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Abstract
Metabolomic approaches in prospective cohorts may offer a unique snapshot into early metabolic perturbations that are

associated with a higher risk of cardiovascular diseases (CVD) in healthy people. We investigated the association of 105

serum metabolites, including acylcarnitines, amino acids, phospholipids and hexose, with risk of myocardial infarction

(MI) and ischemic stroke in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548

adults) and Heidelberg (25,540 adults) cohorts. Using case-cohort designs, we measured metabolites among individuals

who were free of CVD and diabetes at blood draw but developed MI (n = 204 and n = 228) or stroke (n = 147 and

n = 121) during follow-up (mean, 7.8 and 7.3 years) and among randomly drawn subcohorts (n = 2214 and n = 770). We

used Cox regression analysis and combined results using meta-analysis. Independent of classical CVD risk factors, ten

metabolites were associated with risk of MI in both cohorts, including sphingomyelins, diacyl-phosphatidylcholines and

acyl-alkyl-phosphatidylcholines with pooled relative risks in the range of 1.21–1.40 per one standard deviation increase in

metabolite concentrations. The metabolites showed positive correlations with total- and LDL-cholesterol (r ranged from

0.13 to 0.57). When additionally adjusting for total-, LDL- and HDL-cholesterol, triglycerides and C-reactive protein, acyl-

alkyl-phosphatidylcholine C36:3 and diacyl-phosphatidylcholines C38:3 and C40:4 remained associated with risk of MI.

When added to classical CVD risk models these metabolites further improved CVD prediction (c-statistics increased from

0.8365 to 0.8384 in EPIC-Potsdam and from 0.8344 to 0.8378 in EPIC-Heidelberg). None of the metabolites was con-

sistently associated with stroke risk. Alterations in sphingomyelin and phosphatidylcholine metabolism, and particularly

metabolites of the arachidonic acid pathway are independently associated with risk of MI in healthy adults.

Keywords Metabolomics � Myocardial infarction � Stroke � Biomarker � Prospective cohort study

Introduction

A better understanding of the pathophysiological mecha-

nisms preceding the onset of cardiovascular disease (CVD)

events is crucial for development of preventive strategies

and treatment options. Thereby, particularly early meta-

bolic alterations that already occur in healthy individuals

may be identified as targets for measures to delay or pre-

vent disease onset. Metabolomic approaches that simulta-

neously measure substrates, intermediate- and end-

products of metabolism offer a unique snapshot of meta-

bolic perturbations that may be involved in the develop-

ment of CVD [1, 2]. In this context, circulating metabolite

concentrations may be altered years before the onset of

CVD events.

Previous prospective metabolomic studies have identi-

fied a number of metabolites linked to risk of CVD

recurrence or death in patient cohorts, as well as CVD risk

in high-risk populations [3–5]. They reported an altered
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metabolism of acylcarnitines, ketone-related metabolites,

fatty acids, choline and its phospholipids in CVD patients

and high-risk individuals. One recent prospective study [6]

reported phenylalanine and fatty acids, and another study

[7] found other lipid species to be linked to CVD risk in

population-based cohorts. Ganna et al. [8] recently found

four lipid metabolites that could be useful to predict

coronary heart disease. These previous studies, however,

also had some limitations, e.g. they investigated few

metabolite classes or a composite CVD endpoint. Thus,

there is an urgent need for large metabolomic studies

covering a wide range of metabolites that are conducted in

healthy adult cohorts, which are followed over long for

incidence of a first CVD event. In addition, it is of great

importance to address different CVD endpoints separately,

so as to better understand their individual pathophysio-

logical mechanisms.

The present study aimed to identify metabolites, which

are linked to higher incidence of myocardial infarction

(MI) and ischemic stroke in initially healthy adults.

Therefore, we conducted targeted metabolomic measure-

ments, including in total 105 metabolites among amino

acids, acylcarnitines, phosphatidylcholines, sphin-

gomyelins and hexose, in serum samples from two large

prospective cohorts comprising middle-aged adults from

Germany that were healthy at the time of the blood sample

collection and followed for development of a prime CVD

event. To better understand the biological mechanisms, in

addition, we studied associations between metabolites and

established biomarkers of CVD risk. To evaluate their

usefulness for clinical practice we also calculated measures

of risk prediction.

Methods

Study population

The present study is based on data from the European

Prospective Investigation into Cancer and Nutrition (EPIC)

Germany study, a prospective cohort study which includes

27,548 adults in Potsdam and 25,540 adults in Heidelberg

aged mainly between 35 and 65 years at time of recruit-

ment, when also the blood sample was collected [9]. These

people are prospectively followed for incidence of chronic

diseases including CVD. More general details about the

cohorts are provided in the Supplementary Methods.

We constructed two case-cohort studies, one in EPIC-

Potsdam and another in EPIC-Heidelberg, including all

incident cases of MI (n = 274 and n = 290; respectively)

and stroke (n = 260 and n = 220; respectively) that

occurred in the full cohorts until December 2006, after

mean follow-up time of 7.8 years (Potsdam) and 7.3 years

(Heidelberg), and two randomly drawn subcohorts (Pots-

dam n = 2500, Heidelberg n = 843) from all participants

who had provided blood samples in the full cohorts. The

selection of the subcohorts has been described in detail

previously [10, 11]. For the present analysis, the following

additional exclusion criteria were applied (Fig. 1): history

of CVD or diabetes mellitus at the time of blood donation

(to ensure that initially healthy adults were included), non-

verified incident CVD, non-ischemic incident stroke,

missing biomarker data or missing covariates. Thus, the

final study sample in EPIC-Potsdam consisted of 204

incident cases of MI and 147 incident cases of stroke, and a

random subcohort of n = 2214. From EPIC-Heidelberg,

228 incident cases of MI and 121 incident cases of stroke

were considered, in addition to a random subcohort of

n = 770.

Ascertainment of incident MI and stroke
during follow-up

Potential incident cases of MI and stroke were identified

based on self-reports of a new diagnosis of disease, disease

relevant medication or change in diet due to disease, which

were collected every 2–3 years after baseline in follow-up

questionnaires [12]. In addition, information from death

certificates or linkage to a hospital information system of

the major hospital in the area was considered. Follow-up

rounds resulted in response rates of about 95% of partici-

pants [12, 13]. Self-reported cases were further verified by

actively contacting the treating physician or hospital who

filled in a standard inquiry form that included information

on the exact type and date of diagnosis, the method of

confirmation of the diagnosis and treatment information.

We used the international classification of diseases (ICD)-

10 system to classify incident cases: I21 for MI, I60 and

I61 for haemorrhagic stroke, I63 for ischemic stroke and

I64 for undetermined stroke.

Metabolomic measurements

Metabolite concentrations were determined in baseline

serum samples of the EPIC-Potsdam and EPIC-Heidelberg

case-cohort studies using two commercial kits (BIO-

CRATES Life Sciences AG, Innsbruck, Austria). Blood

samples were stored in liquid nitrogen until analysis.

Sample preparation was done according to standardized

protocols and the metabolomic methods have been

described in detail elsewhere [14, 15]. Details are provided

in the Supplementary Methods.

The p150 metabolomic kit used in EPIC-Potsdam ini-

tially contained 163 metabolites, of them 14 amino acids,

41 acylcarnitines, 1 hexose, 92 glycerophospholipids
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(phosphatidylcholines and lyso-phosphatidylcholines) and

15 sphingomyelins; a detailed list has been published ear-

lier by the authors [11]. A new version of the kit including

188 metabolites (similar metabolites but additionally

including biogenic amines) was used for measurement of

EPIC-Heidelberg samples. For the present analysis we

considered only metabolites that were measured in both

studies (n = 161). Data pre-processing was done as pre-

viously described [16]. In brief, we excluded metabolite

species with more than 25% values below limit of detec-

tion, with more than 25% missing values, and with batch

variation of more than 25%. All metabolite values were

log2 transformed and normalized by metabolite wide batch

standardization [17]. Robust principal component analysis

was used to identify multivariable outliers, which were

excluded [18]. This led to inclusion of a total of 105

metabolites, of them 13 amino acids, 2 acylcarnitines, 1

hexose, 77 glycerophospholipids and 12 sphingomyelins

into the present analysis.

Statistical analysis

Baseline characteristics of both study populations were

calculated as age- and sex-adjusted mean and standard

error (continuous variables) or percentages (categorical

variables). Serum metabolite concentrations were stan-

dardized (mean of 0 and SD of 1), to make them directly

comparable, and log2 transformed to better approximate

the normal distribution; and serum metabolite concentra-

tions according to case status were calculated as geometric

mean and 95% confidence interval (CI).

In both case-cohort studies, we used Cox proportional

hazard regression with weighting as suggested by Prentice

[19] and robust sandwich covariance estimates to calculate

hazard rate ratios and 95% CI, considering serum

metabolite concentrations as the exposure variable and

diagnosis of MI or stroke as the outcome, with age of each

participant as the underlying time-scale from entry (base-

line) to exit time (diagnosis of MI or stroke or censoring or

death) in the study. We calculated a multivariable adjusted

model considering the following covariates: age; sex;

education (no degree/vocational training; trade/technical

Participants with available
blood sample (n=26444) 

Participants with available
blood sample (n=24236) 

Random subcohort
(n=2500, incl. 57 
internal cases) 

Random subcohort
(n=843, incl. 8 
internal cases) 

Incident cases
MI (n=274)

Stroke (n=260)

Incident cases
MI (n=290)

Stroke (n=220)

History of CVD or diabetes

Non-verified cases of CVD

First event if multiple CVD

Missing biomarker data

Missing covariate data

Non-ischemic stroke

Incident cases
MI (n=204)

Stroke (n=147)

Random subcohort
(n=2214, incl. 40 
internal cases) 

Incident cases
MI (n=228) 

Stroke (n=121)

Random subcohort
(n=770, incl. 4 
internal cases) 

Missing follow-up data

EPIC-Potsdam CVD case-cohort (n=2525) EPIC-Heidelberg CVD case-cohort (n=1115) 

EPIC-Potsdam (n=27548) EPIC-Heidelberg (n=25540) 

n=246

n=15

n=50

n=35

n=60

n=2

n=44

n=5

n=131

n=15

n=55

n=0

n=24

n=0

Fig. 1 Flow diagram of participants’ selection from the two original cohorts
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school; university degree); smoking (never, former, cur-

rent B 20 cigarettes/day, current heavy[ 20 ci-

garettes/day); alcohol intake (non-consumers,

women:[ 0–6 g/day, 6–12 g/day,[ 12 g/day;

men:[ 0–12 g/day, 12–24 g/day,[ 24 g/day); physical

activity (Potsdam: cycling and sports in h/week; Heidel-

berg: Cambridge physical activity index); fasting status (y/

n); waist circumference (cm); BMI (kg/m2); and prevalent

hypertension (y/n). P values were corrected for multiple

testing by controlling the false discovery rate [20]. We ran

separate analyses for each endpoint and each study

population.

As the selection of metabolites very much depends on

the p value treshold, we used a different approach to

identify metabolites that does not so much rely on the

method used for multiple testing correction. We applied a

meta-analytical approach in the beginning and only con-

sidered those metabolites that were associated with risk of

MI or stroke in both study populations. So reproducibility

of associations was our key selection factor for identifica-

tion of metabolites. For the meta-analysis, random effects

model were calculated and heterogeneity was assessed by

measures of I2 [21]. For the selected metabolites, we cal-

culated further Cox-regression models additionally adjust-

ing for intake of lipid lowering medication (statin and

fibrate intake) and established CVD biomarkers, including

total cholesterol, HDL-cholesterol, LDL-Cholesterol,

triglycerides and high-sensitivity C-reactive protein (hs-

CRP). As LDL-Cholesterol was not measured it was esti-

mated from the other lipids using the Friedewald formula

[22]. In addition, we calculated Spearman partial correla-

tion coefficients between metabolites and established CVD

biomarkers, adjusted for age and sex. In a sensitivity

analysis, we calculated hazard rates across different follow-

up periods (B 3 years, 3–6 years,[ 6 years) for selected

metabolites. We then tested heterogeneity according to

Hardy and Thompson [21].

To investigate whether the metabolites are useful to

predict myocardial infarction, we calculated measures of

discrimination (c-statistic [23]) and calibration (Hosmer–

Lemeshow test [24]) for selected metabolites and estab-

lished CVD biomarkers with logistic regression models.

We drew receiver operating characteristic (ROC) curves

[23] for comparison of different models when adding

selected metabolites to established risk factors and

biomarkers.

The meta-analysis was conducted in R (version 3.2.1)

using the Metagen-package. All other analyses were con-

ducted with SAS enterprise guide (version 6.1, SAS Insti-

tute Inc., Cary, NC,USA).

Results

Baseline characteristics of the study participants are pre-

sented in Table 1. Mean age of participants from both

subcohorts was about 49 years. In general, participants

who developed CVD were older, less likely to be female

and lifestyle factors and biomarkers were more unfavour-

able compared to the subcohorts.

Of the 105 metabolites, three metabolites in EPIC-

Potsdam and nine metabolites in EPIC-Heidelberg were

associated with risk of stroke at p\ 0.05 (Supplemental

Tables 1 and 2). None of them remained associated after

correction for multiple testing and none of them was

overlapping in both studies. Therefore, the endpoint stroke

was not further investigated.

Of all metabolites, 40 metabolites in EPIC-Potsdam and

15 metabolites in EPIC-Heidelberg were associated with

risk of MI at p\ 0.05 (Supplemental Tables 3 and 4).

After correction for multiple testing, 19 metabolites

remained. In both studies, ten metabolites were consis-

tently associated with risk of MI, including diacyl-phos-

phatidylcholines C38:3 and C40:4; acyl-alkyl-

phosphatidylcholines C36:3, C38:3, C38:4 and C40:3; as

well as sphingomyelins C16:0, C24:0 and C16:1 and

hydroxy-sphingomyelin C22:1 (Fig. 2). All of these

metabolites were positively associated with risk of MI with

pooled relative risks in the range of 1.21–1.40 per 1 SD

increase in metabolite concentrations; and for all metabo-

lites there was no heterogeneity between the two studies. In

a sensitivity analysis, we found that the associations

between sphingomyelins and MI risk were stronger for

cases that occurred during the first 6 years of follow-up

(Supplemental Table 5). We did not observe any gender-

based differences.

We next quantified the correlation of the ten identified

metabolites with traditional CVD biomarkers and exam-

ined to what extent adjustment for these traditional CVD

biomarkers affects the association between serum

metabolites and risk of MI. All metabolites were positively

correlated to total- and LDL-cholesterol with Spearman

correlation coefficients in the range of 0.13–0.57 (Fig. 3).

Diacyl-phosphatidylcholines C38:3 and C40:4 were posi-

tively correlated with triglycerides (Heidelberg r = 53 and

r = 0.45; Potsdam: r = 0.44 and r = 0.30; respectively)

and diacyl-phosphatidylcholine C38:3 with hs-CRP (Pots-

dam: r = 0.23; Heidelberg r = 015). Acyl-alkyl-phos-

phatidylcholines showed a positive correlation with HDL-

cholesterol (r ranged from 0.11–0.36). After adjustment for

LDL-cholesterol as well as total cholesterol the associa-

tions between sphingomyelins and acyl-alkyl-phos-

phatidylcholines and risk of MI were attenuated

(Supplemental Table 6), whereas the associations remained
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for the diacyl-phosphatidylcholines. In contrast, additional

adjustment for HDL-cholesterol, triglycerides or hs-CRP

had minor impact on the associations between the

metabolites and risk of MI. Adjusting for all CVD

biomarkers simultaneously had a similar effect as adjusting

for total and LDL-cholesterol; higher concentrations of

diacyl-phosphatidylcholines C38:3 and C40:4, and in

addition acyl-alkyl-phosphatidylcholine C36:3 remained

associated with higher risk of MI in both study cohorts.

We studied these three metabolites in terms of risk

prediction. To better understand their individual contribu-

tion, we first studied unadjusted models including one

biomarker at a time (Table 2). Diacyl-phosphatidylcholine

C38:3 performed best in discrimination with a C-statistic

alone of 0.636 and 0.630 in Potsdam and Heidelberg;

respectively; which was of higher magnitude than

c-statistics alone of total cholesterol, triglycerides and hs-

CRP in EPIC-Potsdam. Diacyl-phosphatidylcholine C40:4

had a C-statistic of 0.607 in EPIC-Potsdam and 0.619 in

EPIC-Heidelberg, which was similar to total cholesterol;

and acyl-alkyl-phosphatidylcholine C36:3 had the lowest

c-statistic compared to all other biomarkers (EPIC-Pots-

dam: 0.507; EPIC-Heidelberg: 0.544; respectively). All

three metabolites showed a good model calibration with

Hosmer–Lemeshow p values larger than 0.05. When add-

ing the metabolites to the basic adjustment model including

established CVD risk factors the area under the ROC-curve

could be improved from 0.826 (95% CI 0.798–0.854) to

0.828 (95% CI 0.800–0.857) in EPIC-Potsdam and from

0.824 (95% CI 0.791–0.858) to 0.832 (95% CI

Table 1 Baseline characteristicsa of the study cohorts (1994–1998)

EPIC-Potsdam EPIC-Heidelberg

Random

subcohort

(n = 2214)

Incident MI

(n = 204)

Incident

stroke

(n = 147)

Random

subcohort

(n = 770)

Incident MI

(n = 228)

Incident

stroke

(n = 121)

Age (years)b 49.2 (8.9) 55.1 (7.2) 55.1 (8.0) 49.8 (8.0) 54.8 (6.3) 55.0 (7.3)

Women (%)b 63.1 28.4 49.7 56.9 19.3 38.0

BMI (kg/m2) 26.0 (0.1) 26.6 (0.3) 26.4 (0.3) 25.7 (0.1) 27.0 (0.3) 26.1 (0.4)

Waist circumference, men (cm)c 93.7 (0.3) 96.2 (0.8) 94.9 (1.1) 95.3 (0.5) 98.5 (0.7) 94.8 (1.1)

Waist circumference, women (cm)c 80.4 (0.3) 81.7 (1.4) 80.9 (1.3) 79.8 (0.5) 82.4 (1.7) 82.4 (1.6)

History of hypertension (%) 47.2 57.3 62.7 28.2 40.5 38.5

Education

No degree/vocational training (%) 36.9 38.6 40.7 26.7 32.9 34.7

Trade/technical school (%) 24.0 25.1 30.1 41.4 40.9 38.1

University degree (%) 39.1 36.3 29.2 31.9 26.2 27.2

Smoking status

Never (%) 47.6 30.8 42.7 42.6 31.2 35.6

Former (%) 32.1 20.3 33.6 36.2 27.8 29.7

Current B 20 cigarettes/day (%) 18.3 39.2 21.7 16.2 27.6 27.5

Current[ 20 cigarettes/day (%) 2.0 9.7 2.0 5.0 13.4 7.2

Physical activity (h/week)d 2.8 (0.1) 2.1 (0.3) 2.7 (0.3) 2.7 (0.0) 2.5 (0.1) 2.7 (0.1)

Alcohol intake from beverages (g/day) 14.7 (0.4) 11.0 (1.3) 13.9 (1.5) 19.8 (1.0) 19.1 (1.9) 19.7 (2.5)

Intake of lipid lowering medication (%) 4.1 (0.4) 2.6 (1.4) 2.2 (1.6) 2.7 (0.7) 4.6 (1.5) 7.5 (5.0)

Biomarkers

Total cholesterol (mg/dL) 174.3 (0.8) 184.5 (2.6) 173.5 (3.1) 228.5 (1.9) 237.7 (3.6) 228.4 (13.2)

HDL-cholesterol (mg/dL) 47.8 (0.3) 44.8 (0.9) 47.6 (1.0) 59.7 (0.7) 52.1 (1.4) 63.4 (5.2)

LDL-cholesterol (mg/dL)e 104.1 (0.6) 113.2 (2.1) 103.0 (2.4) 155.2 (1.8) 167.5 (3.5) 148.9 (12.8)

Triglycerides (mg/dL) 113.4 (1.7) 133.6 (5.6) 113.3 (6.5) 153.6 (4.2) 205.7 (9.2) 182.4 (29.7)

hs-CRP (mg/dL) 0.17 (0.01) 0.24 (0.03) 0.30 (0.03) 0.19 (0.02) 0.26 (0.03) 0.21 (0.11)

a Presented are age- and sex-adjusted mean (standard error) for continuous variables or percentages for categorical variables
b Unadjusted mean (standard deviation) or percent
c Age-adjusted mean (standard error)
d Average of cycling and sports during summer and winter season
e LDL-cholesterol was estimated using the Friedewald formula [22]
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Fig. 2 Forest plot of

metabolites associated with risk

of myocardial infarction (MI) in

both study cohorts. Presented

are hazard ratios (HR) and 95%

confidence intervals for both

study cohorts and pooled

estimates from meta-analysis.

HR were calculated in

continuous models with

standardized log2 transformed

metabolite concentrations as

exposure and incidence of MI as

outcome. The model was

stratified by age and adjusted for

sex, alcohol intake, smoking,

physical activity, education,

fasting status, prevalent

hypertension, BMI, and waist

circumference. aa, diacyl; ae,

acyl-alkyl; PC,

phosphatidylcholine; seTE,

standard error risk estimate;

SM, sphingomyelin; TE, risk

estimate (beta coefficient); W,

study weight

60 A. Floegel et al.

123



0.799–0.865) in EPIC-Heidelberg (Supplemental Fig-

ure 1). In comparison to the model with classical CVD risk

factors and established CVD biomarkers the areas under

the ROC curves where further improved when adding the

three metabolites [EPIC-Potsdam: from 0.836 (95% CI

0.810–0.863) to 0.838 (95% CI 0.811–0.866); EPIC-Hei-

delberg: from 0.834 (0.802–0.867) to 0.838 (95% CI

0.806–0.870)].

Discussion

The present study applied a targeted metabolomic approach

to two cohorts of apparently healthy middle-aged adults

who were followed on average over 7.5 years for incident

CVD. Thereby, higher serum concentrations of four sph-

ingomyelins and six phosphatidylcholines were linked to

higher risk of MI independent of classical CVD risk fac-

tors. Of them diacyl-phosphatidylcholines C38:3 and

C40:4, and acyl-alkyl-phosphatidylcholine C36:3 remained

associated when additionally accounting for traditional

CVD biomarkers in both study populations, and were also

partly useful for CVD prediction. None of the studied

metabolites were consistently associated with stroke risk.

A previous prospective study reported that alanine as

well as medium and long-chain acylcarnitine levels pre-

dicted CVD events in an elderly high-risk population [25].

A prospective patient cohort found high concentrations of

acylcarnitines, ketone-related metabolites and fatty acids

and low concentrations of branched chain amino acids to

be associated with higher risk of MI or death [3, 4]. Wang

et al. [5] reported that dietary choline and gut microbiota

metabolism of phosphatidylcholines promotes CVD events.

These previous studies are not directly comparable to our

study as they have been conducted either in CVD patients

or in high-risk populations. In contrast, in our study we

included originally healthy individuals and followed them

over time until occurrence of a first incident CVD event.

Würtz et al. [6] recently reported that higher phenylalanine

concentrations were linked to higher CVD risk in popula-

tion-based cohorts. This was not observed in our study.

However, we previously observed that higher phenylala-

nine levels were linked to higher risk of type 2 diabetes in

our population [11], which is a strong risk factor for CVD.

For the present study we focused on individuals without a

history of diabetes mellitus, which could be a reason for the

discrepancy to the study by Würtz et al.

Recently, Ganna et al. [8] found 4 lipid metabolites

including lyso-phosphatidylcholines and sphingomyelins

that were linked to risk of coronary heart disease when

investigating three population-based prospective cohorts.

In addition, lipid metabolites, including three sphin-

gomyelins and two phosphatidylcholines, were associated

with risk of a composite CVD endpoint in the population-

based Bruneck cohort [7]. In agreement, we found partic-

ularly higher concentrations of phosphatidylcholines and

sphingomyelins linked to higher risk of MI. These

metabolites have been previously suggested to be involved

in the pathophysiologic process of atherosclerosis that

often leads to the onset of CVD events. This process

involves enzyme actions of sphingomyelinase and secre-

tory phospholipase A2 that release free lipid species, such

a

b

Fig. 3 Correlation between metabolites associated with risk of

myocardial infarction and established biomarkers of cardiovascular

disease risk in the EPIC-Potsdam (a) and EPIC-Heidelberg subco-

horts (b). Presented are Spearman partial correlation coefficients

adjusted for age and sex. Blue color indicates positive correlation and

red color inverse correlation. aa, diacyl; ae, acyl-alkyl; PC, phos-

phatidylcholine; SM, sphingomyelin
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as fatty acids, lyso-phosphatidylcholines and ceramides,

which may further rupture vessel walls [26–29]. In addi-

tion, these enzyme actions may cause severe modification

of LDL-particles, and thereby promote inflammatory pro-

cesses and ruptures at the vessel wall, which induce

monocyte emigration, differentiation and foam cell for-

mation, and may eventually result in atherogenic plaques

and thrombosis. It has previously been observed that LDL-

particles in atherogenic plaques were extensively enriched

with sphingomyelins compared to plasma LDL-particles

[30, 31]. In addition, oral administration of an inhibitor of

sphingomyelin de-novo biosynthesis prevented

atherosclerosis in apo-E knockout mice [27].

In a randomized controlled trial it was observed that

treatment of CVD patients with statins led to lower plasma

concentrations of sphingomyelins, including C16:0 and

C24:0 [26]. This is in line with our observation that par-

ticularly sphingomyelins were linked to total cholesterol,

and that adjustment for cholesterol levels attenuated the

associations between two sphingomyelins and risk of MI.

Previous cross-sectional studies reported that plasma

concentrations of sphingomyelins were associated with

subclinical atherosclerosis and coronary artery disease

[32, 33]. In addition, in a small cohort of patients with

acute coronary syndromes higher plasma sphingomyelin

levels were linked to a worse prognosis [34]. However, the

Multi Ethnic study did not find an association between total

sphingomyelins and risk of coronary heart disease [35].

The present study identified several sphingomyelins that

were positively associated with risk of MI in two cohorts,

and it thus provides evidence for a prospective association.

High sphingomyelin concentrations were particularly

associated with high incidence of MI within the first

6 years of follow-up in the present study. These results

support the hypothesis that elevation of serum sphin-

gomyelin concentrations is linked to atherosclerosis, which

may trigger the onset of MI.

In the present study, diacyl-phosphatidylcholines C38:3

and C40:4 as well as acyl-alkyl-phosphatidylcholine C36:3

remained associated with risk of MI when accounting for

classical CVD risk factors as well as biomarkers. They

were also partly useful for CVD prediction, particularly

Table 2 Measuresa of

discrimination and calibration to

predict risk of myocardial

infarction in EPIC-Potsdam and

EPIC-Heidelberg for individual

metabolites and biomarkers

Biomarker Study population C-statisticb Hosmer–Lemeshowc

V2 p value

Acyl-alkyl-PC C36:3 Potsdam 0.507 15.15 0.056

Heidelberg 0.544 9.91 0.271

Diacly-PC C38:3 Potsdam 0.636 8.92 0.349

Heidelberg 0.630 10.23 0.249

Diacyl-PC C40:4 Potsdam 0.607 7.32 0.502

Heidelberg 0.619 5.69 0.681

HDL Potsdam 0.645 15.38 0.052

Heidelberg 0.717 13.67 0.134

LDL Potsdam 0.650 17.53 0.025

Heidelberg 0.657 15.71 0.047

Total cholesterol Potsdam 0.629 10.20 0.251

Heidelberg 0.608 6.24 0.620

Triglycerides Potsdam 0.628 19.55 0.012

Heidelberg 0.706 13.62 0.092

hs-CRP Potsdam 0.620 28.58 0.0002

Heidelberg 0.675 33.77 \ 0.0001

a Presented are unadjusted models including one biomarker at a time. Better discrimination is mirrored by

larger C-statistics and better calibration is indicated by Homer–Lemeshow smaller v2 values and

p value C 0.05
b Specifically, the c-statistic equals the area under the ROC curve, a measure of discrimination that mirrors

the probability the model assigns a higher risk to future myocardial infarction cases compared to controls. It

may range from 0.5 (no discrimination) to 1.0 (perfect discrimination) [23]
c As a measure of model calibration, the Hosmer–Lemeshow statistic compares predicted and observed

probabilities of myocardial infarction derived from deciles of predicted risk. Smaller v2 values and larger

p values specify better model fit. P values\ 0.05 indicate difference between expected and observed

probabilities [24]
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diacyl-phosphatidylcholine C38:3 which showed better

discrimination than total cholesterol, triglycerides and CRP

in EPIC-Potsdam. The identified metabolites have been

previously associated with risk of type 2 diabetes in the

EPIC-Potsdam cohort [11]. The three metabolites contain

fatty acids that are interlinked via desaturase and elongase

reactions (see Fig. 4). They may contain arachidonic acid

as fatty acid residue which is an omega-6 fatty acid and can

be released from the phospholipid by the enzymes phos-

pholipase A1 and A2. Arachidonic acid is a precursor

essential for eicosanoid biosynthesis such as prostaglandins

and thromboxanes which are inflammatory mediators with

various functions on the vascular system, which could be a

possible mechanism for their positive association with risk

of MI [36].

The null results that we observed for stroke may suggest

that the serum concentrations of the metabolites measured

in our study do not play a major role in the pathophysiol-

ogy of stroke risk. Metabolic changes after an acute stroke

event have previously been related to one-carbon-cycle

metabolism, anaerobic glycolysis and hyper-homocys-

teinemia [37, 38]. In a recent investigation, low concen-

trations of lyso-phosphatidylcholines predicted stroke

recurrence in TIA patients [39]. In our EPIC-Heidelberg

study population, higher concentrations of three lyso-

phosphatidylcholines were also linked to lower risk of

stroke; however, this result was no longer observed after

multiple testing corrections and was not consistent in

EPIC-Potsdam. Thus, it has to be interpreted with caution.

A number of neuro-protective properties have been sug-

gested for lyso-phosphatidylcholines in vivo and in vitro,

such as that they can serve as a suppressant for lipoprotein

associated phospholipase A2 and thereby reduce its neu-

roinflammative properties [39–42]. It has also been repor-

ted that lyso-phsophatidylcholine levels increase in the

brain in response to an acute stroke event, to mediate

phagocyte recruitment; this could lead to reduced plasma

levels of lyso-phosphatidylcholines [43, 44]. It is likely that

metabolite concentrations change rapidly in response to an

acute stroke event but this does not necessarily imply that

they were altered years before disease onset. Future

prospective studies are needed for further in depths

investigation of the prospective association between

metabolites and stroke risk.

Strengths and limitations

Strengths of our study include that we conducted metabo-

lomic measurements covering more than one hundred

metabolites in two large prospective cohort studies that

were well-phenotyped and followed over time for inci-

dence of CVD. As we used two cohorts, we were able to

directly replicate the results. We measured metabolite

concentrations in blood samples of originally healthy

adults and followed them until occurrence of a first CVD

event, whereas previous studies were focused on high-risk

populations. In addition, we investigated risk of MI and

stroke separately.

However, the present study also had some limitations.

We were limited to study only those metabolites that were

included in the kit, and therefore might have missed

associations of other metabolite classes. To address this

limitation, targeted metabolomic studies that focus on other

metabolites and untargeted metabolomic studies with no a

priori assumptions should be conducted in the future.

Furthermore, we obtained only a single blood sample at

baseline in our studies, and metabolite concentrations may

change over time. However, in a previous study we found a

relatively high reliability of most of the metabolites

included in our study over 4 month and others reported a

high reliability over a 2-year period [45, 46]. Due to

logistic reasons, participants of the EPIC-study did not

necessarily provide fasting blood samples. We addressed

this issue by adjusting for fasting status. In this study, we

did not look at the inter-correlation of metabolites. This

part has already been investigated in two previous studies

by the authors by applying principal component analysis

[11] and network analysis [47] to the same study popula-

tion. As this was an observational study we cannot prove

causality of the associations. However, we used a

prospective design that addresses the issue of temporality

of associations and we reproduced the results in different

populations. Still, the possibility of reverse causality needs

to be considered. We tried to account for this by stratifying

the analysis by follow-up intervals.

Conclusions

In summary, the present study identified novel candidates

of sphingomyelin and phosphatidylcholine classes that

were positively associated with risk of MI in healthy adults

in two prospective cohorts. Of them three metabolites, that

are involved in the arachidonic acid pathway, namely

diacyl-phosphatidylcholines C38:3, C40:4 and acyl-alkyl-

phosphatidylcholine C36:3, were associated with MI risk

independent of traditional CVD risk factors and biomark-

ers, and were partly useful for CVD prediction. In contrast,

we found no association between serum metabolites and

risk of stroke. Based on their correlations with traditional

CVD biomarkers, the identified metabolites point towards

pathways of atherosclerosis and dyslipidaemia; and we

particularly highlight the arachidonic acid pathway; how-

ever, future studies are needed to better understand these

biological mechanisms.
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geted metabolomics of dried blood spot extracts. Chro-

matographia. 2013;76:1295–305. https://doi.org/10.1007/s10337-

013-2429-3.

16. Kuhn T, Floegel A, Sookthai D, et al. Higher plasma levels of

lysophosphatidylcholine 18:0 are related to a lower risk of

common cancers in a prospective metabolomics study. BMC

Med. 2016;14:13. https://doi.org/10.1186/s12916-016-0552-3.

17. Lazar C, Meganck S, Taminau J, et al. Batch effect removal

methods for microarray gene expression data integration: a sur-

vey. Brief Bioinform. 2013;14(4):469–90. https://doi.org/10.

1093/bib/bbs037.

18. Hubert M, Engelen S. Robust PCA and classification in bio-

sciences. Bioinformatics. 2004;20(11):1728–36. https://doi.org/

10.1093/bioinformatics/bth158.

19. Prentice RL. Design issues in cohort studies. Stat Methods Med

Res. 1995;4(4):273–92.

20. Benjamini Y, Hochberg Y. Controlling the false discovery rate—

a practical and powerful approach to multiple testing. J R Stat

Soc B Met. 1995;57(1):289–300.

21. Hardy RJ, Thompson SG. Detecting and describing heterogeneity

in meta-analysis. Stat Med. 1998;17(8):841–56. https://doi.org/

10.1002/(SICI)1097-0258(19980430)17:8\841:AID-SIM781[3.

0.CO;2-D.

22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the

concentration of low-density lipoprotein cholesterol in plasma,

without use of the preparative ultracentrifuge. Clin Chem.

1972;18(6):499–502.

23. Hanley JA, McNeil BJ. The meaning and use of the area under a

receiver operating characteristic (ROC) curve. Radiology.

1982;143(1):29–36.

24. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed.

New York: Wiley; 2000.

25. Rizza S, Copetti M, Rossi C, et al. Metabolomics signature

improves the prediction of cardiovascular events in elderly sub-

jects. Atherosclerosis. 2014;232(2):260–4. https://doi.org/10.

1016/j.atherosclerosis.2013.10.029.

26. Bergheanu SC, Reijmers T, Zwinderman AH, et al. Lipidomic

approach to evaluate rosuvastatin and atorvastatin at various

dosages: investigating differential effects among statins. Curr

Med Res Opin. 2008;24(9):2477–87. https://doi.org/10.1185/

03007990802321709.

27. Park TS, Panek RL, Rekhter MD, et al. Modulation of lipoprotein

metabolism by inhibition of sphingomyelin synthesis in ApoE

knockout mice. Atherosclerosis. 2006;189(2):264–72. https://doi.

org/10.1016/j.atherosclerosis.2005.12.029.

28. Oestvang J, Bonnefont-Rousselot D, Ninio E, Hakala JK,

Johansen B, Anthonsen MW. Modification of LDL with human

secretory phospholipase A(2) or sphingomyelinase promotes its

arachidonic acid-releasing propensity. J Lipid Res.

2004;45(5):831–8. https://doi.org/10.1194/jlr.M300310-JLR200.

29. Bismuth J, Lin P, Yao Q, Chen C. Ceramide: A common pathway

for atherosclerosis? Atherosclerosis. 2008;196(2):497–504.

https://doi.org/10.1016/j.atherosclerosis.2007.09.018.

30. Hoff HF, Morton RE. Lipoproteins containing apo B extracted

from human aortas. Structure and function. Ann N Y Acad Sci.

1985;454:183–94.

31. Jeong T, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang X.

Increased sphingomyelin content of plasma lipoproteins in

apolipoprotein E knockout mice reflects combined production

and catabolic defects and enhances reactivity with mammalian

sphingomyelinase. J Clin Invest. 1998;101(4):905–12. https://doi.

org/10.1172/JCI870.

32. Nelson JC, Jiang XC, Tabas I, Tall A, Shea S. Plasma sphin-

gomyelin and subclinical atherosclerosis: findings from the multi-

ethnic study of atherosclerosis. Am J Epidemiol.

2006;163(10):903–12. https://doi.org/10.1093/aje/kwj140.

33. Jiang XC, Paultre F, Pearson TA, et al. Plasma sphingomyelin

level as a risk factor for coronary artery disease. Arterioscler

Thromb Vasc Biol. 2000;20(12):2614–8.

34. Schlitt A, Blankenberg S, Yan D, et al. Further evaluation of

plasma sphingomyelin levels as a risk factor for coronary artery

disease. Nutr Metab (Lond). 2006;3:5. https://doi.org/10.1186/

1743-7075-3-5.

35. Yeboah J, McNamara C, Jiang XC, et al. Association of plasma

sphingomyelin levels and incident coronary heart disease events

in an adult population: multi-Ethnic Study of Atherosclerosis.

Arterioscler Thromb Vasc Biol. 2010;30(3):628–33. https://doi.

org/10.1161/ATVBAHA.109.199281.

36. Goodman DS. The role of arachidonic acid metabolites in car-

diovascular homeostasis. Biochemical, histological and clinical

Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted… 65

123

https://doi.org/10.1016/j.jtcvs.2011.09.070
https://doi.org/10.1016/j.jtcvs.2011.09.070
https://doi.org/10.1016/j.ahj.2012.02.005
https://doi.org/10.1016/j.ahj.2012.02.005
https://doi.org/10.1038/nature09922
https://doi.org/10.1161/CIRCULATIONAHA.114.013116
https://doi.org/10.1161/CIRCULATIONAHA.114.013116
https://doi.org/10.1161/CIRCULATIONAHA.113.002500
https://doi.org/10.1161/CIRCULATIONAHA.113.002500
https://doi.org/10.1371/journal.pgen.1004801
https://doi.org/10.1371/journal.pgen.1004801
https://doi.org/10.1159/000012786
https://doi.org/10.1007/s00125-011-2182-9
https://doi.org/10.2337/db12-0495db12-0495
https://doi.org/10.1159/000012789
http://ajcn.nutrition.org/content/84/2/427.long
https://doi.org/10.1007/s11306-011-0293-4
https://doi.org/10.1007/s11306-011-0293-4
https://doi.org/10.1007/s10337-013-2429-3
https://doi.org/10.1007/s10337-013-2429-3
https://doi.org/10.1186/s12916-016-0552-3
https://doi.org/10.1093/bib/bbs037
https://doi.org/10.1093/bib/bbs037
https://doi.org/10.1093/bioinformatics/bth158
https://doi.org/10.1093/bioinformatics/bth158
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3c841:AID-SIM781%3e3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3c841:AID-SIM781%3e3.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8%3c841:AID-SIM781%3e3.0.CO;2-D
https://doi.org/10.1016/j.atherosclerosis.2013.10.029
https://doi.org/10.1016/j.atherosclerosis.2013.10.029
https://doi.org/10.1185/03007990802321709
https://doi.org/10.1185/03007990802321709
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.1016/j.atherosclerosis.2005.12.029
https://doi.org/10.1194/jlr.M300310-JLR200
https://doi.org/10.1016/j.atherosclerosis.2007.09.018
https://doi.org/10.1172/JCI870
https://doi.org/10.1172/JCI870
https://doi.org/10.1093/aje/kwj140
https://doi.org/10.1186/1743-7075-3-5
https://doi.org/10.1186/1743-7075-3-5
https://doi.org/10.1161/ATVBAHA.109.199281
https://doi.org/10.1161/ATVBAHA.109.199281


cardiovascular effects of non-steroidal anti-inflammatory drugs

and their interactions with cardiovascular drugs. Drugs.

1987;33(Suppl 1):47–55.

37. Jiang Z, Sun J, Liang Q, et al. A metabonomic approach applied

to predict patients with cerebral infarction. Talanta.

2011;84(2):298–304. https://doi.org/10.1016/j.talanta.2011.01.

015.

38. Jung JY, Lee HS, Kang DG, et al. 1H-NMR-based metabolomics

study of cerebral infarction. Stroke. 2011;42(5):1282–8. https://

doi.org/10.1161/STROKEAHA.110.598789.

39. Jove M, Mauri-Capdevila G, Suarez I, et al. Metabolomics pre-

dicts stroke recurrence after transient ischemic attack. Neurology.

2015;84(1):36–45. https://doi.org/10.1212/WNL.0000000000001

093.

40. Cunningham TJ, Yao L, Lucena A. Product inhibition of secreted

phospholipase A2 may explain lysophosphatidylcholines’ unex-

pected therapeutic properties. J Inflamm (Lond). 2008;5:17.

https://doi.org/10.1186/1476-9255-5-17.

41. Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S. Extracellular

phospholipase A2 inhibitors suppress central nervous system

inflammation. Glia. 2003;44(3):275–82. https://doi.org/10.1002/

glia.10296.

42. Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux

C. A potent protective role of lysophospholipids against global

cerebral ischemia and glutamate excitotoxicity in neuronal

cultures. J Cereb Blood Flow Metab. 2002;22(7):821–34. https://

doi.org/10.1097/00004647-200207000-00007.

43. Koizumi S, Yamamoto S, Hayasaka T, et al. Imaging mass

spectrometry revealed the production of lyso-phosphatidylcholine

in the injured ischemic rat brain. Neuroscience.

2010;168(1):219–25. https://doi.org/10.1016/j.neuroscience.

2010.03.056.

44. Zhang Z, Lee YC, Kim SJ, et al. Production of lysophos-

phatidylcholine by cPLA2 in the brain of mice lacking PPT1 is a

signal for phagocyte infiltration. Hum Mol Genet.

2007;16(7):837–47. https://doi.org/10.1093/hmg/ddm029.

45. Floegel A, Drogan D, Wang-Sattler R, et al. Reliability of serum

metabolite concentrations over a 4-month period using a targeted

metabolomic approach. PLoS ONE. 2011;6(6):e21103. https://

doi.org/10.1371/journal.pone.0021103.

46. Carayol M, Licaj I, Achaintre D, et al. Reliability of serum

metabolites over a two-year period: a targeted metabolomic

approach in fasting and non-fasting samples from EPIC. PLoS

ONE. 2015;10(8):e0135437. https://doi.org/10.1371/journal.

pone.0135437.

47. Floegel A, Wientzek A, Bachlechner U, et al. Linking diet,

physical activity, cardiorespiratory fitness and obesity to serum

metabolite networks: findings from a population-based study. Int

J Obes (Lond). 2014;38(11):1388–96. https://doi.org/10.1038/ijo.

2014.39.

Affiliations
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