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Early Stages of Agglomeration of Adhesive Particles in Fully-Developed Turbulent
Pipe Flows

J. Hærviga,∗, K. Sørensena, T.J. Condraa

aAalborg University, Department of Energy Technology, Pontoppidanstræde 111, DK-9220 Aalborg, Denmark

Abstract

We study how changes in particle response time and adhesiveness affect how particles agglomeration in fully-developed
turbulent pipe flows. For this purpose, particle-particle and particle-wall interactions are fully-resolved using the soft-
sphere Discrete Element Method (DEM) modified to include adhesiveness due to van der Waals forces and electrostatic
forces through JKR theory. The particulate phase is two-way coupled to the turbulent fluid phase, which is partly
resolved using Large Eddy Simulations (LES). First, we validate the simulations by grid refinement and by comparing
the statistics of the flow field to experiments in literature. Secondly, we vary the particle response time τp = ρpd

2
p/(18µ)

and observe the largest agglomerates in terms of average number of particles per agglomerate to be formed by primary
particles with intermediate Stokes numbers, e.g. Ste = τp/τe ≈ 6.4 where τe = D/U is the eddy turn over time or
StL = τp/τL ≈ 46.4 in terms of the integral time scale of the turbulent flow τL. Then we show how the total fraction of
particles contained in agglomerates is almost constant up to Ste = 6.4 after which there is a sudden drop in the fraction of
particles contained in agglomerates. To investigate the transition from non-adhesive particles to highly adhesive particles,
we vary the adhesiveness parameter Ad = γ/(ρpU

2dp) to obtain two extremes; one with weakly adhesive particles where
less than 3 % of particles are contained in agglomerates to highly adhesive particles where more than 70 % are contained
in agglomerates. While varying the adhesiveness of the primary particles for a fixed particle response time, we observe
three distinct regimes. For almost non-adhesive particles, the agglomerate number density is highest towards the centre
of the pipe with a maximum at 0.2 < r/R < 0.3. Slightly more adhesive particles form a almost uniform agglomerate
number density profile while for highly adhesive particles there is a distinct peak in agglomerate number density at the
wall where particles and agglomerates deposit.

Keywords: Adhesive particles, Agglomeration, Turbulent pipe flow, Large Eddy Simulation (LES), Soft-sphere
Discrete Element Method (DEM), Johnson-Kendall-Roberts (JKR) model

1. Introduction

The transport, agglomeration and subsequently depo-
sition of small adhesive particles play important roles in
many industrial and fundamental processes. These pro-
cesses range from particles accumulating at heat transfer
surfaces, particles blocking pores in membrane filtration
systems, particles being inhaled and deposited in our lungs
to interstellar medium agglomerating causing early stages
of new planets to form in space.

All agglomeration and deposition processes are a result
of particles colliding with one another or a wall. The
mechanisms governing particle collisions of non-adhesive
particles in turbulent flows have been devoted much
attention in literature. These studies date back to Saffman
and Turner [1] who investigated the collision frequency
in isotropic turbulent flows in the limiting case of finite
size tracer particles with response times much smaller
than fluid response time τp � τf and Abrahamson [2] who
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investigated the collision frequency in the other limiting
case of heavy particles with τp � τf. For particles
having τp ≈ τf, various correlations have been proposed
in literate [3]. However, as particles begin to adhere
to one another and the turbulent flow of interest is
anisotropic, e.g. a pipe flow, a common approach is
to resolve only the turbulence scales that affect motion
of the particles considered using LES. Due to the wide
range of applications where particles are transported by a
turbulent gaseous flow, a lot of research has been carried
out [4]. As noted in several studies including Squires
and Eaton [5], Eaton and Fessler [6], particles heavier
than the fluid with response time similar to that of the
local fluid flow are commonly observed to preferentially
collect in regions with low vorticity and high strain rate
in turbulent flows. This is most pronounced for particles
with response time similar to that of the local turbulent
flow. Furthermore, there is evidence that particles in an
anisotropic turbulent flow tend to accumulate in regions
with lower turbulence [7] due to turbophoresis. Based on
a collection of experimental data from literature reporting
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particle transport in turbulent pipe flows, Rao [8] suggest
that the motion of particles with Ste < 5 is dominated
by viscous forces and generally follow fluid streamlines
closely. At intermediate Stokes numbers 5 < Ste < 40
the motion of particles is partly correlated with local
turbulence causing a high collision rate. At sufficiently
high Stokes numbers Ste > 40 particles tend to follow the
mean flow while being less affected by local turbulence
structures in the flow, which results in a low collision rate.

Different approaches exist to model the agglomeration
process. One approach is to represent agglomerates by
equivalent spheres that grow in size as the number of
particles contained in the agglomerate increase [9, 10].
However, as shown by Brasil et al. [11], the morphology
of agglomerates differs significantly depending on how the
agglomerates are formed, the properties of the primary
particles and properties of the fluid flow surrounding
the particles. Based on the Euler-Lagrangian approach,
Sommerfeld and Stübing [12] proposed a computational
efficient agglomerate structure model. Using this model,
agglomerates are treated as point particles that carry
additional information such as locations of the primary
particles and binding forces holding the agglomerates
together. Based on these properties, parameters such as
the convex hull and fractal dimension can be calculated
and used to relate agglomerate structure to flow resistance
coefficients.

Another approach is to track every particle but assume
the particles to stay adhered when agglomerated or de-
posited on a wall. However, the DEM study of laminar
channel flow by Marshall [13] shows that phenomena such
as bending and break-off of agglomerates occur frequently
and play important roles to accurately predict the state
where the rate of particles being re-entrained back into
the fluid asymptotically approaches the rate of particles
being deposited. Furthermore, the study suggests the
mechanism of agglomerates continuously breaking up as
agglomerates are formed to be controlled by impacting
particles or agglomerates rather that fluid forces.

As noted in most studies coupling DEM to a fluid phase,
there is typically a large difference between the time step
sizes required to resolve particle collisions δtDEM and fluid
flows δtf, so that δtcol � δtf. As δtcol = O(10−9 s), this
is also valid for a wide range of turbulent flows. This
fact is commonly used to speed up coupled simulations
by introducing softer particles by lowering the particle
stiffness and thereby making particle collisions take place
over longer time periods. However, as noted in studies by
Kobayashi et al. [14], Gu et al. [15], Hærvig et al. [16],
depending on the adhesiveness model, introducing softer
particles should be accompanied by a lower adhesive forces
in order for the collision outcome (stick/rebound) to stay
the same.

When the agglomerates increase in size, the study by
Dizaji and Marshall [17] shows that the local fluid velocity
in an agglomerate becomes increasingly correlated with
the agglomerate velocity. In this case, a two-way coupling

between particles and fluid is needed to accurately repre-
sent the presence of particles on the fluid. Furthermore,
due to differences in agglomerate morphology, it is not
trivial to model the particle-fluid interaction without
resolving the flow fluid around each particle. Attempts
to correlate particle drag with particle volume fraction
and Reynolds number include Ergun and Orning [18] who
experimentally correlated pressure gradients in fluidized
beds to the particle void fraction. Later studies by Hill
et al. [19, 20] rely on the Lattice-Boltzmann Method
(LBM) to resolve the flow around particles and correlate
the drag force exerted on particles with particle volume
fraction and the Reynolds number. While this method
is highly accurate for homogeneous packing, the spatial
variations in agglomerates that range from compact to
dendritic in structure complicate the formulation of a
general drag model. Dietzel and Sommerfeld [21] resolved
the flow in agglomerates by local grid-refined Lattice-
Boltzmann Method (LBM) simulations and correlated the
overall drag force on different agglomerate morphologies to
the projected cross section of the convex hull perpendicular
to the mean flow direction. However, as the agglomerating
and break-up mechanisms are governed by the particles
being affected by different fluid forces, this approach is
not suitable for this study.

While numerous studies on two-way coupled particle-
fluid interactions have been reported, only a few account
for the adhesive behaviour by fully resolving collision using
the soft-sphere DEM approach. Afkhami et al. [22] studied
the effect of particle adhesiveness using three different
particle surface energy densities and showed a direct link
between surface energy density and agglomeration rate.

The purpose of this study is look into how particle
response time and particle adhesiveness affect the ag-
glomeration rate. To obtain a fully-developed flow, the
computational domain is made periodic in the stream-
wise direction. To avoid imposing any limitations on the
agglomeration process, the soft-sphere DEM approach is
used to resolve how particles collide, agglomerate, deposit
and are re-entrained into the fluid due to collisions with
other particles or by fluid forces. One advantage of the
soft-sphere DEM approach is the fact that no additional
models are required to account for agglomeration, ag-
glomeration break-up, deposition and re-entrainment as all
these processes are based directly on the particle properties
and therefore automatically accounted for. Figure 1 gives
an overview of these different processes.

2. Details on the numerical setup

2.1. Governing equations for fluid flow

The filtered LES equations governing unsteady, in-
compressible, three-dimensional viscous fluid flow in a pe-
riodic domain with two-way coupling between particle and
fluid phases are the continuity and momentum equations
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Figure 1: Overview of the different processes in the vicinity of a
surface and away from a surface that are resolved directly by the
soft-sphere DEM approach. The early stages of interest in this study
are typically limited to particles colliding, particles agglomerating,
agglomerates breaking up and single particles depositing at surfaces.

given by (1) and (2) respectively:

∂ (αfūi)

∂xi
= 0 (1)

∂ (αfūi)

∂t
+
∂ (αfūiūj)

∂xj
= −αf

ρf

∂p̄

∂xi
+ αf

∂

∂xj

(
(ν + νsgs)

∂ūi

∂xj

)
−Rpf

ρf
+ βδ1,i (2)

where αf is the local fluid volume fraction,
Rpf = Kpf(u− 〈v〉) is the momentum exchange with
the particulate DEM phase and the βδ1,i term defines
a momentum source term dynamically being changed
to balance out the pressure gradient across the periodic
domain. Different approaches exist to extrapolate the
influence of particles onto the Eulerian grid. One
approach is to extrapolate the influence of all particles to
the nearest cell, which is shown in studies such as Garg
et al. [23], Salman and Soteriou [24] to produce grid-
dependent results. Instead, Capecelatro and Desjardins
[25], Capecelatro et al. [26] suggest using a two-step
filtering process. First, particle data is transferred to the
Eulerian grid, which is afterwards diffused to ultimately
give a filtering size ∆x that is larger than the particle
diameter, e.g. ∆x = 3dp. In this work, the approach
by Zhao and Shan [27] is adopted to represent the finite
size of the particles on the Eulerian grid. Using this
approach, the particle volume is divided into a finite
number of non-overlapping elements of equal volume.
The volume of each element is assumed to be located at
the element centroid so that a particle may be present
in more adjacent cells. This is especially import to
obtain a correct representation of local particle volume
fraction when the particle size approach the local grid
size. Momentum is transferred from the particulate phase
to the fluid phase using the implicit second-order accurate
Crank-Nicolson scheme by summing up the fluid forces on
the individual particles in each computational cell with

volume V :

Kpf =
αf|
∑

i F i,fluid|
V |u− 〈v〉|

(3)

The finite volume method is applied to discretise the
governing equations. Time is advanced using an implicit
second-order accurate scheme while all spatial terms are
discretised using second-order accurate schemes. Pressure
and velocity fields are coupled using the PISO algorithm
[28].

The sub-grid scale viscosity νsgs accounts for sub-grid
scale turbulence and naturally approaches zero in the case
of DNS. In this study, focus is on LES where the sub-grid
scale viscosity is modelled through the the wall-adapting
local eddy-viscosity (WALE) model by Nicoud and Ducros
[29]:

νsgs =
(
CwV

1/3
)2

(
s̄d

ijs̄
d
ij

)3/2(
s̄d

ijs̄
d
ij

)5/2

+
(
s̄d

ijs̄
d
ij

)5/4
, (4)

where:

sd
ij =

1

2

(
ḡ2

ij + ḡ2
ji

)
− 1

3
δijḡ

2
kk, s̄ij =

1

2

(
∂ūi

∂xj
+
∂ūj

∂xi

)
, (5)

gij =
∂ūi

∂xj
, g2

ij = gikgkj (6)

with constant Cw = 0.325 and where V is the local cell
volume. Compared to the Smagorinsky-type models, the
WALE model is more suited for wall-bounded flows, as the
local sub-grid scale eddy-viscosity automatically goes to
zero at the wall. Therefore, no dynamic constant adjusting
or damping functions are needed to correct for walls.

2.2. Governing equations for particles

To model collisions of particles, the soft-sphere discrete
element method (DEM) first proposed by Cundall and
Strack [30] is used to track the translational and angular
velocity throughout the simulations. For the i’th particle
with mass mi, radius ri and mass moment of inertia
Ii = (2/5)mir

2
i , the position xi and angular velocity ωi

are governed by:

mi
d2xi

dt2
= F i,con + F i,fluid (7)

Ii
dωi

dt
= M i,con + M i,roll + M i,fluid (8)

where the F con is a contact force upon collision and F fluid

is the combined fluid force acting on the particle. In the
angular momentum equation, M con is the contact torque
by a tangential off-set between colliding particles, M roll

is the adhesive rolling resistance torque and Mfluid is the
torque caused by interaction with the fluid phase. That is,
using the soft-sphere DEM approach, all the sub-processes
depicted in figure 1 are automatically accounted for by
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the most basic force and torque balances in (7) and (8)
respectively. As a result no additional models are required
to account for agglomeration, break-up, deposition and
re-entrainment. Time is advanced using a velocity Verlet
method [31], which is a second-order explicit method.
When calculating the fluid forces acting on particles,
the fluid velocity is interpolated to the particle centroid
position. When solving the translational motion by (7),
the particles may collide giving rise to contact forces.
Checking for contact between all particles is a computa-
tional expensive task as the number of evaluations scales
with the number of particles np as np(np−1)/2. Therefore,
a list of potential collision partners, which is being updated
every 10∆tDEM throughout the simulation, is used for
collision detection to reduce computational time.

2.3. Fluid forces on particles

The motion of the individual particles is tracked using
a lagrangian approach where the motion of individual
particles is obtained by integrating (7) and (8) in time.
In this study, the dominant fluid forces on the particles
are the drag force and the shear and rotational lift forces.
Gravity effects are neglected and the Brownian motion
force is negligible for the particle size in this study.

For dispersed particles unaffected by the presence of
nearby particles analytical Stokes solution predicts a drag
coefficient CD = 24/Rep. Different approaches exist to
account for particle agglomeration. Using the approach
by Breuer and Almohammed [32] and Sommerfeld and
Stübing [12], each agglomerate is treated as an individual
entity with an appropriate characteristic size, which is
calculated based on the positions of the primary particles
contained in the agglomerate. Using this approach,
Dietzel and Sommerfeld [21] suggests using projected
cross section of the convex hull wrapped around the
agglomerate perpendicular to the flow direction to make
the drag almost independent of agglomerate structure.
However, treating agglomerates as individuals has some
limitations for less adhesive particles where fluid shear
cause agglomerates to break up. In fact, agglomerates may
continuously deform and agglomerates may rupture into a
number of smaller agglomerates [33], which is not straight-
forward to account for when treating agglomerates as
individual entities [17]. In this study, we therefore
track all primary particles by solving (7) and (8), which
allows particles to continuously translate and roll over one
another within an agglomerate. To account for clustering
effects, we use the same approach as Marshall [13], Dizaji
and Marshall [17], Marshall [34] to modify the Stokes drag
as CD = (24/Rep)F , where F = f(Rep, αf). To account
for particle clustering, Hill et al. [19, 20] did numerous
flow-resolving Lattice-Boltzmann simulations of clustered
particles and proposed a correlation to accurately predict
drag at various volume fractions and particle Reynolds
number. In the present study, we use the formulation by
Benyahia et al. [35], which is based on the simulations
by Hill et al. [19, 20], to account for a wider range of

particle volume fractions and particle Reynolds numbers.
In the limit of particles unaffected by the presence of other
particles and low particle Reynolds number, F naturally
approaches 1 so that Stokes drag is recovered. Due to
complexity of these correlations, the reader is referred to
Benyahia et al. [35] for the exact model formulation.

In this study, particles are affected by shear and rota-
tional lift forces. By expressing the lift force in terms of a
lift coefficient as FL = CL(1/8)d2

pρf|u − v|2, the common
Saffman solution [36] for lift due to shear can be recovered
using the lift coefficient in (9) with J∗ = 1 [37]:

CL = J∗ 12.92

π

√
ω∗

Rep
(9)

where ω∗ = |ω|dp/|u − v| is the normalised undisturbed
fluid vorticity at the particle centre. Correlations for J∗ =
f(ε), with ε =

√
ω∗/Rep, are proposed by McLaughlin

[38] in the limit of ε < 0.1 or ε > 20, while Mei [39]
used tabulated values by McLaughlin [38] to propose a
correlation for 0.1 ≤ ε ≤ 20. As shown by Bagchi and
Balachandar [40], the combined lift of shear and rotation
is the sum of a lift forces on a non-rotating particle in
shear flow and a torque-free rotating particle in a uniform
flow, which simply adds an term to (9). We use the
experimental fit proposed by Loth and Dorgan [37], which
is shown in predict experiments with reasonable accuracy
up to Rep < 50.

2.3.1. Contact forces

Due to the small size of the particles of interest, the
van der Waals and electrostatic forces play dominant
roles in the collision process, which ultimately results in
particles agglomerating and depositing at walls. Based on
properties and size of the particles, particle deformation
in contact region upon collision may be important in
the description of the adhesive force. In this study,
the adhesive force is accounted for using the theory by
Johnson-Kendall-Roberts (JKR) Johnson et al. [41], which

is suitable for particles with λT =
(
4Rγ2/(E2D3

min)
)1/3

>
3 [42], where γ is the surface energy density, defining half
the energy required to separate two particles in contact
and Dmin is the minimum separation distance between
two particles, which is commonly assumed to be 1.65 Å
[43, 44].

Using the JKR model, the normal contact force upon
collision is balanced by a spring force F spring,n, an adhesive
force F jkr,n and a damping force F damp,n:

F spring,n = −4E

3R
a3n (10)

F jkr,n = 4
√
πγEa3n (11)

where the effective Young’s modulus E and effective
radius R are given by:

1

E
=

1− ν2
i

Ei
+

1− ν2
j

Ej
,

1

R
=

1

ri
+

1

rj
(12)
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and the contact radius a is the radius of contact area. In
equilibrium state where F spring, + F jkr,n = 0, the contact
radius is a = (9πγR2/E)1/3 = a0. When using DEM,
the overlap distance δn between particle i and j with
positions xi and xj is calculated as δn = ri + rj− |xi−xj|.
For collisions following JKR theory, the relation between
normal overlap δn and contact radius a is given by [44, 45]:

a4 − 2Rδna
2 − 4πγ

E
R2a+R2δ2

n = 0 (13)

which in this study is solved using the analytical solution
derived by Parteli et al. [44]. Furthermore, the collision
is damped by a normal damping force F damp,n causing
kinetic energy to be dissipated upon impact:

F damp,n = −2

√
5

6
β
√
Snmvn (14)

with effective massm−1 = m−1
i +m−1

j , vn denoting the rel-
ative normal velocity, β accounting for the kinetic energy
lost upon impact through the coefficient of restitution e
and Sn taking the properties of the particles into account:

β =
ln (e)√

ln2 (e) + π2

(15)

Sn = 2E
√
Rδn (16)

where e is material property. Due relatively low collision
velocities, plastic deformation of particle material is not
expected to be important. In the tangential direction, the
spring force is given by:

F spring,t = −St∆st (17)

where ∆st is the tangential overlap and St takes particle
properties into account through St = 8G

√
Rδn with

effective shear modulus G:

1

G
=

2− νi

Gi
+

2− νj

Gj
(18)

Like in the normal direction, energy is dissipated in the
tangential direction, described by a tangential damping
force:

F damp,t = −2

√
5

6
β
√
Stmvt (19)

where vt is the tangential relative velocity. As suggested
by Thornton [46], Thornton and Yin [47], the total
tangential force is in the case of JKR adhesion truncated
to fulfil |F con,t| ≤ µs |FN + 2FC| with µs and FC being the
sliding friction coefficient and the critical force required to
separated agglomerated particles respectively.

2.3.2. Contact torques

In the case of adhesive particles, the formation of
agglomerates and motion of particles on a surface tend

to be dominated by particles rolling while particles sliding
and twisting play negligible roles due to the small particle
inertia [48, 49]. As a consequence of the deformed contact
region described through JKR theory, the rolling motion
differs from that of non-adhesive particles.

In the case of adhesive forces in the contact region
between two particles or a particle and a wall, the point of
contact stays behind the centre of mass projected onto the
surface, which results in a torque opposing motion. This
rolling resistance torque acts to obtain the equilibrium
condition where the projected centre of mass and centre
of contact are coincident. The rolling resistance torque
is commonly described as proportional to the rolling
displacement ξ, which is found by integrating the rolling
velocity vr:

ξ =

(∫ t1

t0

vr(t)dt

)
· tr (20)

where tr = vr/|vr is the direction of rolling. Based on the
instantaneous rolling displacement ξ, the rolling resistance
torque opposing motion is given by [50, 51]:

Mr =

{
krξ if ξ < ξcrit

krξcrit if ξ ≥ ξcrit

(21)

where the rolling stiffness is given by kr = 4FC (a/a0)
3/2

.
When the particle is rolled a distance longer than a critical
rolling displacement ξcrit, the particle material slips and a
new equilibrium contact region is found. The studies by
Dominik and Tielens [50, 51] suggests that after rolling
displacement reaches a critical value ξcrit, the rolling
resistance torque is constant. Based on experiments, Krijt
et al. [52] suggests this critical rolling displacement to be
linked to the equilibrium contact radius a0 and a material
dependent adhesion hysteresis parameter ∆γ/γ through:

ξcrit =
a0

12

∆γ

γ
(22)

A value ∆γ/γ = 0.5 representing a typical value [52] is
used throughout this study.

2.4. Non-dimensional groups

The results are reported based on a set of non-
dimensional groups that govern different aspects of
particle transport, particle collision and subsequently the
agglomeration and deposition processes.

The numbers governing the transport of particles
are the Reynolds number Re = U ·D/ν, the
dimensionless particle size ε = dp/D, the particle
to fluid density ratio χ = ρp/ρf, the integral time
scale Stokes number StmathcalL = τp/τL (or
Ste = ρpd

2
pU/(18µD) = χε2Re/18 in terms of eddy

turn over time τe = D/U) and the particle volume
fraction defining the volume occupied by particles in the

fluid domain φ =
N∑
n=1

Vp/(
N∑
n=1

Vp + Vf).
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Likewise, the collision and agglomeration processes are
governed by a set of non-dimensional groups. The stiffness
of a common collision is described by making the effective
Young’s modulus dimensionless using the particle density,
bulk velocity and particle density forming λ = E/(ρpU

2).
Likewise, to describe the sticking behaviour upon impact,
the surface energy density, describing the strength of the
adhesive force, is made non-dimensional by the particle
density, bulk velocity and particle diameter, forming
Ad = γ/(ρpU

2dp).
Due to stiffness of most common materials, the time

step size required to resolve particle collisions is typically
in the order of nano seconds. A common approach to
deal with the low time step sizes is to reduce the particle
stiffness several orders of magnitude making collisions take
place over longer time periods. For non-adhesive particles
colliding without any plastic deformation, the rebound
velocity is solely a function of velocity before collision
and the coefficient of restitution. However, for collisions
involving adhesive particles, the reduced particle stiffness
has to be balanced by a reduction in adhesive inter-
molecular force so that the collision outcome remains the
same. In this study, the high particle stiffness is reduced by
decreasing the effective Young’s modulus while modifying
the surface energy density as:

γmod = γ

(
Emod

E

)2/5

(23)

or in terms of the dimensionless elasticity parameter λ and
adhesiveness parameter Ad:

Admod = Ad

(
λmod

λ

)2/5

(24)

which is shown by Hærvig et al. [16] to make the collision
outcome independent of a reduction in Young’s modulus.
For particles colliding in a viscous fluid, the fluid being
forced away in the contact prior to collision may have
a non-negligible effect on the rebound velocity. This
importance of this effect is described through the collision
Stokes number St∗ = (mp + CMmf) v/(6πµrp), where
CM = 0.5 is the added mass coefficient for spheres and v
denotes the velocity before being affected by the surface.
For solid particles colliding with St∗ < 10, Gondret et al.
[53, 54], Legendre et al. [55] suggest all energy to be
dissipated while this effect become almost negligible for
St∗ > 103.

3. Results and validation

3.1. Fluid domain and discretisation

To make the results independent of stream-wise bound-
aries, the fluid domain is made periodic with a length
longer than the elongated coherent turbulence structures
in the boundary layer extending around L+

x ≈ 1000 [56].
In this study, a domain length of L/D = 4, corresponding

Figure 2: Mesh topology visualised by a quarter of the cross-sectional
plane.

Table 1: Details of the three different meshes with θ, r and x denoting
circumferential, radial and axial directions respectively. The mesh
topology is shown in figure 2.

Resolution (Nθ,Nr,Nx) ∆θ+
max ∆x+

max

Coarse (160,90,160) 12 15
Medium (200,110,200) 10 12.5
Fine (240,140,240) 8 10

to L+
x ≈ 2500 in viscous units, is chosen to make sure

no coherent structures extend throughout the domain.
Thus, the turbulence statistics are not affected by the size
of the computational domain. A quarter of the cross-
sectional mesh topology is shown in figure 2. As the
agglomeration formation process takes place over stream-
wise distances significantly longer than L/D = 4, the DEM
domain is made periodic as well. In that way, the overall
particle volume fraction φ stays constant throughout the
simulation. This approach gives detailed information on
the mechanisms governing agglomeration and deposition
and how changes in fluid/particle properties affect early
stages of agglomeration and deposition. Later stages of
the deposition process where bridges and layers of multiple
particles form, see figure 1, would require particles to be
added throughout the simulation or a significantly higher
initial particle concentration, which would alter the early
stages of agglomeration and deposition processes.

3.2. Validation of flow field

To validate the statistics of the flow field without
particles added, the boundary layer velocity profile is
compared for the different meshes listed in table 1. The
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Figure 3: Time-averaged turbulent boundary layer velocity profile
for Re = UD/ν = 10, 000 for different mesh resolutions, see table
1: ( ) Coarse resolution LES; ( ) Medium resolution LES;
( ) Fine resolution LES; ( ) Viscous sub-layer with U+

x =
r+ and log-law layer with U+

x = 2.5 ln(r+) + 5.5; Experiment for
Re = 10, 000 by den Toonder and Nieuwstadt [57].

various grid resolutions are compared to both experiments
by den Toonder and Nieuwstadt [57] and boundary layer
theory. The time-averaged flow field is found by av-
eraging over a time period of t+ = t · U/D = 400 after
which the mean flow field statistics are found to be
independent of time. Figure 3 shows how the numeri-
cal simulations compare to boundary layer theory and
experiments at Re = 10, 000. As seen in figure 3, the
more resolving LES simulations approach the experiment
by den Toonder and Nieuwstadt [57].

3.3. Simulation Parameters

Particles with diameter ε = dp/D = 5 · 10−3 are
transported in a turbulent pipe flow with Re = U ·D/ν =
10, 000.Variations in particles response time are introduced
by changes in particle density. The particle response time
is commonly made non-dimensional by either integral time
scale of the turbulence τL, which gives a measure of the
largest eddies being resolved, the Kolmogorov time scale τη
or the large eddy turn over time τe = D/U . In this study,
the results are reported based on the integral time scale
of the flow and eddy turn over time forming StL = τp/τL
and Ste = τp/τe respectively. The integral time scale of
the turbulence is found by [58]:

τL =

∫ s0

0

ρ(s)ds (25)

where the normalised auto-correlation coefficient ρ(s) =
〈ux(t)ux(t+ s)〉 /

〈
ux(t)2

〉
is found for the stream-wise

velocity signal at the centre-line of the pipe, see figure
4. Instead of integrating to infinity in equation (25), we
choose to integrate to s0 to avoid any slight periodicity
of the turbulent field extending throughout the periodic
domain with a finite length L = 4D that may artifi-
cially overestimate the integral time scale [59], such as
observed by the peak at sU/D ≈ 3.3 in figure 4. The
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Figure 4: Auto-correlation of the stream-wise velocity signal sampled
at the centre-line of the pipe ρ(s) = 〈ux(t)ux(t+ s)〉 /

〈
ux(t)2

〉
.

Stokes number based on the large eddy turn over time
Ste = τp/τe = ρpd

2
pU/(18µD) can be re-written in terms of

Re, ε and density ratio χ = ρp/ρf as Ste = χε2Re/18. The
particles are affected by an inter-particle adhesive force
characterised by a surface energy density γ and develop a
slightly flattened contact region upon collision as predicted
by JKR theory. The particle adhesiveness is characterised
by the adhesiveness parameter Ad = γ/(ρpU

2dp), which
in the limit of Ad = 0 corresponds to non-adhesive
particles. For particles in contact, the adhesive force
is balanced by the repulsive Hertzian force characterised
by the effective Young’s modulus E, which describes the
particle stiffness. The particle stiffness is non-dimensional
using the elasticity parameter λ = E/(ρpU

2) and the
damping upon collision by the coefficient of restitution
e, which describes the ratio of relative velocity after
and before impact in case of non-adhesive particles, e.g.
Ad = 0. When Ad > 0, the adhesive force acts to
dissipate energy upon collision so that eeff < e, which in
the limit when particles stay adhered upon contact results
in eeff = 0.

The particles are initially placed randomly throughout
the turbulent flow so that no particles are in contact at
t+ = 0. Instead of using a more or less sophisticated
approach to prescribe the initial velocity of particles, the
particles are inserted with zero velocity in the present
study. A constant particle volume fraction φ = 10−3

corresponding to np ≈ 50000 is used in all simulations.

Using the soft-sphere DEM approach, the collision
processes are resolved directly using (7). To resolve
collisions that typically takes place over time intervals of
microseconds, a time step size in the order of nano seconds
is typically needed. As the turbulent flow modelled using
LES can be resolved using a time step size, which is several
orders of magnitude higher, the particles and fluid phases
are advanced using two different time step sizes. The
fluid time step size is determined so that the maximum
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cell convective Courant number is 0.5, corresponding to
a time scale ratio of the characteristic fluid time scale
and fluid time step size D/(U∆tCFD) = 160. The
particulate DEM phase is advanced using a time step size
∆tCFD/∆tDEM = 500, which is shown by simple binary
collisions to be sufficient to resolve collisions so that the
collision outcome is unaffected by the time step size.

3.4. Overview of simulations

The following gives an overview of the different simu-
lations carried out in the present study. The simulation
parameters are summarised in terms of non-dimensional
numbers in table 2.

Simulation no. 1–21. Depending on the Stokes number,
the particles will be affected by different turbulence scales.
As the Stokes number approaches zero, the particles will be
affected by increasingly smaller eddies. In this study where
LES is used, it is important that particles are unaffected
by the eddies not being resolved. Therefore, simulations
with varying Stokes number Ste = 0.4 · 2x (StL = 2.9 · 2x),
x = 0 . . 6 and carried out using the three meshes listed in
table 1.

Simulation no. 22–28. As already mentioned, the agglom-
eration processes considered in this study have elasticity
parameter λ ≈ 500 ·103. Using this value, particle-particle
and particle-wall collisions happen over time intervals in
the order of nano seconds. To reduce computational time,
a modified elasticity parameter is introduced: λmod =
λ · 0.001 = 500. By reducing the elasticity parameter,
the particles behave more adhesive. Therefore, to ensure
the collision outcome stays independent of reduction in
elasticity parameter, the criterion in (24) is used to
reduce the adhesiveness parameter so that Admod =
0.08 · 0.0012/5 = 0.005. However, as noted in the study,
introducing a lower adhesiveness parameter also reduces
the critical force FC = 3πRγ required to separate two
agglomerated particles. Therefore, simulations 22–28 are
carried out with λmod = λ/100 instead of λmod = λ/1000
to ensure the agglomeration rate is in fact independent of
a reduction in elasticity and adhesiveness parameter.

Simulation no. 29–35. The purpose of simulation 29–35
is to investigate the transition from particles being almost
non-adhesive to particles being highly adhesive. For this
purpose, the adhesive parameter is varied in the range
0.001 to 0.064 at a constant Stokes number Ste = 1 or in
terms of integral time scale StL = 7.3 (simulations 29–35)

Simulation no. 36–42. These simulations are carried out
for non-adhesive particles (e.g. Ad = 0) over the full range
of Stokes numbers considered in this study.
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Figure 5: Particle number density in different radial sections of the
pipe normalised by the average number density in the different radial
section of the pipe Cr/C for non-adhesive particles with Ad = 0 at
time t+ = tU/D = 100, see simulation no. 36–42 in table 2 for
simulation parameters: (a) Ste = 0.8, StL = 5.8; (b) Ste = 1.6,
StL = 11.6; (c) Ste = 3.2, StL = 23.2; (d) Ste = 6.4, StL = 46.4; (e)
Ste = 12.8, StL = 92.8; (f) Ste = 25.6, StL = 185.6.

3.5. Non-adhesive particles

Figure 5 shows how non-adhesive particles tend to
gather in different radial sections of the pipe based on
their response times. Figure 5 shows how changes in
particle response time cause particles to accumulate in
different radial section of the fully-developed turbulent
pipe flow. For all particle response times, there is a peak
in particle concentration in the outermost section of the
pipe close to the wall at 0.9 < r/R < 1. For either
low or high particle response times, the particles attain
a uniform concentration profile throughout the pipe. At
an intermediate particle response time of Ste = 6.4, the
particle concentration increases towards the centre of the
pipe. Figure 6(a) to 6(c) show how changes in Stokes
number from Ste = 0.8 to Ste = 6.4 and Ste = 25.6 affect
preferential clustering of particles.

3.6. Effect of sub-grid scale turbulence eddies on particle
agglomeration

As the smallest eddy scales are modelled by a sgs-
model, it is important that these unresolved scales do
not affect particle motion and subsequently agglomeration
and deposition. Ultimately, as particles with sufficiently
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Table 2: Details on the simulations in terms of non-dimensional groups: Flow Reynolds number Re = U ·D/ν, particle size ε = dp/D, Eddy
turn over time (τe = D/U) Stokes number Ste = τp/τe = χε2Re/18, Integral time scale Stokes number StL = τp/τL, elasticity parameter
λ = E/(ρpU2), adhesiveness parameter Ad = γ/(ρpU2dp), coefficient of restitution e, particle volume fraction φ and LES resolution (see
table 1). The integer x is used to describe a range of simulation parameters.

No. x Re ε Ste StL λ Ad e φ LES res.
1–7 0 . . 6 104 0.005 0.4 · 2x 2.9 · 2x 500 0.05 0.3 10−3 Coarse
8–14 0 . . 6 104 0.005 0.4 · 2x 2.9 · 2x 500 0.05 0.3 10−3 Medium
15–21 0 . . 6 104 0.005 0.4 · 2x 2.9 · 2x 500 0.05 0.3 10−3 Fine

22–28 0 . . 6 104 0.005 0.4 · 2x 2.9 · 2x 5000 0.05 · 102/5 0.3 10−3 Medium
29–35 0 . . 6 104 0.005 1 7.3 500 0.001 · 2x 0.3 10−3 Medium
36–42 0 . . 6 104 0.005 0.4 · 2x 2.9 · 2x 500 0 0.3 10−3 Medium

(a)

(b)

(c)

Figure 6: Overview of transport of non-adhesive particles (e.g. Ad = 0) at time t+ = tU/D = 100: (a) Ste = 0.8, StL = 5.8; (b) Ste = 6.4,
StL = 46.4; (c) Ste = 25.6, StL = 185.6. For simulation properties see simulation no. 23, 26 and 28 in table 2 respectively. The particles
are coloured according to their instantaneous velocity magnitude. The reader is referred to the online version of this article for a better
interpretation.

low response time, e.g. tracer particles, would respond to
all turbulence scales, a DNS solution would be required
in this case. However, as pointed out by Armenio et al.
[60], particles with finite mass do not respond to smaller
turbulence scales, suggesting LES to be an appreciate
method to investigate particles interactions in a turbulent
flow. Figure 7 shows how changes in mesh resolution
affect the average number of particles per agglomerate.
Due to finite response times of the particles considered,
the grid independence analysis is carried out for a wide
of particle Stokes numbers. As the figure shows, results
obtained for particles with Ste = O(10) are only slightly
affected by changes in mesh resolution. This suggests
these particles to be less affected by the smaller eddies

not being resolved by the coarsest mesh. For the most
responsive particles with Ste = 0.4, there is a slightly more
pronounced difference between the coarse and the finer
meshes, suggesting the particles with Ste = 0.4 to respond
to the eddies not being resolved by the coarsest mesh.
Due to the minor differences between the medium and
fine resolution meshes, the medium resolution mesh from
table 1 is used throughout this study.

3.7. Effect of introducing softer particles

In the present study, the particle elasticity parameter
is reduced by a factor 1000 from a realistic value of
λ = 500 · 103 to λmod = 500 to decrease computational
time. As the stiffness is reduced, the particles overlap
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Figure 7: Effect of changes in mesh resolution, see table 1, and Stokes
number on particle agglomeration visualised by the average number
of particles per agglomerate. See simulation no. 1–21 in table 2
for simulation parameters: ( ) Coarse resolution LES; ( )
Medium resolution LES; ( ) Fine resolution LES.

slightly more upon impact, which allows for an increased
particle time step size. In order for the collision out-
come (sticking/rebounding) to remain the same despite
a reduced particle stiffness, the particle adhesiveness is
modified using the criterion given in (24). Using this
criterion, the modified collision duration tcol,mod scales

as ∆tcol,mod = ∆tcol (λ/λmod)
2/5

[16]. To ensure that the
agglomeration process is in fact independent of the change
in elasticity parameter, an additional set of simulations
with λ = 5000 is carried out and compared to λ =
500. Figure 8 shows average number of particles per
agglomerate as function of time and at various Stokes
numbers for λ1 = 500 and λ2 = 5000 with adhesiveness
parameters Ad1 = 0.05 and Ad2 = Ad1(λ2/λ1)2/5. As
figure 8 shows, the agglomeration process is in fact almost
independent of a change in elasticity parameter from λ =
500 to λ = 5000 when reducing the adhesiveness parameter
by (24) for particles with Stokes numbers in the range
Ste = 0.4 to Ste = 25.6.

3.8. Effect of particle Stokes number on agglomeration and
deposition

As already shown in figure 7, the Stokes number
significantly affects the agglomeration behaviour in terms
of average number of particles per agglomerate, which can
be directly linked to a change in collision mechanism. The
most responsive particles with Ste � 1 approach tracer
particles and closely follow fluid stream lines. As a result,
particles collide due to their finite size while following
neighbouring stream lines. The less response particles
with Ste < 1 are only slightly affected by the fluctuating
flow and mainly follow the average flow. Figure 9(a) to
9(c) gives an visual overview of how changes in Stokes
number from Ste = 0.8 to Ste = 6.4 and Ste = 25.6
affect the agglomeration and deposition processes. As
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Figure 8: Effect of introducing softer particles with a reduced
elasticity parameter when using the criterion in (24). Contours
show particle agglomeration rate visualised by the average number of
particles per agglomerate for particle elasticity parameters λ = 500
and λ = 5000. See simulation no. 8–14 and 22–28 in table 2
for simulation parameters: ( ) λ1 = 500, Ad1 = 0.05; ( )

λ2 = 5000, Ad2 = Ad1 · (λ2/λ1)2/5.

figure 9 shows, the agglomeration process is highly affected
by the Stokes number with the largest agglomerates
being formed at moderate Stokes numbers, see figure
9(b). This is in agreement with the results in figure 7
showing that at either lower or higher Stokes numbers
the average number of particles per agglomerate decreases
significantly. Figure 10 shows the fraction of particles
contained in agglomerates at various Stokes numbers. As
the figure shows, the fraction of particles contained in
agglomerates at t+ = 100 is almost independent of a
change in Stokes numbers for lower Stokes numbers. For
higher Stokes numbers, e.g. Ste > 6.4 (StL > 46.4),
the fraction of particles contained in agglomerates is
highly dependent on the Stokes number, where higher
Stokes numbers result in a lower fraction of agglomerated
particles. This can be explained by a decrease in collision
rate for higher Stokes numbers. Furthermore, studies such
as Zhao et al. [61] suggest the slip velocity between fluid
and particles and therefore only variations in drag force
to generally increase with the Stokes numbers, which may
explain why only smaller agglomerates are found for higher
Stokes numbers as higher variations in drag force may
cause agglomerates to break up again.

Furthermore, as depicted visually in figure 9, the ra-
dial agglomerate number density varies with the Stokes
number. Figures 11(a) to 11(d) show spatial variations
of agglomerate number density in different radial sections
of the pipe Cr normalised by the average agglomerate
number density for the radial sections C for a low Stokes
number Ste = 0.8 at times t+ = 25, t+ = 50, t+ = 75
and t+ = 100. For all times the agglomerate number
density is highest in the outer section near the wall, where
particles stick to the wall and agglomerate. As seen in
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(a)

(b)

(c)

Figure 9: Agglomerating and depositing behaviour at time t+ = tU/D = 100: (a) Ste = 0.8, StL = 5.8; (b) Ste = 6.4, StL = 46.4; (c)
Ste = 25.6, StL = 185.6. For simulation properties see simulation no. 9, 12 and 14 in table 2 respectively. The particles are coloured
according to their instantaneous velocity magnitude. The reader is referred to the online version of this article for a better interpretation.
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Figure 10: Fraction of particles contained in agglomerates at various
Stokes numbers as function of simulation time. See simulation no.
8–14 in table 2 for simulation parameters.

figure 11(a) for t+ = 25, there is a slight increase in
agglomerate number density towards the centre of the
pipe. At times t+ = 50, t+ = 75 and t+ = 100, the
agglomerate number density profile is almost constant
away from the wall, while the number of agglomerates
near the wall continues to increase. Figure 12 show spatial
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Figure 11: Agglomerate number density in different radial sections
of the pipe normalised by the average agglomerate number density
in the different radial section of the pipe Cr/C at Stokes number
Ste = 0.8 (StL = 5.8), see simulation no. 9 in table 2 for simulation
parameters: (a) t+ = tU/D = 25; (b) t+ = tU/D = 50; (c) t+ =
tU/D = 75; (d) t+ = tU/D = 100.

agglomerate number densities for particles with St = 6.4
(StL > 46.4). At a slightly higher Stokes number Ste =
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Figure 12: Agglomerate number density in different radial sections
of the pipe normalised by the average agglomerate number density
in the different radial section of the pipe Cr/C at Stokes number
St = 6.4 (StL > 46.4), see simulation no. 12 in table 2 for simulation
parameters: (a) t+ = tU/D = 25; (b) t+ = tU/D = 50; (c) t+ =
tU/D = 75; (d) t+ = tU/D = 100.

6.4 (StL = 46.4), there is a more distinct agglomerate
clustering in the centre of the pipe. As opposed to the
agglomeration process for the more responsive particles in
figure 11, significantly less agglomerates are found in the
section near the wall. As already shown in figure 7 the
average agglomerate size is highest for intermediate Stokes
numbers Ste ≈ 6.4 (StL ≈ 46.4), which effectively traps
particles in larger agglomerates. As agglomerates increase
in size, the effective response time increase so that shear
lift force effectively cause agglomerates to drift towards
the centre of the pipe. Figure 13(a) to 13(d) show spatial
agglomerate number densities for less response particles
with Ste = 25.6 (StL = 185.6). As shown in figure 13(a)
for t+ = 25 the agglomerate number density is highest
in the centre of the pipe suggesting the agglomerates to
primarily start forming here. At t+ = 50, t+ = 75 and
t+ = 100 the highest agglomerate number densities are
found near the wall, where particles stick to the surface.

3.9. Effect of particle adhesiveness on agglomeration

The particle adhesiveness is varied through the surface
energy density γ, resulting in adhesiveness parameters in
the range Ad = 0.001 to Ad = 0.064 (see simulation no.
22–28). This range covers particles that are unaffected
by adhesive forces to highly adhesive particles. Figure
14(a) to 14(c) gives an visual overview of how changes
in adhesiveness parameter from Ad = 0.016 to Ad = 0.032
and Ad = 0.064 affect the agglomeration process for
particles with St = 1 (StL = 7.3) after t+ = 100. As shown
in figure 14(a) the less adhesive particles with Ad = 0.016
only form smaller agglomerates that are generally located
towards the centre of the pipe. The more adhesive particles
with Ad = 0.032 and Ad = 0.064 in figure 14(b) and
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Figure 13: Agglomerate number density in different radial section
of the pipe normalised by the average agglomerate number density
in the different radial section of the pipe Cr/C at Stokes number
Ste = 25.6 (StL = 185.6), see simulation no. 14 in table 2 for
simulation parameters: (a) t+ = tU/D = 25; (b) t+ = tU/D = 50;
(c) t+ = tU/D = 75; (d) t+ = tU/D = 100.

14(c) form larger agglomerates and the strength of the
adhesive force is sufficient to deposit particles on the wall.
Figure 15 shows how the fraction of particles contained
in agglomerate varies with adhesiveness parameter for
particles with Ste = 1 (StL = 7.3). As shown in figure 15,
the variations in adhesiveness parameter greatly affect the
fraction of particles being trapped in agglomerates. For
all the cases, the agglomeration process attains a steady-
state, where the agglomeration rate equals the break-
up rate so that the fraction of particles agglomerated is
independent of simulation time after t+ ≈ 80. After
t+ ≈ 80 the fraction of particles contained in agglomerates
range from below 0.03 to above 0.7 for the most adhesive
particles. As the elastic collisions are fully-resolved
over numerous time steps using the soft-sphere DEM
approach in the present study, even non-adhesive particles
(simulation no. 36–42) with Ad = 0 resulting in a small
but finite fraction of particles contained in agglomerated.
For the non-adhesive particles, the fraction of particles
agglomerated is below 0.003. Figure 16 shows how changes
in adhesiveness parameter affects the average number of
particles contained in agglomerates for particles with St =
1 (StL = 7.3). Figure 16 shows how the adhesiveness
parameter greatly affects the size of the agglomerates being
formed in the flow. For all cases the average number of
particles contained in agglomerates remains constant in
time after t+ ≈ 90. That is, the strength of the adhesive
force is insufficient to keep the particles agglomerated
so that the larger agglomerates break up into smaller
agglomerates either due to collisions with other particles
or due to shear in the flow field. Figure 17 shows how
an increase in adhesiveness parameter from Ad = 0.002 to
Ad = 0.064 affects the local agglomerate number density
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(a)

(b)

(c)

Figure 14: Overview of agglomerating behaviour of particles with Ste = 1 (StL = 7.3) with different adhesiveness parameters at time
t+ = tU/D = 100: (a) Ad = 0.016; (b) Ad = 0.032; (c) Ad = 0.064. For simulation properties see simulation no. 26, 27 and 28 in table 2
respectively. The particles are coloured according to their instantaneous velocity magnitude. The reader is referred to the online version of
this article for a better interpretation.
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Figure 15: Fraction of particles contained in agglomerates at
various adhesiveness parameters as function of simulation time. See
simulation no. 29–35 in table 2 for simulation parameters.

in the different sections of the pipe. Based on the results
in figure 17(a) to 17(f), we observe three different regimes.
For the weakly adhesive particles with Ad = 0.002 in figure
17(a), the particles tend to collect close to the centre of
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Figure 16: Average number of particles per agglomerate at various
adhesiveness parameters Ad = γ/(ρpU2dp) as function of simulation
time for particles with Ste = 1 (StL = 7.3). See simulation no. 29–35
in table 2 for simulation parameters.

the pipe with maximum at 0.2 < r/R < 0.3 without any
peak at agglomerate number density at the wall suggesting
no particles to deposit at the wall. For intermediate
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Figure 17: Agglomerate number density in different radial sections
of the pipe normalised by the average agglomerate number density in
the different radial section of the pipe Cr/C at varying adhesiveness
parameter for particles with St = 1 (StL = 7.3) at time t+ = tU/D =
100, see simulation no. 30–35 in table 2 for simulation parameters:
(a) Ad = 0.002; (b) Ad = 0.004; (c) Ad = 0.008; (d) Ad = 0.016; (e)
Ad = 0.032; (f) Ad = 0.064.

adhesiveness parameters (Ad = 0.016), the agglomerate
number density is almost uniform throughout the pipe and
for high adhesiveness parameters the is a high number of
agglomerates found in the outermost section near the wall
where they deposit.

4. Conclusions and discussion

Numerical experiments of how particles agglomerate and
deposit in turbulent pipe flows due to van der Waals
and electrostatic forces are presented. In this study, we
two-way couple Large Eddy Simulations (LES) with the
soft-sphere Discrete Element Method (DEM) to fully-
resolve the adhesive particle-particle and particle-wall
collisions to investigate the early stages of agglomeration
and deposition up to t+ = 100.

We report agglomeration and deposition characteristics
over a wide range of particle response times and adhe-
siveness. By varying the Stokes number based on eddy
turn over time D/U from Ste = 0.4 to Ste = 25.6
(StL = 2.9 to StL = 185.6 in terms of integral time
scale), the results show how the average particles per
agglomerate is highest for particles with an intermediate
Stokes number Ste ≈ 6.4 (StL = 46.4), while the total

fraction of particles contained in agglomerates is almost
constant up to Ste ≈ 6.4 (StL = 46.4) after which the
fraction of particles in contained in agglomerates decreases
rapidly. The results show how more responsive particle
Ste = 0.8 (StL = 5.8) tend to form agglomerates that are
uniformly distributed throughout the flow field with a peak
at the wall where particles deposit. At intermediate Stokes
numbers Ste = 6.4 (StL = 46.4), we observe a distinct
increase in agglomerate number density towards the centre
of the pipe. For the even less response particles with
Ste = 25.6 (StL = 185.6) we observe the same behaviour.
We attribute this behaviour this behaviour to the Saffman
shear lift force, which dominate their radial motion causing
less responsive particles and agglomerates to move towards
the centre of the pipe.

Last, we report how the transition from almost non-
adhesive particles to highly adhesive particles affects the
the agglomerating and depositing behaviour. For this
purpose, we vary the adhesiveness parameter Ad =
γ/(ρpU

2dp) from 0.001 to 0.064. For the less adhesive
particles less than 3 % of the particles are contained in
agglomerates, while at higher adhesiveness particles more
than 70 % of the particles are captured in agglomerates.
While varying the adhesiveness of the particles we observe
three distinct regimes. For almost non-adhesive particles,
agglomerates tend to collect towards the centre of the
pipe with a peak at 0.2 < r/R < 0.3. For particles
with intermediate adhesiveness we observe a uniform
agglomerate number density through the flow field. For
highly adhesive particles, we observe the same almost
uniform agglomerate number density throughout the flow
field but also a local accumulation of agglomerates being
deposited on the wall.

Future studies could focus on later stages of agglomer-
ation and deposition where more or less complex, porous
structures form such as the dendritic structures shown in
figure 1. To model these later stages of the deposition
process more particles would have to be added throughout
the simulation.
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ert, T. Pöschel, Attractive particle interaction forces and
packing density of fine glass powders, Nature Scientific Reports
4 (2014) 1–7, DOI: http://doi.org/10.1038/srep06227.

[45] X. Deng, J. V. Scicolone, R. N. Davé, Discrete element method
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Nomenclature

Ad = γ/(ρpU2dp) Adhesiveness parameter -
C Agglomerate number density 1/m3

Fr = U/
√
grdp Froude number -

D Pipe diameter m
dp Particle diameter m
gr = (1− 1/χ)g Buoyancy corrected gravity m/s2

Kn = λ/dp Knudsen number -
L Length of periodic pipe section m
n Number
p Pressure Pa
R Effective particle radius m
R Pipe radius m
r Particle radius m
r Radial coordinate m
s Time lag s
t Time s
t+ = tU/D Dimensionless time -
U Fluid bulk velocity m/s
V Cell volume m3

Re = UD/ν Reynolds number -
Ste = τp/τe Eddy turn-over time -

Stokes number
StL = τp/τL Turbulence integral time scale -

Stokes number

Greek letters
δ Kroneckers delta -
δt Time step size s
∆ Cell length m
∆γ/γ Adhesion hysteresis parameter -
ε = dp/D Dimensionless particle diameter -
λ = E/(ρpU2) Elasticity parameter -
λ Mean free molecular path m
µ Dynamic viscosity kg/(m·s)
ρ Density kg/m3

ρ(s) Normalised auto-correlation -
coefficient

τ Response time s
φ Particle volume fraction -
χ = ρp/ρf Density ratio -
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Subscripts
agg Agglomerate
f Fluid
i,j particle indices
mod Stiffness-modified values
p Particle
x, y, z Spatial coordinates

Superscripts
− Filtered values
+ Viscous units

Acronyms
sgs Sub-grid scale
CFD Computational Fluid Dynamics
DEM Discrete Element Method
DNS Direct Numerical Simulation
LES Large Eddy Simulation
WALE Wall-Adapting Local Eddy-viscosity
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