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Abstract: This paper proposes an optimal operational scheduling of a reconfigurable multi-
microgrid (MG) distribution system complemented by demand response programs and Energy 
Storage Systems (ESSs) in an uncertain environment. Since there is a set of competing players with 
inherently conflicting objectives in the system under study such as the Distribution System Operator 
(DSO) and MG owners, a one-leader multi-follower-type bi-level optimization model is proposed. 
In this framework, the upper-level player as a leader minimizes the total cost from DSO’s point of 
view, while the lower-level players as multi-followers maximize the profit of MG owners. Since the 
resulting model is a non-linear bi-level optimization problem, it is transformed into a single-level 
mixed-integer second-order cone programming problem through Karush–Kuhn–Tucker 
conditions. The satisfactory performance of the proposed model is investigated on a real-test system 
under different scenarios and working conditions. 

Keywords: Bi-level problem; Distribution system; Energy storage system; Hourly reconfiguration; 
Multi-microgrids; Operational scheduling 

 

1. Introduction 

Recently, due to the energy crisis and environmental deteriorations, the penetration level of 
Distributed Energy Resources (DERs) including Energy Storage Systems (ESSs), dispatchable and 
renewable energy sources in distribution sector has been increased significantly. This growing 
tendency has led to defining the Microgrid (MG) concept as a promising solution to the optimal use 
of energy resources [1]. Moreover, it mitigates the monitoring and management burden for the 
Distribution System Operator (DSO) and increases the operational flexibility of the system in the 
modified decision-making environment of sustainable energy systems [2]. Specifically, a MG is a 
cluster of loads and DERs which can be operated in both grid-connected and islanded modes [3]. 
Different aspects related to the application of MGs in distribution systems regarding the analysis and 
optimization of energy processes including optimal planning [4], operational scheduling [5] and 
system reliability [6] were thoroughly investigated in the literature. In Reference [7], DSO, who has 
the responsibility of operating the distribution system in an optimal fashion, determines day-ahead 
scheduling of DERs using particle swarm optimization (PSO) algorithm. In Reference [8], a two-phase 
optimal short-term operational scheduling of utility-owned DERs in an active distribution system 
has been proposed. In the first phase, to determine the amount of purchased power from the 
wholesale market and the set-points of DERs, a day-ahead energy acquisition model has been 
developed, where in the second-phase hourly network reconfiguration has been implemented. A 
day-ahead scheduling method in distribution system considering Demand Response (DR) programs 
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has been proposed in Reference [9]. To minimize the total operating cost and pollutants emission (as 
defined objectives), the augmented ε-constraint method is utilized by the DSO. 

In References [6–9] the decision authority is only devoted to the DSO to schedule DERs through 
a Distribution Management System (DMS) framework. However, with MG implementation, DSO 
and MG Owners (MGOs) may have conflicting objectives in making decisions. Thus, it is required to 
establish a comprehensive decision-making model to meet the conflicting objectives desired by 
different stakeholders. In Reference [10], the day-ahead scheduling of DSO and MGs as the self-
governing systems was modelled by the bi-level system of systems framework. At the first step, the 
problem is solved for MGs and then it is solved for the DSO in an iterative process. Although an 
appropriate framework has been proposed, the optimization problem is not modelled 
simultaneously for DSO and MGs. Authors of [11] propose a bi-level DSO-MGs model for optimal 
operation of the system. The upper-level optimization problem determines the optimal dispatch of 
distribution system to achieve minimum power loss and voltage deviation, where the lower-level 
problem takes minimum MGs’ operating cost as the objective. Likewise, to minimize carbon 
emissions, a game between DSO and MG to obtain operational equilibrium strategies is established 
in Reference [12]. However, the interactions between the two levels have not been implemented in 
models presented in References [11–12]. In Reference [13], a bi-level methodology to develop the 
interaction between electric vehicles and DSO considering load demand and wind power 
uncertainties has been provided. The main drawback of [13] is that each level (DSO and parking lots) 
has been modelled as a single bus system without considering the constraints of the network. The 
operational planning of the multi-MG distribution system with local exchanged power has been 
proposed in References [14–16]. The optimal scheduling model in Reference [14] is solved using a 
classical optimization strategy, while metaheuristic algorithms are applied for problem solving in 
References [15,16]. The major drawback of [14–16] is devotion of the decision authority to the MGOs 
without considering the interactions between DSO and each MG, which is addressed in Reference 
[17]. Bahramara et al. [18] propose a bi-level optimization algorithm, which models the hierarchical 
decision-making environment of distribution system, where DSO and multi-MGs optimize their 
respective objectives in a cooperative manner. The resulting bi-level optimization problem is then 
transformed into a single-level problem through the Karush–Kuhn–Tucker (KKT) optimality 
conditions. Likewise, in Reference [19], a multi follower bi-level model for optimal decision making 
of DSO and multi-MGs is presented. In the upper-level problem, the total operation cost is 
minimized, while in the lower-level problem the profit of each MG is maximized. In Reference [20], 
a Stackelberg game between a utility company and multiple users aimed at balancing supply and 
demand is formulated. A one-leader, N-follower Stackelberg game-based DR algorithm is proposed 
in Reference [21] to capture the interactions between virtual retailer and Responsive Loads (RLs). In 
addition to the mentioned drawbacks, each level in the proposed leader-follower frameworks [17–
21] has also been modelled as a single bus system without considering the constraints of the network. 
Besides, the financial interactions between these two levels are not modelled precisely as independent 
entities. Moreover, none of the reviewed literature considers the reconfigurable topology of the 
distribution systems.   

Recently, by introducing Remotely Controlled Switches (RCSs), hourly reconfiguration can be 
implemented for short-term day-ahead scheduling of distribution systems [22–23]. In Reference [24], 
by using hybrid PSO approach, the optimal day-ahead scheduling of RCSs and DERs is proposed in 
order to minimize the cost function including the cost related to the power losses and switching. 
Likewise, Anand, et al. [25] solves a simultaneous day-ahead scheduling and hourly reconfiguration 
problem in distribution systems. In the same subject area, a stochastic optimal operational scheduling 
of reconfigurable multi-MGs in presence of renewable energy resources is presented in Reference [26] 
to maximize the total profits.   

To the best of our knowledge, none of the reviewed literature provides a bi-level optimization 
scheduling for decision making of DSO and reconfigurable multi-MGs. In the lights of foregoing 
discussions, in this paper the stochastic one-leader multi-follower-type bi-level model is proposed to 
embody Distribution System Operator-Microgrid Operators (DSO-MGOs) gaming strategy. In this 
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model, for the upper-level optimization problem, the total cost of the system, including the costs 
related to power losses, switching actions, exchanged power with wholesale market and exchanged 
power between DSO and MGs is minimized from DSO’s point of view. In the lower-level 
optimization problem, the profit of each MGO is maximized. To this end, the difference between 
revenues and costs related to DERs, RLs, consumed power by each MG, exchanged power among 
MGs and exchanged power between DSO and MGs is maximized. The amount of exchanged power 
between DSO and each MGO is considered as a mutual decision variable which links the two 
optimization levels to each other. Since the resulting model is a non-linear bi-level optimization 
problem, it is then transformed into a single-level Mixed-Integer Second-Order Cone Programming 
(MISOCP) problem through KKT optimality conditions and linearization techniques. To verify that 
each final solution resulted from the transformed single-level MISOCP problem is a Nash 
equilibrium, a single-iteration diagonalization technique is implemented. 

In brief, the major contributions of this paper are highlighted as follows: 
• A one-leader multi-follower-type bi-level model considering ESSs in an uncertain environment 

is proposed, 
• An optimal day-ahead scheduling of multi-MG distribution systems is proposed considering 

DR and hourly reconfiguration actions, 
• Modelling the DSO’s decision-making problem which is affected not only by the exchanged 

power between DSO and each MG as a mutual decision variable but also by the reactions of 
interconnected MGs in an hourly reconfigurable environment. 
The remainder of the paper is organized as follows: In section 2, the conceptual framework of 

the proposed DMS is explained. The bi-level formulation of the optimization problem is proposed in 
section 3. Case study and simulation results are discussed in section 4. Finally, section 5 summarizes 
the contribution of the paper. 

2. Conceptual framework of the proposed DMS 

In this study, it is assumed that MGs have their own private owners who seek profit 
maximization, while DSO utilizes the DMS software to minimize the total cost of the distribution 
system. Thus, DSO and MGs have their own inherently conflicting objectives in optimal scheduling 
of energy-related generation and consumption units, which can be modelled as a bi-level 
optimization problem. Figure 1 shows the framework of the proposed bi-level model in the form of 
a one-leader multi-follower structure for DMS. The leader (which plays at the upper-level in our 
proposed DMS) is DSO who is responsible for minimizing the total operating costs, whereas the 
followers (act in the lower-level of the proposed DMS) are MGOs aiming to maximize their own 
profit. DSO is connected to the upstream utility grid and interacts with networked MGs, while MGOs 
not only feed the local demand but also exchange energy with each other to make more profit. Thus, 
the exchanged powers between DSO and multi-MGs are considered as coupling variables between 
these levels, which enforce decision maker to consider a multi-criteria action plan. It can be seen that 
DMS receives the network model, retail prices, cost function of DERs, RLs bilateral contracts and 
forecasted data of load profile, PVs output power and the wholesale market prices as input data. 
Finally, proposed bi-level DMS returns the optimal amount of exchanged power among MGs, 
exchanged power between DSO and MGs, Micro Turbines (MTs) and ESSs dispatches, RLs 
participations, wholesale market purchases and RCSs status during each time interval. Changing the 
status of RCSs in short-term results in a reconfigurable topology of distribution system, which 
represents a flexible multi-MG distribution system. 
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Figure 1. Framework of the proposed bi-level Distribution Management System (DMS). 

2.1. Uncertainty modelling 

In the proposed DMS, there are some uncertain parameters such as solar irradiance, wholesale 
market price and electrical load demand. To study the uncertainty nature of these input data, a 
stochastic scenario-based method using the mean values (i.e., day-ahead prediction) with different 
probability density functions is implemented. The scenario generation process is done by Monte-
Carlo simulation on predicted mean values while forecasting errors are considered within 
appropriate probability density functions through associated standard deviations (STDs). The total 
number of generated scenarios can be calculated by (1) considering constraint (2). 

s W M PV LN N N N= × ×  (1)  

1

( ) 1
sN

W M PV L
s s s

s

π π π
=

× × =
 

(2)  

Due to the computational burden limits of the optimization process, a scenario reduction 
algorithm based on Kantorovich distance [27] method is also incorporated to decrease the number of 
generated scenarios into a smaller set representing well enough the uncertainties. 

3. Bi-level formulation of the optimization problem 

Problem formulation of the bi-level model for operational scheduling of the examined multi-MG 
distribution system and related solution methodology are described in the following subsections.
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3.1. Upper-level: DSO 

The objective function of the upper-level is defined as: 

( )
24

2

1 1

WM

WM

N
WM loss SW WM MG DSO

DSO s t t t t
S t

OF Min C C C C  π
= =

  
 = + + +     
 

 
(3)  

As can be seen, the objective function of the upper-level aims at minimizing the total cost from 
DSO’s point of view, which includes different cost terms. The first term denotes the cost of power 
losses as proposed in (4). 

loss loss loss
t tC Pρ=  (4) 

where, the amount of active power losses loss
tP  can be calculated by (16). The second term which is 

represented by (5) denotes the switching cost of RCSs. 

sw, , , 1,
1

swN
S W S W
t t s sw t s

sw

C X Xρ −
=

= −
 

(5) 

The absolute value in (5) can be avoided by introducing new auxiliary variables as follows: 
sw, , , 1, ,

, , ,

, , ,

, ,, 0,1

t s sw t s sw t

sw t sw t sw t

sw t sw t sw t

sw t sw t

X X Z

Z Z Z

Z Z Z

Z Z

−

+ −

+ −

+ −

− =

= −

= +

=  

(6) 

The third term in (3) calculates the cost of purchasing/selling active power from/to day-ahead 
wholesale market at time t. 

2 2
, ,( - )W M W M W M DS O DSO W M

t t t s t sC P Pρ=  (7) 
Finally, the last term stated in (3) denotes the cost of exchanging power between DSO and MGs 

represented by (8). 

( )2 2 2
, ,

1

MGN
MG DSO WM MGp DSO DSO MGp
t t t s t s

p

C P Pρ
=

= −
 

(8) 

Constraints: 
The upper-level objective function is subjected to the following constraints.  

• Distribution power flow equations:  

The generic form of the branch flow model deals with the currents and powers flowing through 
the branches is as follows: 

, , , , , , ( , )i t s j t s ij ij t sV V Z I        i j br− = ∀ ∈  (9) 

, ,

*
, , , , ( , )

ij t sij t s i t sS V I        i j br= ∀ ∈  (10) 
2 2*

, , , , , , , , , ,
( , ) ( , )

( ) 1, 2, , ...,ij t s k i t s k i k i t s i i t s i t s bus
i j br k i br

S S z I y V S        i N
∈ ∈

− − + = ∀ = 
 

(11) 

where, (9) represents the Ohm’s law, (10) defines the branch power flow and (11) states the power 
balance constraint at each bus. By defining new variables 2

, , , ,ij t s ij t sI=  and 2
, , , ,i t s i t sVν =  as the 

squared current and voltage magnitudes, respectively and neglecting the phase angles of currents 
and voltages, the branch flow model is derived as follows: 

, , , , , , , , , ,
( , ) ( , )

( ) 1, 2, , ...,i t s ij t s k i t s k i k i t s i i t s bus
i j br k i br

P P P r g        i Nν
∈ ∈

= − − + ∀ =  
 

(12) 

, , , , , , , , , ,
( , ) ( , )

( ) 1, 2, , ...,i t s ij t s k i t s k i k i t s i i t s bus
i j br k i br

Q Q Q x b        i Nν
∈ ∈

= − − + ∀ =  
 

(13) 
2 2

, , , , , , , , , ,2( ) ( ) ( , )j t s i t s ij ij t s ij ij t s ij ij ij t sr P x Q r x        i j brν ν= − + + + ∀ ∈  (14) 
2 2
, , , ,

, ,
, ,

( , )ij t s ij t s
ij t s

i t s

P Q
       i j br

ν
+

= ∀ ∈
 

(15) 

The amount of active power losses is calculated as:   
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,
( , )

loss
t ij ij t

i j br

P r
∈

=  
 

(16) 

• Voltage limits constraints: 
2 2

min , , max 1i t s slackV V   ,  ν ν≤ ≤ =  (17) 

• Exchanged power limit with the wholesale market: 
2 2

, max
W M DS O W M DS O
t sP P≤  (18) 

• Line current limits: 

At any time and working conditions, the loading level of the lines/feeders should be in an 
allowed range. 

2
, , max ( , )ij t s         i j brI ∀ ∈≤  (19) 

• Network radiality: 

To preserve the radial configuration of the distribution network at each optimization interval, 
constraints (20)–(23) should be met. 

, , 1br t bus tN N= −  (20) 
ij ji brXβ β+ =  (21) 

0 0 , (0)j         j Nβ = ∈  (22) 

( )

1ij
j N i

β
∈

=
 

(23) 

Equation (20) indicates that the resulted configuration at each hour should be without any loop 
in the equivalent tree graph. In case that bus j is the parent of bus i ( 1ijβ = ) or bus i is the parent of 

bus j ( 1jiβ = ), according to (21) the respective branch is in the spanning tree ( 1brX = ). In order to 

avoid islanded buses in the final topology, (22)–(23) state that except the substation bus, all the buses 
should have one parent. 

• Number of switching actions: 
24

sw, , , 1, max
1

S W
t s sw t s sw

t

X X N     , sw =1,2,...,N−
=

− ≤ ∀
 

(24) 

The above nonlinear constraint can be linearized using auxiliary variables as proposed in (6). 

• Exchanged power limit between MGs and DSO: 
2 2 2

min , max
M G DS O M Gp DSO M G DSO

t sP P P≤ ≤  (25) 
2 2 2

min , max
DS O M G DS O M Gp DS O M G

t sP P P≤ ≤  (26) 

3.1. Lower-level: multi-MGs 

The objective function of the lower-level part aims to maximize the profit of pth MG considering 
seven different terms. 

( )

( )
1 1

1

PV L

PV L

PV L

PV L

N N 24
PV L MGp MGp

MGp s s t,s t,s
S S t=1

N N 24
PV L L MGp2DSO MGp2MGq MT PV ESS DR
s s p,t,s t,s t,s p,t,s p,t,s p,t,s p,t,s

S S t=1

OF =Max Income -Cost

=Max Pr +Pr +Pr +Pr  +Pr +Pr +Pr

π π

π π

= =

=

 
 
 
 
 
 
 
 

  

  
 

(27)  

Profit terms of the above objective function are defined as follows: 
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, ,( )
p

L LM L
p,t,s t i t s

i

Pr P
ψ

ρ
∈

=   (28) 

( )2 2
, ,

MGp2DSO LM MGp DSO DSO MGp
t,s t t s t sPr P Pρ= −

 (29) 

( )2 2
, ,

1,

MGN
MGp2MGq LM MGp MGq MGq MGp

t,s t t s t s
q q p

Pr P Pρ
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= −
 

(30) 

, ,
p

M T M T M T
p,t,s i i t s

i

Pr P
ψ

ρ
∈

= −  (31) 

, ,
p

PV PV PV
p,t,s i i t s

i

Pr P
ψ

ρ
∈

= −  (32) 

( ), , , ,
p

ES S ES S dch ch
p,t,s i i t s i t s

i

Pr P P
ψ

ρ
∈

= − −  (33) 

, , , , ,
1p

DR DR
p,t,s i t i t s

i

Pr h
φ

ξ ξ
ψ ξ

ρ
∈ =

= −   (34) 

Constraints: 
The constraints of the operational scheduling problem at the lower-level are as follows: 

• Operation limit of MT: 

The operation limits of MTs are formulated in (35)–(41). Constraint (35) guarantees that the 
output power of the MTs are within the lower and upper limit. The ramp up/down rate constraints 
of MTs are stated by (36)–(37), while (38)–(41) consider the up/down time limits. 

min , , max
M T M T M T

i t sP P P≤ ≤ (35) 

, , , 1, ,
upM T M T M T

i t s i t s i tiP P R U−− ×≤  (36) 

, 1, , , , 1
M T M T dow n M T

i t s i t s i i tP P R U− −− ×≤  (37) 

,, , 1 , i k

M T MT M T
i t i t i t UpU U U− +− ≤

 (38) 

,, 1 , ,1
i k

M T M T M T
i t i t i t DnU U U− +− ≤ −

 (39) 

, 0
i

i k
i

k     k M UT
Up

     k M UT
≤ 

=  >   
(40) 

, 0
i

i k
i

k     k M DT
Dn

     k M DT
≤ 

=  >   
(41) 

• Exchanged power limit with DSO: 
2 2 2

min , max
M G DS O M Gp DSO M G DSO

t sP P P≤ ≤  (42) 
2 2 2

min , max
DS O M G DS O M Gp DS O M G

t sP P P≤ ≤  (43) 

• Exchanged power limit between MGs: 
2 2 2

, maxmin
M Gp M Gq M Gp M Gq M Gp M Gq

t sP P P≤ ≤  (44) 
2 2 2

min , max
M G M G M Gq M Gp M G M G

t sP P P≤ ≤  (45) 

• Limits on operation of ESSs: 

min , , , max ,
ESS ch ch ESS ch

i t i t s i tP U P P U≤ ≤  (46) 

min , , , max ,
ESS dch dch ES S dch

i t i t s i tP U P P U≤ ≤  (47) 

min , , maxi t sE E E≤ ≤  (48) 



Energies 2019, 12, 1766 8 of 21 

 

, ,
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dch
i t sch ch

i t s i t s i i t s dch
i

P
E E P        tη

η−= + − ∀ ≥
 

(49) 

, , 0initial
i t s iE E    , t= =  (50) 

, , 1ch dch
i t i tU U+ ≤  (51) 

• DR program limits: 

In this paper, bid-quantity package offers including the amount of load curtailment and related 
requested prices are considered as the model of RLs. A typical bid-quantity package for the ith node 
is proposed in Figure 2 and formulated by (52)–(54). 

,min , , , 1i i iH h H     ξ ξ ξ =≤ ≤  (52) 
, , 1 ,0 - ) , 2, 3, ...,(i i ih H H     ξ ξ ξ ξ φ+ =≤ ≤  (53) 

,
1

DR
i iP h

φ

ξ
ξ =

=
 

(54) 

where, (52) and (53) state that the amount of accepted load curtailment for DR program in each step 
(  = 1ξ  and  = 2, 3, ..., ξ φ , respectively) should be controlled within an allowable range. 

 
Figure 2. A bid-quantity offer package for ith node. 

• Power balance for pth MG:  

( )

( )

, , , , , ,

, , , ,
1,

2 2
, , , , , ,

2 2
, , ( )

p

M G

p

PV M T dch
i t s i t s i t s

i

N
L loss

i t s i t s
q q p i

DSO M Gp M Gp DS Och DR
i t s i t s t s t s

M Gq M Gp M Gp M Gq
t s t s

P P P

P P

P P P P

P P

ψ

ψ

∈

= ≠ ∈

+ + − + + −

+ − = +



 
 (55) 

3.2. Solution methodology 

As formulated in previous section, 2 2 2 2
,[ ]W M DSO DSO W M M Gp DSO DSO M Gp

sw t t t t tY X  P  P  P  P=  and 
2 2 2 2

, , , , ,[ ]M Gp DSO DS O M Gp M Gp M Gq M Gq M Gp M T M T ch dch DR
t t t t i t i t i t i t i tX P  P  P  P  P  Q  P  P  P=  are DSO’s and MGOs’ decision 

variables, respectively. The amount of exchanged power between DSO and MGs plays an important 
role in the solution process, which couples the two levels through interactions among players. The 
proposed bi-level framework cannot be directly implemented in commercial solvers. To resolve this, 
by adding the KKT conditions of each follower problem, the lower-level problem (27)–(55) is 
converted into a single-level optimization problem. To solve the resulted single-level MISOCP 
problem by DSO, DSO has thorough knowledge of the required information pertaining to the MGs. 
Figure 3 briefly represents the decision-making process outlining the objectives, constraints of the bi-
level problem and its transformation into a corresponding single-level MISOCP problem through 
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KKT optimality conditions of the lower-level. The Lagrangian function and related derived KKT 
conditions of the lower-level problem can be calculated by (A1)–(A36) which are given in Appendix 
A. In this regard, the collection of non-equality constraints of the lower-level problem are rewritten 
as greater than or equal to zero constraints. Likewise, all equality constraints of the lower-level 
problem are rewritten as equal to zero constraints. Indeed, the resulted MISOCP problem is nonlinear 
because of the complimentary conditions from applying KKTs. To this end, the strong duality 
theorem is used in Appendix A to linearize the resulted MISOCP problem.   

3.3. Verification of Nash equilibrium 

Generally speaking, a Nash equilibrium of a competitive system indicates that no player has 
incentive to change its decision. In order to verify that each final solution obtained from the 
transformed single-level MISOCP problem is a Nash equilibrium, a single-iteration diagonalization 
technique [28] is used. In this way, offered decision of other players are assumed to be constant which 
results to a single player problem. To this end, the multi-follower players in the proposed equilibrium 
problem are divided into MGN  (the number of MGs) optimization problems. Optimization problem 
of each MG is solved with regard to the fixed decision strategies of the rival players (i.e., other MGs). 
This process is repeated for all of the players. If the decision strategies resulted by diagonalization 
technique are identical to those obtained by MISOCP problem (i.e., no rival has a profitable unilateral 
deviation), then the proposed final solution is a Nash equilibrium. 

 
Figure 3. Problem statement and its transformation from a bi-level format into a single-level Mixed-
Integer Second-Order Cone Programming (MISOCP) problem. 

4. Test and results 

The bi-level formulation of the proposed model and the solution methodology were discussed 
in the previous sections. In this section, after introducing the test system, simulation results of the 
proposed bi-level day-ahead scheduling model are discussed. 

4.1. Case study 

In this paper, the 84-bus 11.4 kV Taiwan power company distribution system [29], as shown in 
Figure 4, is considered as the test system. This system has three MGs which are interconnected 
through 13 tie lines. Moreover, it includes 11 feeders and 20 sectionalizing switches. It is assumed 
that similar type and size of MTs, PVs and ESSs are utilized in MGs with a sitting layout illustrated 
in Figure 4. All characteristics of DERs and other values for technical parameters are depicted in Table 
1 [29]. The predicted values for PV output powers can be extracted from [30]. The support areas of 
DR programs for the corresponding MGs and their bid-quantity offer packages [31] are provided in 
Table 2 and Table 3, respectively. The forecasted hourly load profile of each MG is shown in Figure 
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5a, while Figure 5b represents the forecasted Real Time Pricing (RTP) of the wholesale market and 
the retail market prices based on Time-of-Use (TOU) scheme [29]. 

As proposed in Reference [13], a seven-segment density function for a given normally 
distributed random variable with mean centred on zero and different STDs can be used to account 
for generated scenarios. Therefore, the same procedure is adopted for stochastic modelling of the 
output power of PV units, the wholesale market prices and the electrical load demand. The STD of 
the PV units’ power, the wholesale market prices and the electrical load demand forecast errors are 
assumed to be ±10%, ±4% and ±2% of their hourly forecasted values, respectively. The Monte-Carlo 
simulation is performed using MATLAB 2016a and the proposed MISOCP optimization problem is 
formulated using the General Algebraic Modeling System (GAMS) language and solved by the 
CPLEX (24.1.2, GAMS Development Corporation, Fairfax, NV, USA) [32] solver. 

 
Figure 4. 84-bus Taiwan power company distribution system. 

Table 1. Values for technical parameters [29]. 

Parameter Value Parameter Value 
($ / )loss MW hρ  250 ($ / )MT

i MW hρ  71 
2 2

max max/ ( )W M DSO DSO MGP P MW  36 ($ / )PV
i M W hρ  11 

2 2
max max/ ( )MGp DSO DSO MGpP P MW  20 ($ / )ESS

i MW hρ  8 
2 2

m ax m ax/ ( )M G p M G q M G q M G pP P M W  15 min maxV ,V ( p.u .)  0.95, 1.05 
i , j ,maxI ( kA )  3.8 min max, ( )M T M TP P M W  0, 5 

($)S Wρ  1 max
SWN  8 

Table 2. Supported areas of Demand Response (DR) programs in each Microgrid (MG). 

DR program Buses 
MG1 1, 4, 6, 7, 8, 12 
MG2 16, 17, 18, 22, 23, 28, 31, 32, 40, 45 
MG3 49, 50, 54, 59, 62, 63, 67, 68, 72, 80, 81, 82 

Table 3. Bid quantity offer packages of DR programs [31]. 

MG No. DR Program  

Substation

69/11.4 kV

E

PV

PV

PV

PV

PV

PV

PV

PV

PV

PV

PV

E

E

E

E

E

E
MT

MG1

MG2

MG3

Tie line

Sectionalizing switch
MT
PV
ESS

MT

MT

MTMT

MT

MT

69/11.4 kV

Substation
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[Quantity range* (MW)] & [Price** ($/MWh)] 

MG1 
0–0.2* 0.2–0.5 0.5–0.7 0.7–1.1 

94** 97 102 112 

MG2 0–0.2 0.2–0.8 0.8–1.4 1.4–1.7 
91 97 104 116 

MG3 
0–0.2 0.2–0.7 0.7–1.3 1.3–1.8 

92 96 102 114 

 

 
(a) 

 
(b) 

Figure 5. (a) Power demand; (b) Real Time Pricing (RTP) Wholesale market and Time-of-Use (TOU) 
retail market prices. 

4.1. Simulation results 

In order to investigate the satisfactory performance of the proposed model, the problem is 
addressed in three different case studies. In Case Study 1 (CS1), the interaction of MGs based on the 
hourly reconfiguration through RCSs is studied, while no interconnection among MGs is considered 
in Case Study 2 (CS2). In both CS1 and CS2, MGs are equipped with DR programs and ESSs facilities, 
where MGs in Case Study 3 (CS3) are not possess any of them. In order to deeply evaluate these case 
studies, three different scenarios are considered in each case. The proposed wholesale market and 
retail prices in Figure 5b are considered as scenario 1, where 10% increment and decrement in these 
prices are defined as scenario 2 and scenario 3, respectively. Table 4 summarizes the above CSs and 
scenarios. 

Table 4. Summary of the defined Case studies (CSs) and scenarios. 
 Scenario 1 Scenario 2 Scenario 3 

CS1 
Hourly reconfiguration, 

DR, ESSs, base prices 
Hourly reconfiguration, DR, 

ESSs, 10% increment in prices 
Hourly reconfiguration, DR, 

ESSs, 10% decrement in prices 

CS2 DR, ESSs, base prices DR, ESSs, 10% increment in 
prices 

DR, ESSs, 10% decrement in 
prices 

CS3 base prices 10% increment in prices 10% decrement in prices 
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The opened RCSs in reconfiguration process of multi-MG distribution system have been tailored 
in Table 5. By determining the proposed switching sequences at each hour, the optimal topology of 
the distribution system is resulted. As can be seen in all the final topologies in Table 5, the network 
radiality without any islanded buses is preserved, which meet constraints (20)–(23). Moreover, the 
maximum allowable number of switching actions constraint in the day, stated in (24), is met. 
Particularly, due to the excess power supply in MG1 and shortage power supply in MG3, RCS no. 84 
has the most switching action among all the switches during the day. It is 5 times, which is less than 
the maximum allowable number of switching actions. 

Table 5. Opened Remotely Controlled Switches (RCSs) in reconfiguration process. 

Hour Open RCSs  Hour Open RCSs  
1 52-85-86-87-88-89-90-91-92-93-94-95-96 12–15 18-26-84-85-86-87-88-91-92-93-94-95-96 

2–3 52-84-85-86-87-88-89-90-91-92-93-94-95 16–18 84-85-86-87-88-89-90-91-92-93-94-95-96 
4–8 84-85-86-87-88-89-90-91-92-93-94-95-96 19–21 52-75-85-86-87-89-90-91-92-93-94-95-96 

9–11 18-52-85-86-87-88-90-91-92-93-94-95-96 22–24 19-59-84-86-87-88-89-90-92-93-94-95-96 

Hourly operation scheduling of the MTs, DR programs and ESSs in CS1 for the defined three 
scenarios in MG1, MG2 and MG3 are shown in Figure 6, Figure 7 and Figure 8, respectively. It can be 
seen that for scenario 2 in all three MGs, due to the increased retail and wholesale market prices, the 
amount of participated load in DR programs and MTs output power are increased. On the other 
hand, the amount of responsive loads and MTs output power are decreased in scenario 3.  

 
(a) (b) (c) 

Figure 6. Hourly operation scheduling of the MTs, DR programs and ESSs in MG1 for CS1: (a) 
scenario 1; (b) scenario 2; (c) scenario 3. 

   
(a) (b) (c) 

Figure 7. Hourly operation scheduling of the MTs, DR programs and ESSs in MG2 for CS1: (a) 
scenario 1; (b) scenario 2; (c) scenario 3. 
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(a) (b) (c) 

Figure 8. Hourly operation scheduling of the MTs, DR programs and ESSs in MG3 for CS1: (a) 
scenario 1; (b) scenario 2; (c) scenario 3. 

As can be seen in Figure 6, Figure 7 and Figure 8, curtailable loads are participated in DR 
programs through the bid-quantity offer packages in peak load periods to flatten the demand curve. 
In all scenarios, ESSs tend to store power during the hours with low market prices and discharge (i.e., 
positive values in the figures) the stored power during the high market price periods. Figure 9a, 
shows the amount of exchanged power among MGs in different scenarios for CS1. Due to the low-
load level condition and high penetration of MTs and PVs in MG1, for all scenarios, the power is 
transmitted from MG1 to MG2 and MG1 to MG3. The negative values represent the reverse power 
flow (e.g., negative power flow from MG2 to MG3 denotes a flow from MG3 to MG2). Due to the 
decrement of market prices in scenario 3, MG2 generates less power, thus, the transmitted power 
from MG1 to MG2 is increased by 6% compared to scenario 1. The amounts of exchanged power 
between DSO and MGs in different scenarios for CS1 to manage the excess or shortage of power 
supply in each MG are illustrated in Figure 9b. Based on the lower market prices at time 1:00-8:00 
and 24:00, MGOs mainly purchase power from DSO in scenario 1 and scenario 3, while in other hours 
(i.e., 9:00-23:00), MG1 sells power to DSO. In contrast, in scenario 2 at time 8:00 and 24:00, MG1 sells 
power to DSO because of the higher wholesale market prices. Moreover, due to the lower wholesale 
market prices in scenario 3, the total amount of purchased power from DSO is increased by 5% and 
8%, respectively in comparison with those in scenario1 and scenario 2. Figure 10 shows the amounts 
of exchanged power between each MG and DSO in CS2 for the three defined scenarios. Since no 
interconnection between MGs is considered in CS2, the power is not exchanged among MGs. This 
can also be deduced from Figure 10 where due to the higher wholesale market prices in scenario 2, 
the amount of purchased power from DSO is decreased by 3% and 5%, respectively. As a whole, in 
scenario 3, which reflects an operating condition with lower electricity prices, the MGOs prefer to 
supply more power from the DSO through participating in the market rather than internal energy 
trading among themselves. Thus, the expensive DERs are switched off in scenario 3 to ensure the 
economical operation of the distribution system. The amounts of exchanged power between each MG 
and DSO in CS3 for the three scenarios are shown in Figure 11. As can be seen, the amounts of 
purchased power from DSO to MG2 and MG3 are increased in peak load periods (i.e., 18:00-23:00) 
compared to CS2 and CS3. This is because there is no ESSs or DR programs in CS3 to supply power 
shortage. Figure 12 compares the technical and financial results between CS1, CS2 and CS3 under 
different scenarios. To get a better insight into this comparative study, the results related to the CS2 
scenario 1 are considered as base values and treated as 1.00 per unit (p.u.). As can be seen, in the 
interconnected topology through the hourly reconfiguration the total loss of the distribution system 
is less than that of in CS2. Specifically, a reduction of 7%, 6% and 8% in total losses for scenario 1, 
scenario 2 and scenario 3 are achieved, respectively, which demonstrates the effect of hourly 
reconfiguration on loss reduction. Due to the increased power generations from DERs in scenario 2, 
the total loss in scenario 2 is less than that of scenario 1 and scenario 3 for both CSs. The responsive 
loads commitment in DR programs in scenario 2 is 27% and 38% more than those in scenario 1 and 
scenario 3, respectively for CS1. On the other hand, consumers’ participation in DR actions for CS2 
in scenario 2 is 21% and 29% more than those in scenario 1 and scenario 3, respectively. Hence, by 

Po
w

er
 (M

W
)
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utilization of hourly reconfiguration for interconnected topology of MGs in CS1, DR activities are 
increased by 4%, 11% and 2% in scenario 1, scenario 2 and scenario 3, respectively as compared to 
CS2. More importantly, the financial profit of MGOs in CS1 are more than those made in CS2 for all 
scenarios, which demonstrates the efficiency of the proposed interconnected MGs topology. Due to 
the hourly reconfiguration in CS1, the amounts of profit in scenario 1 are 1.04 p.u., 1.09 p.u. and 1.07 
p.u. for MG1, MG2 and MG3, respectively, where these amounts are considered to be 1.00 p.u. for 
CS2. It is clearly observed from Figure 12 that by applying the hourly reconfiguration through 
interconnected MGs topology, significant decreases in total cost of distribution system could be 
achieved in different scenarios. Besides, the amounts of total loss, DR participation, profit of MGs 
and total costs are presented in Figure 12c. As can be seen, the amounts of losses and total costs are 
increased compared to CS1 and CS2. On the other hand, the profit of MGs is decreased significantly 
in different scenarios, which shows the effectiveness of DR programs and ESSs implementation.   
Through the proposed checking mechanism in Section 3.3, it is verified that the final solutions 
obtained by the MISOCP problem are Nash equilibrium. For example, for the optimization problem 
related to the MG1 (MGO2 and MGO3 are considered as fixed decision makers), the profit of MGO1 
is 1.04 p.u. and 1 p.u., respectively for CS1 and CS2 in scenario 1, which are consistent with the results 
shown in Figure 12. 

   
(a) 

   
(b) 

Figure 9. Exchanged power in different scenarios for CS1: (a) among MGs; (b) between DSO and MGs. 

   
Figure 10. Exchanged power between DSO and MGs in different scenarios for CS2: (a) scenario 1; (b) 
scenario 2; (c) scenario 3. 
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Figure 11. Exchanged power between DSO and MGs in different scenarios for CS3: (a) scenario 1; (b) 
scenario 2; (c) scenario 3. 

(a) (b) 

 
(c) 

Figure 12. Comparison of technical and financial results between: (a) CS1; (b) CS2 and (c) CS3. 

Total load profile of the system after load participation in DR program is shown in Figure 13. It 
can be seen that RLs are participated in DR programs through the bid-quantity offer packages in peak 
load periods to flatten the demand curve. Due to the increased retail and wholesale market prices in 
scenario 2, the amount of participated load in DR programs is increased. Particularly, the peak load 
has been decreased from 34.2 MW to 29.9 MW, 29.7 MW and 30.7 MW for scenario 1, scenario 2 and 
scenario 3, respectively.  
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Figure 13. Total load profile with and without considering DR programs in different scenarios. 

From the voltage-security point of view, Figure 14 shows the maximum voltage deviation of 
busses from 1.00 p.u. for CS1, CS2 and CS3 in three defined scenarios. Due to the higher wholesale 
market prices and increased power generations from DERs in scenario 2, better bus voltages are 
achieved. It can be seen that hourly reconfiguration through the interconnected MGs, DR 
participation and ESSs implementation in CS1 causes better results for bus voltages during the 24h 
time horizon in all scenarios. Besides, all bus voltages are regulated within their allowable 0.05 p.u. 
ranges. 

 
(a) (b) (c) 

Figure 14. The maximum voltage deviation of buses for CS1, CS2 and CS3 in: (a) scenario 1; (b) 
scenario 2 and (c) scenario 3. 

4. Conclusion 

In this paper, the problem of optimal day-ahead scheduling of reconfigurable multi-MG 
distribution system considering demand response programs and ESSs in an uncertain environment 
was investigated. Due to participation of multi-players including DSO and multi-MGs with 
inherently conflicting objectives in the framework, a one-leader multi-follower-type bi-level 
optimization model was developed to embody DSO-MGOs gaming strategy. The proposed decision-
making model sought to minimize the DSO’s total operation cost as the upper-level problem taking 
into account maximizing the profit of each MG as the lower-level problem. Decision maker was 
affected not only by the exchanged power between DSO and MGOs as a mutual decision variable but 
also by the interactions of the interconnected MGs in an hourly reconfigurable topology. KKT 
optimality conditions and linearization techniques were used to transform the proposed non-linear 
bi-level optimization problem into a single-level MISOCP problem. The performance of the proposed 
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model was investigated on the 84-bus Taiwan power company distribution system. The simulation 
results revealed that in conditions where the market prices are relatively higher, MGOs prefer to 
dispatch first their distributed energy resources including micro turbines, PVs and responsive loads 
and then exchange power with the interconnected MGs and DSO. However, when the market prices 
are lower, MGOs prefer to trade energy with DSO. Moreover, it was shown that by implementing 
hourly reconfiguration through interconnected MGs, the total power losses, the maximum voltage 
deviation of buses, participation in demand response programs, MGOs’ profit and the total system 
cost could be improved significantly. 

Author Contributions: S.E. and A.A-M. developed the idea and designed the model. The simulation was 
executed and analysed by S.E. S.E. and A.A-M. accomplished the writing of the paper. S.J. guided the whole 
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Appendix A 

To calculate the KKT conditions of the follower problem, all non-equality constraints of the 
lower-level problem can be rewritten as greater than or equal to zero constraints proposed in (A1)–
(A24). Similarly, the collection of equality constraints of the lower-level are rewritten as equal to zero 
constraints (A25)–(A28). 

1 1
, , , , , min , , ,0 : , , , ,M T M T

i p t s i t s i p t sC P P              i p t sλ= − ∀≥  (A1) 
2 2
, , , max , , , , ,0 : , , , ,M T M T

i p t s i t s i p t sC P P               i p t sλ= − ∀≥  (A2) 
3 3
, , , , , , , 1, , , ,0 : , , , ,up M T M T M T

i p t s i t i t s i t s i p t siC R U P P           i p t sλ−= × − + ≥ ∀  (A3) 
4 4
, , , , 1 , , , 1, , , ,0 : , , , ,down M T M T M T

i p t s i i t i t s i t s i p t sC R U P P       i p t sλ− −= × + − ≥ ∀ (A4) 

,

5 4
, , , , , , 1 , , ,0 : , , , ,

i k

M T M T M T
i p t s i t Up i t i t i p t sC U U U                i p t sλ+ −= − + ≥ ∀

 (A5) 

,

6 6
, , , , , , 1 , , ,0 : , , , ,1

i k

M T M T M T
i p t s i t Dn i t i t i p t sC U U U          i p t sλ+ −= + − ≥ ∀−

 (A6) 
7 2 2 7
, , , , min , , ,0 : , , , ,M Gp DSO M G DSO

i p t s t s i p t sC P P             i p t sλ= − ∀≥  (A7) 
8 2 2 8
, , , max , , , ,0 : , , , ,M G DSO M Gp DSO

i p t s t s i p t sC P P             i p t sλ= − ∀≥  (A8) 
9 2 2 9
, , , , min , , ,0 : , , , ,DSO M Gp DSO M G

i p t s t s i p t sC P P             i p t sλ= − ∀≥  (A9) 
10 2 2 10
, , , max , , , ,0 : , , , ,DSO M G DSO M Gp

i p t s t s i p t sC P P             i p t sλ= − ∀≥  (A10) 
11 2 2 11
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i p t s t s i p t sC P P              i p t sλ= − ∀≥  (A11) 
12 2 2 12
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16 16
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21 21
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22 22
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(A28)  

The Lagrangian function and related derived KKT optimality conditions of the lower-level 
problem (27)–(55) considering the rewritten form of non-equality and equality constraints of the 
lower-level problem (A1)–(A28) can be calculated as follows: 
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Primal feasibility: 
Equations (A1)–(A28) state the primal feasibility conditions.  

Dual feasibility: 
As all non-equality constraints of the lower-level problem are rewritten as greater than or equal to 

zero constraints in (A1)–(A24), the respective Lagrangian multipliers (i.e., dual variables) are in the 
same form. Similarly, as the collection of equality constraints of the lower-level are rewritten as equal 
to zero constraints in (A25)–(A28), the related dual variables are unrestricted as follows: 

, , , 0 , 1, 2, ..., 24 , , ,z
i p t s          z    i p t sλ ≥ ∀ = ∀  (A37) 

, , , , 24, 25,..., 28 , , ,z
i p t s      Unrestricted     z    i p t sλ ∀ = ∀  (A38) 

Complementary slackness conditions: 
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, , , , , , 0 , 1, 2, ..., 24 , , ,z z
i p t s i p t sC          z    i p t sλ = ∀ = ∀  (A39) 

The nonlinear constraints in (A39) are transformed into a linear form by big-M method as 
follows: 

, , , , , , , 1, 2, ..., 24 , , ,z z
i p t s i p t sC M U         z    i p t s≤ ∀ = ∀  (A40) 

, , , , , ,(1 ) , 1, 2, ..., 24 , , ,z z
i p t s i p t sM U          z    i p t sλ ≤ − ∀ = ∀  (A41) 

where, M should be considered as a large positive number.  

Nomenclature 

Parameters  

y i  Admittance between bus i and 
ground.  

ch dch
i iη /η  Charging/Discharging efficiency of 

ESS i. 
i ig /b  Conductance/ susceptance of bus i. 
WM
tρ  Day-ahead wholesale market 

electricity price at time t ($/MWh). 
z ij  Impedance of branch ij. 

in it ial
iE  Initial energy storage of ESS i 

(MWh). 
L M
tρ  Local market price ($/MWh). 

i iMDT /MUT  Minimum down/up time for MT i. 
WM PV

L

N /N
/N

 Number of generated scenarios for 
wholesale market price/ PV output 
power/ demanded load.   

ξ ,i . t

D Rρ  Offered price of DR program for 
load curtailment in step ξ at time t 
($/MWh). 

ES S
iρ  Operation & maintenance cost 

coefficient of Energy Storage 
System (ESS) i ($/MWh). 

M T
iρ  Operation & maintenance cost 

coefficient of MT i ($/MWh).  
PV
iρ  Operation & maintenance cost 

coefficient of PV i ($/MWh). 
lossρ  Price for power losses ($/MWh). 
SWρ  Price of each switching operation 

($). 
WM PV
s s

L
s

π /π

/π
 

Probability of scenarios for 
wholesale market price/ PV output 
power/ demanded load.    

up down
iiR /R  Ramp-up/ramp-down rate of MT i. 

ijr /xij  Resistance/reactance of branch ij. 

Variables 
,ih ζ  Amount of accepted load 

curtailment for DR program in step 
ξ of bus i. 

, ,ij t sS  Apparent power of branch ij at 
time t.  

STD Standard deviation 
TOU Time-of-use 

Indices and sets 
k  Index for On-time/OFF-time limits 

modelling. 
t  Index of time ( 1, 2, ..., 24t = ). 
i,j  Index of buses ( , 1, 2, , ..., busi j N= ). 
br  Index of branches ( 1, 2, ..., brbr N= ). 
sw  Index of RCSs ( 1, 2, ..., swsw N= ). 
p,q  Index of MGs ( , 1, 2, ..., M Gp q N= ). 
ξ  Index of steps in bid-quantity 

packages of DR programs (
1, 2, 3, ...,ξ φ= ). 

pψ  Set of buses pertaining to the MG 
number p .  

s  Set of scenarios. 

,
MT
i tU  

Binary variable for the status of MT 
i at time t (0: when MT i is OFF). 

sw, ,t sX  Binary variable for the status of 
RCS sw at time t (0: when the 
related switch is opened) 

2M G D S O
tC  Cost of exchanging power between 

DSO and MGs ($). 
W M
tC  Cost of exchanging power with 

wholesale market at time t ($). 
S W

tC  Cost of switching actions for RCSs 
at time t ($). 

, ,ij t sI  Current of branch ij at time t (kA). 

, ,
DR

i t sP  
Curtailed power of DR for bus i at 
time t (MW). 

2
,

2
,

/W M D S O
t s

D S O W M
t s

P

P
 Day-ahead power purchased/sold 

from/to wholesale market at time t 
by DSO (MW). 

, , ,
z
i p t sλ  Dual variable. 

, ,i t sE  Energy storage of ESS i at time t 
(MWh). 

, ,
ch

i t sP / , ,
dch

i t sP  ESS i charge/discharge power at 
time t (MW). 

, , ,
z

i p t sC  Greater than or equal to zero 
constraints.  
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, ,/i k i kDn Up  Auxiliary variables for linear 
modelling of minimum down/up 
time limits.    

, , ,
z
i p t sU  Auxiliary variable used for 

linearization of the complementary 
conditions.   

, ,/ch dch
i t i tU U  Binary variable for the charging 

/discharging status of ESS i at time 
t (0: when ESS i is not in the 
charging or discharging mode).  

pL  Lagrangian function of pth lower-
level problem related to MG p.  

M G p
tα  Number of buses in the border of 

MG p at time t. 
, ,
MT

i t sP  Output active power of MT i at time 
t (MW). 

, ,
PV

i t sP  Output power of PV i at time t 
(MW). 

, ,
MT
i t sQ  Output reactive power of MT i at 

time t (MVAR). 
p,t,sPrα  Profit related to term α  ($) ( α

includes loads, PVs, MTs, DR 
programs and exchanged power 
between MGs and DSO). 

, , , ,/i t s ij t sν   Squared voltage/current 
magnitude of branch ij.  

, , , ,/i t s i t sP Q  The net injected active/reactive 
power at bus i.  

, ,
L

i t sP  
Total electrical load of bus i at time 
t (MW). 

2
,

2
,

/M G p D S O
t s

D S O M G p
t s

P

P
 Transmitted power from MG p to 

DSO/ from DSO to MG p (MW). 
2

,
MGp MGq

t sP  Transmitted power from MG p to 
MG q at time t (MW). 

, ,i t sV  Voltage magnitude of bus i at time 
t.  
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