Our find-

ings indicate that tightly attached microorganisms might account to the rather rare biosphere

and suggest the presence of plastic “specific” microorganisms/assemblages which could possi-

bly benefit from the given plastic properties.

Water jet treatment & selective enrichment

As the main hypothesis of this study was that plastic “specific” microorganisms are tightly

attached to the polymeric surface, a technique to remove the upper loosely attached part is the

first step to facilitate further analysis. There are numerous studies trying to achieve a complete

Fig 6. Biofilm community composition based on abundance profiles of the short- and long-term communities on the class level on different plastics and glass.

OTUs with a mean relative abundance of at least 0.1% in one substrate type (nshort = 1; nlong = 5) were analysed. A � indicates the term “unclassified”, a # indicates the

term “Incertae Sedis”.

https://doi.org/10.1371/journal.pone.0215859.g006

The Plastisphere – Uncovering tightly attached plastic “specific” microorganisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0215859 April 23, 2019 10 / 17

https://doi.org/10.1371/journal.pone.0215859.g006
https://doi.org/10.1371/journal.pone.0215859


sanitation of biofilms but, to the best of our knowledge, no method can successfully achieve

entire detachment [35]. The persistency of biofilms towards removal techniques, as inauspi-

ciously as it may be for sanitation issues, is of great advantage to investigate these strongly

adherent cells on the substrate. Techniques to remove the cohesive layers of the biofilm, while

leaving the adhesive layer attached to the substrate on purpose, are not published. Since chemi-

cal or enzymatic action can break adherent bonds, removal of the coherent biofilm layers

requires mechanical action which does not seem to have much influence on the biofilms integ-

rity [36, 37]. Microscopic investigations revealed that strongly attached microbes were able to

survive the high-pressure water Jet treatment on all plastics with the largest extent of adhesive

cells on PP followed by LDPE, PS, HDPE, PESTUR, PVC, SAN, PLA, PET and at least on

glass. Already in 1979, Fletcher and Loeb [38] examined substrates with a hydrophilic and pos-

itive to neutral surface charge, revealing a moderate number of cells, while only very few cells

stayed attached to hydrophilic and negatively charged surfaces such as glass. This might

explain the variation in cell numbers between the diverse substrates as well as the low cell

Fig 7. Shade Plot of plastic “specific” OTUs (indicated by numbers) on different long-term plastics and comparison of their relative abundance in

untreated mature biofilms of the same experimental set up after 15 month. Abundant OTUs (mean relative abundance<0.1%; n = 50) are indicated in

turquoise, rather rare OTUs (mean relative abundance>0.1%; n = 50) are indicated in black. Shade Plot creation was based on square root transformed relative

abundances. OTUs with a mean relative abundance of at least 0.1% in one substrate type (n = 5) were analysed. Displayed are OTUs jointly contributing, with a

minimum of 3%, to the total dissimilarity between different plastic groups (SIMPER analysis). OTUs with a mean relative abundance of at least 0.1% present on

both, plastics and glass, were rejected. The amount of contribution is indicated by the colour of cells, lighter colours represent higher contributions. A � indicates

the term “unclassified”, # indicates the term “uncultured”.

https://doi.org/10.1371/journal.pone.0215859.g007
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numbers found on glass compared to those on the nine different plastic types after the high

pressure removal in this study.

Differentiated communities (short-term vs. long-term) developed within the third phase of

the experiment after five month under nutrient limited conditions in the sterile seawater incu-

bation. PERMANOVA pairwise comparison indicated that all microbial communities on their

respective substrate differed significantly to each other. Although all substrates were treated

similarly, it should be noted that differences in community profiles could be induced by the

considerable difference in remaining cell numbers on diverse substrates after the high-pressure

water Jet treatment. However, the detected differences still imply that the substrate shaped the

community as a result of the adherence strength of the biofilm to the respective substrate sur-

face. Comparing short-term (six weeks) and long-term (five month) incubated communities

revealed shifts towards communities with lower richness over time for all plastic types but

glass, which points towards a selection of microbes, that are either specialised to low nutrient

conditions or the respective plastic type. On the class level, three different changes were

observed between short- and long-term incubated communities; a shift from high to low abun-

dant classes, and vice versa, but also classes being characteristic for a plastic type, implying that

the plastic type is responsible for shaping the community composition. Biofilm communities

include a heterogeneity in form of organisms with various metabolic capacities and different

physiological properties which generates on the one hand competition but also provides on

the other hand opportunities for cooperation [39]. Hence, some of the observed changes in

community composition might be related to organisms playing a specific role in interspecies

interactions (cooperation) in plastic-degrading microbial assemblages.

Unveiled potentially plastic “specific” microbes

The three phases stepwise uncovering of potential plastic “specific” bacteria resulted in 23 final

OTUs contributing highly to the total dissimilarity between the nine plastic types. Generally,

the chemical composition (e.g. polyesters, polyolefines) and physico-chemical properties of

different plastic types, including the ones used in this study, are highly diverse in order to meet

the different needs of thousands of end products [40]. The plastic foils used as substrate in the

present study, are commonly produced for e.g. packaging and construction. It was hypothe-

sized that plastic “specific” microorganisms are tightly attached to the polymeric surface and

might be represented by rare but active species, since differences of mature biofilms between

distinct plastic types were found to be generally low [16]. Comparing our two datasets revealed

that 70% of the uncovered potential plastic “specific” OTUs of the present study, were assigned

to the rather rare biosphere (<0.1%) of the biofilms investigated six month earlier (15 month

old biofilm [16]). Former research reports that rare phylotypes tend to stay rare [41, 42]. Other

studies suggested that rare but active populations might be controlled by top-down forces (e.g.

predation) or competition (e.g. space, nutrients) within the biofilm and to underlie environ-

mental controls (e.g. temperature) [43]. Having the potential to increase in abundance [44],

our findings clearly support the idea that potential plastic “specific” species are, at least partly,

controlled by competitive interactions in mature dense biofilms.

Several studies have investigated microbial communities on marine plastics under various

conditions [5, 13, 14, 17, 18, 20, 21, 45]. After subtracting OTUs also abundant on glass, in

total 68 OTUs were found specifically associated with the different plastics and, out of those,

23 mostly discriminating the chemically distinct plastics. Several researchers, reported about

multiple families in common on a variety of marine plastics in different locations e.g. Nanno-
cystaceae, Flavobacteriaceae, Planctomycetes, Saprospiraceae, Erythrobacteraceae,Hyphomona-
daceae and Rhodobacteraceae [5, 14, 16–18, 21, 45]. Members of these families were also
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present within the 23 most discriminating OTUs in this study. Two OTUs were discriminating

PESTUR from all other plastics assigned toHirschia (Hyphomonadaceae) and Erythrobacter
(Erythrobacteraceae). Several studies have previously reported about the abundance of these

two families associated to diverse plastics in different experimental approaches and locations

[5, 17, 18]. Recently, Oberbeckmann et al. [18] reported about the two families Hyphomonada-
ceae (mostlyHyphomonas) and Erythrobacteraceae (mostly Erythrobacter), being exclusively

abundant in two weeks old biofilms on PE and PS. The genera Erythrobacter and Parvularcula
were reported to be part of plastic biofilms in the North Atlantic and North Adriatic Sea [5,

45]. In our study one OTU belonging to the family Saprospiraceae was highly discriminating

PS from the other plastics. Oberbeckmann et al. [18] also detected members of this family on

diverse substrates, PE and PS just being one of them. Phyllobacteriaceae were found to be sig-

nificantly more abundant on plastics, despite showing overall high relative abundances in the

study of Oberbeckmann et al. [18]. In our study Phyllobacteriaceae contributed to the similar-

ity between the polyolefins HDPE, LDPE and PP.

Since bacterial families are large, the uncovered plastic “specific” genera were compared

with former studies and found four genera already recognized on marine plastics as Roseovar-
ius [45], Erythrobacter [5, 18, 45] Ulvibacter [14] and Parvularcula [5, 45]. The repetitive detec-

tion of these genera associated to marine plastics in various approaches suggests that further

investigations on their role in plastic biofilms are required. However, since our experimental

design focused on the enrichment of tightly attached and rather rare taxa, they might have

been present but not recognized in previous research. For example, in the study of Kirstein

et al. [16] the genera Roseovarius and Erythrobacter accounted to the rare biosphere (<0.1%)

in the mature biofilms (15 month) and were therefore further not considered. Interestingly, in

other studies Roseovarius and Erythrobacter were detected in relatively young (2 weeks) or in

biofilms of unknown age [5, 18, 45].

Sensing the surface–plastic properties

Sensing of a non-soluble surface followed by the successful colonization are the first steps for

marine bacteria to develop a community, potentially leading to plastic biodegradation [46, 47].

Beside surface properties like hydrophobicity and roughness, surface chemodynamics like sur-

face conditioning or nutrient enrichment also play a role in forming distinct biofilm commu-

nities [47]. This questions whether we, and other researcher, were detecting “plastic specific”
organisms or “plastic specific coatings” organisms needs to be addressed in future studies. In

the present study, bacterial taxa able to survive on glass likely used dissolved organic carbon

present in the sterile seawater as carbon source, and consequently did not benefit from plastics

surface properties or chemical composition. All other OTUs detected on the various plastic

types were therefore potentially plastic “specific”. Due to short read lengths of 16S rRNA gene

tag sequencing, a conclusive identification on the species level of the unveiled plastic “specific”
OTUs was not possible so far. Since successful surface colonisation does not prove a special

role as e.g. plastic degradation, the next step must be the systematic isolation and identification

of those plastic “specific” organisms and to further test for the potential of one species or con-

sortium to degrade the respective plastic type. On the community level, the next steps should

be the disclosure of the mechanisms that allow the plastic “specific” assemblages to survive,

their possible metabolic pathways and enzymes involved.

Conclusion

This study represents a systematic and robust experimental approach uncovering potential

plastic “specific” microbes and is therefore a step forward in understanding the substrate
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specificity of the “Plastisphere”. For the first time, a high-pressure water Jet treatment tech-

nique was used to remove the cohesive layer of mature biofilms, while leaving the adhesive

layer on the plastics surface. Our results indicate the presence of plastic “specific” microorgan-

isms/assemblages which could possibly benefit from the given plastics properties. Further-

more, our findings clearly indicate that plastic “specific” microorganisms might account to the

rather rare biosphere and are tightly surface attached. Underrepresentation, due to low read

counts, might be an explanation why specificities between plastics biofilms in natural marine

environments were not detected so far in young biofilms or seem to be generally low in mature

biofilms.
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acterization of Underwater Fresh Water Springs in the Dead Sea. PLoS ONE. 2012; 7(6):e38319.

https://doi.org/10.1371/journal.pone.0038319 PMC3367964. PMID: 22679498
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