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New binary and ternary LCD codes
Carlos Galindo, Olav Geil, Fernando Hernando and Diego Ruano

Abstract—LCD codes are linear codes with important cryp-
tographic applications. Recently, a method has been presented
to transform any linear code into an LCD code with the same
parameters when it is supported on a finite field with cardinality
larger than 3. Hence, the study of LCD codes is mainly open
for binary and ternary fields. Subfield-subcodes of J-affine
variety codes are a generalization of BCH codes which have
been successfully used for constructing good quantum codes. We
describe binary and ternary LCD codes constructed as subfield-
subcodes of J-affine variety codes and provide some new and
good LCD codes coming from this construction.

Index Terms—LCD codes, complementary dual, subfield-
subcodes, J-affine variety codes, toric codes.

INTRODUCTION

IT is well-known that the hull C ∩ C⊥ of a linear code
C, with (Euclidean) dual C⊥, does not vanish in general;

but when this holds, the code C is called a linear code with
complementary dual (LCD). LCD codes were introduced by
Massey [22] to provide an optimum linear coding solution for
the two-user binary adder channel and prove the existence
of asymptotically good LCD codes; previously he studied
LCD cyclic codes (reversible codes) in [21]. The literature
contains considerable information about the characterization
and construction of this family of codes, being [28], [30], [27]
some of the oldest references. Apart from applications in data
storage, LCD codes are also useful for obtaining lattices [15]
and in network coding [2], [29]. Interesting applications of
LCD codes in cryptography have been recently discovered.
They play a role in counter-measures to passive and active
side-channel analyses on embedded cryptosystems. We remark
that the implementation of cryptographic algorithms could
suffer attacks (SCA or FIA) for extracting the secret key. SCA
(side-channel attacks) consist of passively recording some
leakage to retrieve the key and FIA (fault injection attacks)
consist of actively perturbing the computation to alter the
output. One of the main sources of interest in LCD codes
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de Castellón, and Departamento de Matemáticas, Jaume I University, Spain,
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comes from the fact that they provide linear complementary
pairs of codes. A linear complementary pair of codes (C1, C2)
consists of two codes in Fnq with dimensions k and n − k
such that C1 + C2 = Fnq . These pairs have been used in [3],
[4] for protecting implementations of symmetric cryptosys-
tems against SCA, with level of protection depending on the
minimum distance of C⊥2 , and FIA, with level of protection
depending on the minimum distance of C1.

The above mentioned applications have caused a huge
interest in LCD codes and many papers on this topic appeared
very recently. An important contribution is [6], where the
authors prove that, for q > 3, q-ary LCD codes are as good as
q-ary linear codes. That is, for every linear code over a field
Fq with more than 3 elements, one can construct an LCD code
with the same parameters from that code.

With respect to binary and ternary LCD codes, the best LCD
codes known to exist are reversible and are derived from BCH
codes [16], [17], [23], [18]. As it is well-known, subfield-
subcodes from codes over large fields can give rise to good
codes over small fields. BCH codes are subfield-subcodes of
Reed-Solomon codes and families of binary and ternary BCH
LCD and cyclic LCD codes have been constructed in [17]
and [18] for few lengths. Some good binary reversible codes
of odd length n, for 5 ≤ n ≤ 257, are given in [23], where
the authors determine all the parameters for 5 ≤ n ≤ 99.

In this paper we consider LCD codes coming from subfield-
subcodes of the so-called J-affine variety codes. These codes
are images of evaluation maps from vector spaces of polyno-
mials in several variables generated by suitable monomials.
Our LCD codes may be regarded as a generalization of BCH
codes, including extensions to the case of more variables,
and allow us to reach a wider variety of lengths. Their
metric structure and duality properties have been studied and
successfully used to construct quantum stabilizer codes in
previous works of the authors [10], [11], [12], [9], [8].

For the univariate case, binary subfield-subcodes of J-affine
variety codes with odd length provide reversible codes, which
essentially coincide with those in [23]; however, we are able to
provide examples (see Example 1 in Section III) with lengths
not covered in the literature and our codes are derived from
generic results (Theorems 17 and 19) which can simplify
some computations. Furthermore, with one variable, we obtain
unknown ternary LCD codes having good parameters; several
examples are also shown in Section III.

Considering more than one variable, we get a much broader
spectrum of lengths. Theorems 20 and 21, and Remark 22
provide a wide variety of new LCD codes with previously
unknown lengths, having some of them good parameters. As
a sample, in Section III we give several families of LCD codes
which, according to [14], contain many optimal or best known
linear codes. Moreover, we provide new LCD codes with a
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length that can be obtained with a BCH code (our univariate
case) but with better parameters.

Decoding procedures may be useful for the cryptographic
applications of LCD codes. Decoding algorithms have been
described for some families of codes considered in this paper
[7], [20]. We believe that these algorithms may be adapted to
all of them.

I. LCD J -AFFINE VARIETY CODES

In this section we consider J-affine variety codes. These
linear codes were introduced in [12] and used for constructing
quantum codes. We review some results concerning self-
orthogonality that will allow us to characterize LCD codes
in this family. Finally, we give parameters for some families
of LCD J-affine variety codes. The LCD codes provided
in this section are not new or they do not have the best
known parameters, as we will remark later, however, they
are instrumental for introducing the LCD codes in Section
II which are new and good binary and ternary LCD codes.

Along this paper, q = pr will be a positive power of a
prime number p. Let m ≥ 1 be an integer and fix m integers
Nj > 1 such that Nj−1 divides q−1 for j = 1, 2, . . . ,m. Let
R := Fq[X1, X2, . . . , Xm] be the ring of polynomials in m
variables and with coefficients in the finite field Fq . Consider
a subset J ⊆ {1, 2, . . . ,m} and the ideal IJ in R generated
by the binomials XNj

j −Xj when j 6∈ J and by XNj−1
j − 1

otherwise. Set ZJ = {P1, P2, . . . , PnJ} the zero-set of IJ over
Fq . Note that the jth coordinate, for j ∈ J , of the points in
ZJ is different from zero and nJ =

∏
j /∈J Nj

∏
j∈J(Nj − 1).

Furthermore, denote Tj = Nj−2 when j ∈ J and Tj = Nj−1
otherwise; then define

HJ = {0, 1, . . . , T1} × {0, 1, . . . , T2} × · · · × {0, 1, . . . , Tm}

and, for any a = (a1, . . . , am) ∈ HJ , set Xa = Xa1
1 · · ·Xam

m .
Consider the quotient ring RJ := R/IJ and the evaluation

map evJ : RJ → FnJq given by

evJ(f) = (f(P1), f(P2), . . . , f(PnJ )) ,

where f denotes both the equivalence class and any polyno-
mial representing it. As is well-known, evJ is a bijection, and
in particular one has that {evJ(Xa) | a ∈ HJ} constitutes a
basis for the image.

Definition 1. Let ∆ be a non-empty subset of HJ . The J-
affine variety code given by ∆ is the Fq-vector subspace EJ∆
of FnJq generated by evJ(Xa), a ∈ ∆. We denote by CJ∆ the
(Euclidean) dual code of EJ∆.

Observe that the dimension of EJ∆ equals the cardinality of
∆, and consequently the dimension of CJ∆ is nJ − card(∆).
Note that the univariate case contains the family of Reed-
Solomon codes and for J = {1, 2, . . . ,m} and Nj = q for
every j, one has a generalized toric code [25]. It is also clear
that the J-affine variety code EJ∆ is LCD if and only if its
dual code CJ∆ is LCD.

The following result, which can be found in [12, Proposition
1], gives the metric structure of J-affine variety codes.

Proposition 2. Let J ⊆ {1, 2, . . . ,m}. Consider a, b ∈ HJ
and let Xa and Xb be two monomials representing elements
in RJ . Then, the inner product evJ(Xa)·evJ(Xb) is different
from 0 if, and only if, the following two conditions are satisfied.
• For every j ∈ J , it holds that aj+bj ≡ 0 mod (Nj−1),

(i.e., aj = Nj−1−bj when aj+bj > 0 or aj = bj = 0).
• For every j /∈ J , it holds that

– either aj + bj > 0 and aj + bj ≡ 0 mod (Nj − 1),
(i.e., aj = Nj − 1− bj if 0 < aj , bj < Nj − 1 or

(aj , bj) ∈ {(0, Nj − 1), (Nj − 1, 0), (Nj − 1, Nj − 1)}

otherwise),
– or aj = bj = 0 and p 6 | Nj .

The following remark illustrates how to construct LCD J-
affine variety codes.

Remark 3. Proposition 2 allows us to obtain sets ∆ which
lead to LCD codes. Consider for instance the case q = 33,
m = 2, J = {1, 2}, N = N1 = N2 = 33, and look for a
set ∆ ⊂ HJ such that EJ∆ is an LCD code. From Proposition
2, we deduce that the points in HJ can be divided into two
sets. The first set consists of what we will call symmetric
points, and they are ((N−1)/2, (N−1)/2) = (13, 13), (0, 0),
((N − 1)/2, 0) = (13, 0) and (0, (N − 1)/2) = (0, 13). For
a symmetric point a, we have that evJ(Xa) is orthogonal to
evJ(Xb) for all b ∈ HJ \ {a} and evJ(Xa) · evJ(Xa) 6= 0.
Thus, suitable sets ∆ can contain, or not contain, symmetric
points. The rest of the points in HJ are called asymmetric.
In order to have an LCD code and when one desires ∆ to
contain an asymmetric point (a1, a2), a1, a2 ≤ N − 1, the
point (N − 1− a1, N − 1− a2) (named reciprocal) must also
be added to ∆, and vice versa. Notice that, here, N−1 should
be identified with zero. Indeed, one has that evJ(X(a1,a2)) is
not orthogonal to evJ(X(N−1−a1,N−1−a2)) and they are both
orthogonal to evJ(Xb) for every b different from (a1, a2) and
(N − 1− a1, N − 1− a2). So to get suitable sets ∆, we can
consider any of the above given symmetric points and pairs
as described, for instance one may have (7, 16), (19, 10) ∈ ∆.

The procedure is a bit different when J = {2} instead of
J = {1, 2}. First we notice that in the case treated above
the obtained dual code is also generated by the evaluation
of monomials and, therefore, it is a J-affine variety code. In
this second case, assuming that we desire that (0, 10) ∈ ∆,
our code be LCD and the dual code be also J-affine variety
code, again by Proposition 2, we must add to ∆ the points
(0, 16), (26, 16) and (26, 10).

The following result generalizes the above two cases and the
terminology introduced herein to the general class of J-affine
variety codes whose dual is again a J-affine variety code.

Theorem 4. Let ∆ be a subset of HJ . The J-affine variety
code EJ∆ is LCD with its dual code also being J-affine variety
if and only if ∆ is a union of sets Ra containing a and those
elements b ∈ HJ such that:
• For every j 6∈ J , bj = Nj − 1− aj if 0 < aj < Nj − 1,

and bj ∈ {0, Nj − 1} otherwise.
• For every j ∈ J , bj = Nj−1−aj if 0 < aj < Nj−1, and
bj equals 0 otherwise. Moreover bj may also be equal to
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aj in the case when either ai = 0 or ai = Ni − 1 for
some i /∈ J .

Any two distinct exponents b and b′ in Ra are called recip-
rocal, and a will be named symmetric whenever card(Ra) =
1. Points that are not symmetric are called asymmetric.

Proof. Let a ∈ ∆ and b ∈ Ra and assume 0 < aj < Nj − 1
for j /∈ J , and 0 ≤ aj < Nj − 1 for j ∈ J . By Proposition
2, evJ(Xa) is not orthogonal to evJ(Xb), and therefore both
a, b ∈ ∆ to guarantee that EJ∆ is LCD. It is also clear that if
∆ = Ra, the (Euclidean) dual code CJ∆ is generated by the
complement of ∆ in HJ .

Finally, when aj = Nj − 1 or aj = 0 for j 6∈ J ,
for constructing an LCD code whose dual is generated by
monomials, one should have in EJ∆, and not in CJ∆, those
vectors evJ(Xb) which are not orthogonal to evJ(Xa). This
proves the result.

Remark 5. The cardinality of the sets Ra described in
Theorem 4 is a power of 2. It is 1 or 2 if no coordinate of a
equals 0 or Nj − 1 for some j 6∈ J .

When J 6= {1, 2, . . . ,m} and p does not divide Nj for
j 6∈ J , one can also get LCD J-affine variety codes by
including in ∆ subsets R′a of Ra with cardinality a power
of 2 whose elements have the i-th coordinate equal to either 0
or Ni − 1 for some indices i in the set {1, 2, . . . ,m} \ J and
the corresponding evaluation vectors are not orthogonal. In this
case, reasoning for ∆ = R′a, the dual code is generated by
the evaluation of the monomials in HJ \Ra and polynomials
which are linear combinations of monomials with exponents in
Ra and orthogonal to the evaluation of the monomials in R′a.
In generic cases, the dual space, contains a vector space with
dimension nJ − card(R′a) which proves that EJ∆ is an LCD
code. When considering this type of codes, we only consider
the elements in R′a as reciprocal.

As an easy example, setting p = 3, q = 33, m = 2,
N1 = N2 = 14, J = {2}, a = (0, 1) and ∆ = R′a =
{(0, 1), (0, 12)}, it holds that EJ∆ is a LCD code of dimension
2. Notice that ∆ = Ra = {(0, 1), (0, 12), (13, 12), (13, 1)}
gives another LCD code with dimension 4.

Some of the codes presented in [5, Corollary 3.6] can be
recovered by considering the univariate case of J-affine variety
codes, with J = {1}. The following result states parameters
for LCD codes coming from the univariate case of J-affine
variety codes. We note that our contribution in this article, for
the univariate case, is not supplying LCD codes coming from
Proposition 6, but LCD subfield-subcodes of J-affine variety
codes that will be presented in Theorem 12.

Proposition 6. Let N be a positive integer such that N − 1
divides q − 1 and set another positive integer δ, such that
1 ≤ δ ≤ (N−1)/2 if N−1 is even and δ ≤ N/2−1 otherwise.
For J = ∅ and ∆ = {0, 1, . . . , δ−1, N−δ, . . . , N−2, N−1},
it holds that the dual code CJ∆ of the J-affine variety code
EJ∆ is LCD with parameters [N,N − 2δ, 2δ]q . Furthermore,
for J = {1} and ∆ = {0, 1, . . . , δ−1, N − δ, . . . , N −2}, the
codes EJ∆ and CJ∆ are LCD and MDS with parameters
[N − 1, 2δ − 1, N − 2δ + 1]q and [N − 1, N − 2δ, 2δ]q ,
respectively.

Proof. We prove first the statement for the case when J =
{1}. It is clear that CJ∆ is the J-affine variety EJ∆′ code
given by ∆′ = {δ, δ + 1, . . . , N − δ − 1}. Now setting
∆′′ = {0, 1, . . . , N − 2δ − 1}, it holds that

{evJ(Xa)|a ∈ ∆′} = {evJ(Xa) ∗ evJ(Xδ) : a ∈ ∆′′},

where ∗ denotes the component-wise product. Since
wt(evJ(Xδ)) = N −1, both codes have the same parameters.
So the dimension is clear and the distance follows from the
fact that a polynomial of degree N − 1 − 2δ has at most
N − 1 − 2δ zeroes. The parameters of EJ∆ follow from the
fact that CJ∆ is MDS.

The proof is analogous when J = ∅, again CJ∆ is the J-
affine variety EJ∆′ code given by ∆′ = {δ, δ + 1, . . . , N −
δ − 1}, and let ∆′′ = {0, 1, . . . , N − 2δ − 1}. We have that
{evJ(Xa)|a ∈ ∆′} = {evJ(Xa) ∗ evJ(Xδ) : a ∈ ∆′′}.
Since wt(evJ(Xδ)) = N − 1 (the first coordinate is equal
to zero), the minimum distance of EJ∆′ is one unit less than
the minimum distance of EJ∆′′ , which is equal to 2δ + 1, and
the result holds.

Now, for the general case and using Theorem 4, we get a
new family of LCD codes with a designed minimum distance.
To prove it, we will need the following lemma which was
stated in [9, Proposition 4.1].

Lemma 7. Consider the ring RJ and fix a monomial or-
dering. Let f(X1, . . . , Xm) be a polynomial of minimum
total degree representing an equivalence class in RJ and let
Xa = Xa1

1 · · ·Xam
m be the leading monomial of f . Then

card {P ∈ ZJ | f(P ) 6= 0} ≥ δa,

where

δa :=

m∏
j=1

(Nj − εj − aj) ,

εj being equal to 1 if j ∈ J and εj = 0 otherwise.

Proposition 8. Keep the notation as at the beginning of this
section setting Nj > 1, j = 1, 2, . . . ,m, such that Nj − 1
divides q − 1. Let J = {1, 2, . . . ,m} and fix αj < Tj/2 if Tj
is even and αj ≤ (Tj − 1)/2 otherwise.
Consider the subset of HJ , ∆ = L1 × L2 × · · · × Lm, where
Lj = {Tj/2−αj , . . . , Tj/2, . . . , Tj/2 +αj} if Tj is even and
Lj = {(Tj − 1)/2− αj , . . . , (Tj − 1)/2 + αj} otherwise.

Then, writing Aj = 2αj + 1, the code CJ∆ is an LCD code
with parametersnJ , nJ − m∏

j=1

Aj ,≥ min
j∈J
{Aj + 1}


q

.

Proof. Theorem 4 proves that CJ∆ is LCD. Moreover, mul-
tiplying each generator of EJ∆ by evJ(1/

∏
j∈J X

βj
j ) for

suitable powers βj , one obtains a monomially equivalent code
(see [19, Section 4]) EJ∆′ where the bottom left corner of the
box ∆′ is 0. The codes EJ∆ and EJ∆′ have the same dimension
and distance and the same weight enumerators (see again [19]).
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Proposition 2 shows that the dual code CJ∆′ has the same
minimum distance as the code EJ

∆′′
, where

∆
′′

= {0, . . . , T1} × {0, . . . , T2} × · · · × {0, . . . , Tm}\

{0, T1, T1 − 1, . . . , T1 −A1 + 1} × · · · ×

{0, Tm, Tm−1, . . . , Tm−A1+1}.

Then, the result follows after applying Lemma 7. Notice that
when Nj−1 = q−1, EJ

∆′′
is a toric code and the result holds

by [19, Theorem 3] or [24, Example 5.1].

Now, and up to the end of this section, for providing a
unified treatment according to the different sets J , we make
a shift for the exponent of the monomials defining our code.
Such a set is

HJ = {ε1, ε1+1, . . . , ε1+T1}×{ε2, ε2+1, . . . , ε2+T2}×· · · ×

{εm, εm+1, . . . , εm+Tm}.

Identifying Tj + εj with 0, for j ∈ J , we obtain a bijection
from HJ to HJ . Note that HJ and HJ are two different
sets of exponents satisfying that the equivalence classes of
the corresponding monomials in RJ are the same. Then, we
consider the following set of monomials in R

N(J, t) =

{
Xb | εj ≤ bj ≤ Nj − 1, 1 ≤ j ≤ m, and

m∏
j=1

(bj + 1− εj) < t

}
,

where εj = 1 if j ∈ J and it equals zero otherwise. The
hyperbolic code Hyp(J, t) [26], [13] can be defined as the
(Euclidean) dual of the code given by the vector subspace
of FnJq generated by the evaluation by evJ of the classes in
RJ of the monomials in N(J, t). By [9, Proposition 4.3], the
minimum distance of Hyp(J, t) is larger than t− 1. With the
help of that code, we state the following result which will be
useful.

Proposition 9. With the notation as in the above paragraph
and at the beginning of this section, set Nj > 1, for
j = 1, 2, . . . ,m, such that Nj − 1 divides q − 1. Fix a
positive integer such that t ≤ nJ =

∏
j /∈J Nj

∏
j∈J(Nj − 1),

assume that p|Nj for all j 6∈ J and consider the set
∆(J, t) = N(J, t) ∪ N(J, t)r, where N(J, t)r is the set of
reciprocal elements (defined as in Theorem 4 or in Remark 5)
of those in N(J, t), where we notice that for j ∈ J , Nj − 1
must be identified with 0. Then, the (Euclidean) dual CJ∆(J,t)

of the J-affine variety code EJ∆(J,t) is a J-affine LCD code
with parameters [nJ , nJ − card (∆(J, t)) ,≥ t]q .

Proof. The construction of the code containing elements and
reciprocal proves that we obtain an LCD code. The bound on
the distance is also clear because we consider a code contained
in the code Hyp(J, t) whose distance is larger than t− 1.

We are not directly interested in the LCD codes given by
the above results because of the recent paper [6] that shows the
existence of LCD codes for q > 3 as good as linear codes. We
will use them for obtaining suitable subfield-subcodes which
will give rise to good binary and ternary LCD codes.

II. LCD SUBFIELD-SUBCODES OF J -AFFINE VARIETY
CODES

Keep the notation as in Section I. For j ∈ J , let ZTj =
Z/〈Nj − 1〉 where we represent its classes by {0, 1, . . . , Tj}.
For j 6∈ J , we represent the classes of Z/〈Nj − 1〉 by
{1, 2, . . . , Tj} and define ZTj = {0}∪Z/〈Nj − 1〉, where we
represent its classes by {0, 1, . . . , Tj}. A subset I of the Carte-
sian product ZT1 ×ZT2 ×· · ·×ZTm is called a cyclotomic set
with respect to p if p·x ∈ I for any x = (x1, x2, . . . , xm) ∈ I,
where p · x = (px1, px2, . . . , pxm). I is said to be minimal
(with respect to p) whenever it contains all the elements that
can be expressed as pi · x for some fixed element x ∈ I and
some nonnegative integer i. Within each minimal cyclotomic
set I, we pick a representative a = (a1, a2, . . . , am) given by
nonnegative integers such that a1 is the minimum of the first
coordinates of the nonnegative representatives of the elements
in I, a2 is the minimum of the second coordinates of those
elements in I having a1 as a first coordinate and the remaining
coordinates, a3, . . . , am are defined in the same way. We will
denote by Ia the cyclotomic set I with representative a and
by A the set of representatives of the minimal cyclotomic sets.
Thus, the set of minimal cyclotomic sets will be {Ia}a∈A. In
addition, we will denote ia := card(Ia). Note that one can
consider the cyclotomic sets with respect to an intermediate
power ps, such that s divides r, however, since we only want
to consider the case when p equals 2 and 3, we set s = 1.

Consider a and let b be a reciprocal of a. Abusing the
notation, let Ib be the cyclotomic set that contains b. Taking
into account the ring structure behind the two different sets
ZTj , one gets the following straightforward result.

Lemma 10. Let a ∈ A and let b be a reciprocal element. Then
for every element in Ia there is a unique reciprocal element
in Ib and both cyclotomic sets have the same cardinality. In
addition, if a is asymmetric, then Ia ∩ Ib = ∅.

With the above notation, we say that a cyclotomic set Ia is
symmetric if Ia = Ib for all reciprocal element b. Otherwise
we will say that it is asymmetric. In addition, we define a
partition of A as follows A = A1∪A2 (A1∩A2 = ∅), where
A1 consists of the representatives of the symmetric cyclotomic
sets and, for the asymmetric sets Ia 6= Ia′ , where a and a′

are reciprocal elements, we consider a in A1 if a < a′ for
the lexicographical ordering.

The subfield-subcode of a J-affine variety code EJ∆ over
Fq = Fpr is defined as EJ,σ∆ := E∆ ∩ FnJp . Consider the
following maps tr : Fq → Fp, tr(x) = x+ xp + · · ·+ xp

r−1

;
tr : FnJq → FnJp given componentwise by tr(x), and T :

RJ → RJ defined by T (f) = f + fp + · · · + fp
r−1

. We
say that a class f ∈ RJ evaluates to Fp whenever f(a) ∈ Fp
for all a ∈ ZJ . In [10, Proposition 5] it is proved that f
evaluates to Fp if and only if f = T (g) for some g ∈ RJ .
Now, considering for each a ∈ A, the close to T map, Ta :

RJ → RJ , Ta(f) = f + fp + · · · + fp
(ia−1)

, we get the
following result about the dimension of the code EJ,σ∆ . The
proof is analogous to that in [10, Theorem 4].

Theorem 11. Let ∆ be a subset of HJ and set ξa a primitive
element of the field Fpia . Then, a basis of the vector space
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EJ,σ∆ is given by the images under the map evJ of the set of
classes in RJ⋃

a∈A|Ia⊆∆

{Ta(ξsaX
a)|0 ≤ s ≤ ia − 1} .

A. Binary and ternary LCD subfield-subcodes coming from
the univariate case

We devote this section to provide binary and ternary LCD
codes obtained as subfield-subcodes of univariate J-affine
variety codes. The reasoning in Proposition 6 and the above
paragraphs in Section II support the proof. We assume that p
equals 2 or 3.

Proposition 12. Let N be a positive integer such that N − 1
divides q − 1. Recall that q = pr for a positive integer r.
With the above notation, write A1 = {a0 = 0 < a1 < a2 <
· · · < az} the first set in the above given partition of A. Let
t ∈ {1, 2, . . . , z}, and set ∆ = ∆1 ∪∆2, where

∆1 = Ia0
∪ Ia1

∪ · · · ∪ Iat

and ∆2 is the union of the cyclotomic cosets with the re-
ciprocal elements (as in Theorem 4) to those in ∆1. Then
the dual code of EJ,σ∆ over Fp is LCD and has parameters:
[N − 1, N − 1 − card(∆),≥ 2at+1]p when J = {1}, and
[N,N − card(∆),≥ 2at+1]p otherwise (J = ∅).

Proof. Theorem 4 and Lemma 10 prove that our code is LCD.
Theorem 11 determines the dimension of our code since the
set ∆ only contains minimal cyclotomic sets. Finally, the
same reasoning as in Proposition 6 and the fact that we are
considering subfields-subcodes of J-affine variety codes given
by the union of consecutive minimal cyclotomic cosets proves
the bound for the minimum distance. Indeed, in this case
the minimum distance of the dual of the subfield-subcode
coincides with that of the subfield-subcode of the dual code
which is not less than that of the dual code.

Remark 13. Note that when J = ∅ and 3 = p 6 | N , we
may consider sets ∆1 as above such that IN1−1 is not in ∆2

(see Remark 5). In this case a reasoning close to the proof
of Propositions 6 and 8 shows that one can obtain ternary
codes with parameters [N,N−card(∆),≥ 2at+1−1]3, where
the dimension of the obtained code is one unit more than in
Proposition 12 because ∆ has one element less.

For the sake of generality, we provide formulae for the
dimension under certain assumptions. First, we need some
lemmas regarding cyclotomic sets, that are simply cyclotomic
cosets for the one-variable case. The first one is essentially [1,
Lemma 8].

Lemma 14. Let N > 1 be an integer such that N −1 divides
q− 1 and assume that pbr/2c < N − 1 ≤ pr− 1. Then, for all
1 ≤ a ≤ (N − 1)pdr/2e/(pr − 1), the cyclotomic sets Ia have
cardinality r.

Next we characterize symmetric cyclotomic sets. Recall that
q = pr and we are interested only in the cases p = 2 and
p = 3.

Lemma 15. Let N > 1 be an integer such that N −1 divides
q − 1, where p ∈ {2, 3}. Then, the cyclotomic set Ia, with
a > 0, is symmetric if and only if

a =
N − 1

pj + 1
,

for some j ∈ {0, 1, . . . , r− 1} such that pj + 1 is a divisor of
N − 1.

Proof. It follows from the fact that Ia is symmetric whenever
there exists j ∈ {0, 1, . . . , r − 1} such that a = N − 1− apj ,
that is a = (N − 1)/(pj + 1).

The following result gives sufficient conditions for asym-
metry of cyclotomic sets when m = 1.

Proposition 16. Keep the above notations, that is N > 1 such
that N − 1 divides q − 1 and p ∈ {2, 3}. Then:

• If r is odd, there are no symmetric cyclotomic set, unless
when p = 3 and 2 divides N −1. In this case, the unique
symmetric cyclotomic set is I(N−1)/2.

• Otherwise (for r even), one has that Ia is asymmetric if
a < (N − 1)/(p

r
2 + 1).

Proof. For a start we consider the case when r is odd. First
we assume that j = 0, then pj + 1 = 2. When p = 2, q− 1 =
2r−1 = 2(2r−1−1)+1 and so N−1 is odd, therefore pj+1
does not divide N − 1 and there is no symmetric cyclotomic
set by Lemma 15. In case p = 3, if N −1 is even, then pj +1
divides N − 1 and we have a cyclotomic symmetric set by
Lemma 15.

Suppose now that j > 0, write r = kj + l, 0 ≤ l < j,
and consider the Euclidean division between the polynomials
Xr − 1 and Xj + 1:

Xr − 1 =
(
Xr−j −Xr−2j +Xr−3j − · · ·+ (−1)k−1X l

)
·(

Xj + 1
)

+ (−1)kX l − 1.

Specializing X to the value p, we get that if j does not divide
r then pj + 1 does not divide q − 1. The same holds on the
contrary, when l = 0, since r odd implies k odd and the
remainder is not zero.

Finally assume that r is even. The symmetric cyclotomic set
with smallest representative is given by the largest divisor of
the form pj+1 of N−1, for j ∈ {0, 1, . . . , r−1}. The largest
possible divisor is given by j = r/2, hence the representative
of a symmetric set is larger than or equal to (N−1)/(p

r
2 +1)

and the result holds.

We are now ready to explicitly determine all the parameters
of some of the codes described in Proposition 12. We consider
the first cyclotomic set I0, pairs of asymmetric cyclotomic sets
and possibly, a symmetric cyclotomic and IN−1. Actually, our
next two results hold for any prime p.

Theorem 17. Keep the above notation where N is a positive
integer such that N − 1 divides q − 1. Assume that

pbr/2c < N − 1 ≤ pr − 1,
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and consider the first set of representatives of cyclotomic sets
A1 = {a0 = 0 < a1 < a2 < · · · < az} in the above given
partition of A. Let t ∈ {1, 2, . . . , z} be such that

at ≤ (N − 1)pdr/2e/(pr − 1),

and set ∆ = ∆1 ∪∆2, where

∆1 = Ia0
∪ Ia1

∪ · · · ∪ Iat

and ∆2 the union of the cyclotomic cosets with reciprocal
elements to those in ∆1. Then,

• If r is odd or if r is even and at 6= (N−1)pr/2/(pr−1),
the dual code of EJ,σ∆ , over Fp, is LCD and has param-
eters: [N − 1, N − 2tr − 2,≥ 2at+1]p when J = {1},
and [N,N − 2tr − 2,≥ 2at+1]p otherwise (J = ∅).

• If r is even and at = (N − 1)pr/2/(pr − 1), the dual
code of EJ,σ∆ , over Fp, is LCD and has parameters:
[N −1, N − (2t−1)r−2,≥ 2at+1]p when J = {1}, and
[N,N − (2t− 1)r − 2,≥ 2at+1]p otherwise (J = ∅).

Proof. The bound for the minimum distance follows from
Proposition 12. Next we give a proof for the dimension of
the codes.

If r is odd or if r is even and at 6= (N − 1)pr/2/(pr − 1),
then, by Lemma 14, the cardinality of all cyclotomic sets con-
sidered to define ∆ is r, excepting I0 (and occasionally IN−1

if J = ∅); note that both sets have cardinality 1. Moreover,
by Proposition 16, the cyclotomic sets Iaj , j 6= 0, N − 1,
considered to define ∆ are asymmetric, which concludes the
proof.

If r is even and at = (N − 1)pr/2/(pr − 1), then the
cardinality of all cyclotomic sets considered to define ∆ (with
the exception of I0 and possibly IN−1) is still r by Lemma
14. Furthermore, by Proposition 16, all the cyclotomic sets
considered to define ∆ are asymmetric but I0 and possibly
IN−1, and Iat which is symmetric. Therefore, the equality
2r(t− 1) + r = (2t− 1)r finishes the proof.

To conclude this subsection, we prove that using Lemma 9
in [1] one can avoid to consider representatives of cyclotomic
sets, however in some cases, one will obtain codes with
a smaller range of minimum distances. With our notation,
Lemma 9 in [1] is the following result.

Lemma 18. With the above notation, let N be a positive
integer such that N − 1 | pr − 1 and suppose that pbr/2c <
N − 1 ≤ pr − 1. If x, y are distinct integers in the range
1 ≤ x, y ≤ min{b(N − 1)pdr/2e/(pr − 1)− 1c, N − 2} which
are not zero modulo p, then the cyclotomic cosets defined by
x and y are different.

The latter lemma determines an interval of integers where
the corresponding cyclotomic sets are all different and allows
us to prove the following result.

Theorem 19. Let q = pr, where r is a positive integer and
p ∈ {2, 3}. Let N be a positive integer such that N−1 divides
q − 1 and pbr/2c < N − 1 ≤ pr − 1. Then, for each integer δ
such that 2 ≤ δ ≤ min{b(N−1)pdr/2e/(pr−1)c, N−2}, there

exist two LCD codes with length N − 1 and N , respectively,
designed minimum distance ≥ 2δ and dimension

k = N − 2(rd(δ − 1)(1− 1/p)e)− 2.

Proof. We are considering sets ∆ as above where t is the
largest integer such that at < δ ≤ at+1. Notice that the
conditions in our statement also fulfil the conditions in Lemma
14, and therefore all the cyclotomic sets (with the exception
of I0 and possibly IN−1) have cardinality r. Moreover,
since 2 ≤ δ ≤ min{b(N − 1)pdr/2e/(pr − 1)c, N − 2},
the representatives of the cyclotomic sets we use satisfy
1 ≤ a ≤ min{b(N − 1)pdr/2e/(pr − 1)− 1c, N − 2}. Under
this condition, Proposition 16 states that we have no symmetric
cyclotomic set (excepting I0). Finally, Lemma 18 guarantees
that, in order to compute the dimension of our codes, we only
have to count how many integers, in the range of the statement,
are not congruent with zero module p. The result holds since
there are exactly rd(δ − 1)(1− 1/p)e such integers.

By Remark 13, when 3 = p 6 | N and J = ∅, the hypotheses
in Theorems 17 and 19 allow us to construct codes of length
N of dimension one more and minimum distance one less
than those given in the mentioned results.

B. Binary and ternary LCD subfield-subcodes coming from
the multivariate case

In this section we state two results providing LCD codes
which are not reversible codes. They are obtained as dual
codes of subfield-subcodes of J-affine variety codes and reach
lengths that are not achievable with BCH codes. Our first result
considers subfield-subcodes of J-affine variety codes given by
the union of cyclotomic sets whose representatives are in the
box defined in Proposition 8 and the second one is similar but
taking representatives in the set ∆(J, t) defined in Proposition
9. Using Lemma 10, they can be proved reasoning in a similar
way as we did in Propositions 8 and 9. Our first result is the
following.

Theorem 20. Let Nj , 1 ≤ j ≤ m, be positive integers such
that Nj−1 divides q−1. Assume that J = {1, 2, . . . ,m} and
fix αj < Tj/2 if Tj is even and αj ≤ (Tj − 1)/2 otherwise.
Consider the subset of HJ , ∆ = L1 × L2 × · · · × Lm where
Lj = {Tj/2 − αj , . . . , Tj/2, . . . , Tj/2 + αj} if Tj is even
and Lj = {(Tj − 1)/2−αj , . . . , (Tj − 1)/2 +αj} otherwise.
Consider the cyclotomic sets {Ia}a∈A and let A∆ be the set
of representatives in A such that Ia ∩ ∆ 6= ∅. Set ∆σ :=
∪a∈A∆Ia.

Then, setting Aj = 2αj + 1, the (Euclidean) dual code of
the subfield-subcode EJ,σ∆σ is an LCD code with parameters[

nJ , nJ − card(∆σ),≥ min
j∈J
{Aj + 1}

]
p

.

Finally we state the second result.

Theorem 21. Let Nj , j = 1, 2, . . . ,m, be a positive integer
such that Nj − 1 divides q − 1. Fix another positive integer
t such that t ≤ nJ =

∏
j /∈J Nj

∏
j∈J(Nj − 1), assume that

p|Nj for all j 6∈ J and consider the set N(J, t) defined before
Proposition 9.
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Consider the cyclotomic sets {Ia}a∈A and let AN(J,t) be
the set of representatives in A such that Ia ∩ N(J, t) 6= ∅.
Set N(J, t)σ :=

⋃
a∈AN(J,t)

(Ia ∪ Ira), where Ira means the
family of reciprocal to Ia cyclotomic sets.

Then, the (Euclidean) dual of the subfield-subcode EJ,σN(J,t)σ

is an LCD code with parameters

[nJ , nJ − card(N(J, t)σ),≥ t]p.

Remark 22. The construction in Theorem 21 can be improved
from the point of view of subfield-subcodes when J 6= ∅
by noticing that the code Hyp(J, t)⊥ is monomially equiv-
alent to EJN0(J,t) (see [19] for the definition and properties
of monomially equivalent codes), where N0(J, t) is given
by the monomials Xb/Xε, for b in N(J, t), where Xε is
equal to

∏m
j=1X

εj
j and εj as defined in Lemma 7. Then,

with the same notation as in Theorem 21, but replacing
N(J, t) with N0(J, t), we obtain LCD codes with parameters
[nJ , nJ−card(N0(J, t)σ),≥ t]p. Cyclotomic sets where some
coordinates are zero have lower cardinality which improves the
dimension of the dual codes. This approach will be used in
some of our examples in the next section.

III. EXAMPLES

The main references giving parameters of binary and ternary
LCD codes are [17], [18], [23]. All of them use BCH codes,
the two first papers obtain LCD codes for concrete lengths and
distances on arbitrary finite fields and the latter, from suitable
representatives of cyclotomic cosets, computes parameters
for some binary LCD codes which, according to [14], are
optimal or BKLC (best known linear codes). We will use
this terminology along this section. In the following two
subsections, we will give examples of good binary and ternary
LCD codes obtained with our results.

As regards binary LCD codes obtained from the univariate
case, by using Theorems 17 and 19 we are able to improve
some codes in [17] which are also given in [23]; in this
particular case, the main advantage of our procedure is that
we can avoid computing cyclotomic sets (cosets in this case)
and we obtain new codes not provided in [23]. Also for the
univariate case, we provide new examples of ternary LCD
codes which are optimal or BKLC.

With respect to the multivariate case, Theorem 21 and
especially its version in Remark 22 give rise to generic families
of binary and ternary LCD codes. Some of them are shown
below and for some concrete values they provide new LCD
codes which are optimal or BKLC.

To the best of our knowledge, unless otherwise is stated,
the parameters of the codes provided in this section are new.
The references above mentioned only consider LCD binary
cyclic codes of length lower than 258 [23] or LCD binary and
ternary codes of length pl + 1, pl − 1 and (pl − 1)/(p − 1),
for p = 2, 3 and l > 0, [17], [18]. However our codes are
mostly of different lengths from the previous ones. Moreover,
we provide some codes with lengths covered by [17], [18] but
that have better parameters. Finally, we show that these codes,
besides being new, according to [14], have good parameters.

A. Binary LCD codes

We devote this subsection to provide some examples of new
binary LCD codes.

Example 1. Theorem 19 allows us to get new binary LCD
codes with large length and minimum distance. For example,
if we consider p = 2, r = 14 and N = 5462 (note
that 3 · 5461 = 214 − 1), we get LCD codes with param-
eters [5461, 4984, 70]2, [5461, 4956, 74]2, [5461, 4928, 78]2,
[5461, 4900, 82]2, [5461, 4872, 86]2 and [5461, 4844, 90]2.
These codes are new since the there is no binary LCD code
in the literature with this length. Moreover, all of them exceed
the Gilbert-Varshamov bound.

Example 2. Now, we give an example of an optimal LCD
code which can be obtained applying Remark 22. With the
notation as in Theorem 21, p = 2, r = 4, J = {1, 2, 3},
N1 = 16 and N2 = N3 = 4. Thus nJ = 135 and for t = 4, it
holds that

N0(J, t)σ = {(0, 0, 0), (0, 0, 2), (0, 0, 1), (0, 2, 0), (0, 1, 0),

(2, 0, 0), (4, 0, 0), (8, 0, 0), (1, 0, 0),

(14, 0, 0), (13, 0, 0), (11, 0, 0), (7, 0, 0)},

and we obtain a code with parameters [135, 122, 4]2 which is
optimal. These parameters do not appear in [23] because it
is not cyclic and it has a length not considered in [17], [18].
Thus, the code is new.

Example 3. With the previous notation, consider p = 2, r =
4, J = {1, 2, . . . ,m}, N1 = N2 = · · · = Nm = 4 and t = 4.
Again by Remark 22, it holds that

N0(J, t) =
{

(0, 0, . . . , 0), (1, 0, . . . , 0), (2, 0, . . . , 0), . . . ,

(0, 0, . . . , 1), (0, 0, . . . , 2)
}
.

Then, we get LCD codes with parameters [3m, 3m−2m−1,≥
4]2. According to [14], these codes are optimal for 2 ≤ m ≤ 5
and most of their lengths are not considered in [23], [17], [18].

Another example with the same values Ni, 1 ≤ i ≤ m, but
larger minimum distance is obtained by setting m = 3 and t =
12. Then N0(J, t)σ consists of the exponents of the monomials
Xa/Xε as defined in Remark 22, a in HJ , excepting

{(2, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 2, 1), (1, 1, 2)}.

Therefore, we get an LCD code with parameters [27, 6, 12]2
which according to [14] is optimal. As in Example 2, the
length of this code is not covered by [23], [17], [18].

Example 4. The same technique in Example 3, with p = 2
and r = 4, but decomposing m = m1 + m2 and considering
N1 = N2 = · · · = Nm1

= 4 and Nm1+1 = Nm1+2 = · · · =
Nm = 6 gives LCD codes with parameters

[3m15m2 , 3m15m2 − 2m1 − 4m2 − 1,≥ 4]2.

Some optimal LCD codes in this family have parame-
ters [45, 36, 4]2, [75, 64, 4]2, [81, 72, 4]2, [125, 112, 4]2 and
[200, 187, 4]2.
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Analogously, one can consider r = 6 and N1 = N2 = · · · =
Nm1 = 4 and Nm1+1 = Nm1+2 = · · · = Nm = 8, obtaining
LCD codes with parameters

[3m17m2 , 3m17m2 − 2m1 − 6m2 − 1,≥ 4]2.

Within this family, there are optimal LCD codes with param-
eters [63, 52, 4]2 and [189, 176, 4]2.

We give two other families of binary LCD codes. Consider
N1 = 2k/2 + 2, k even, and N2 = N3 = · · · = Nm = 4.
For suitable values of r, we get LCD codes with parameters
[3m−1(2k/2 +1), 3m−1(2k/2 +1)−2(m−1)−k−1,≥ 4]2 and
[3m−1(2k/2 + 1), 3m−1(2k/2 + 1)− 2(m− 1)− 2k− 1,≥ 6]2.
Some good LCD codes in these families have the following pa-
rameters: [153, 140, 4]2, [45, 32, 6]2, [135, 118, 6]2, [51, 40,≥
4]2 and [153, 132,≥ 6]2. All of them are optimal with the
exception of the last two which are BKLC. The lengths of the
codes provided in this example –except 63– are not considered
in [23], [17], [18]. Theorem 33 in [18] provides an LCD code
with parameters [63, 30, 4]2 which has worse parameters than
our code.

B. Ternary LCD codes

In this section we show some examples of good ternary
LCD codes derived from our results.

Example 5. In this example we use Proposition 12 for giving
new and good ternary LCD codes. Set p = 3 and let r =
5 and N = 243, we obtain LCD codes which are BKLC
with parameters [242, 201 ≥ 14]3, [242, 181 ≥ 20]3. Note that
these codes have better parameters than the LCD codes with
parameters [242, 191 ≥ 14]3, [242, 171 ≥ 20]3 given by [18,
Theorem 33].

For r = 8, after computing the corresponding cyclo-
tomic sets, one can check that all of them (with the ex-
ception of I0 in case J = ∅) are symmetric. Then A1 =
{0, 1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 41}. Thus, we obtain codes
with parameters:

[82, 81, 2]3, [82, 73, 4]3, [82, 65, 8]3, [82, 57, 10]3,

[82, 49, 14]3, [82, 41, 16]3, [82, 33, 22]3, [82, 25, 26]3,

[82, 17, 28]3, [82, 9, 32]3, [82, 1, 82]3.

Moreover the codes with parameters

[82, 81, 2]3, [82, 65, 8]3, [82, 57, 10]3, [82, 49, 14]3, [82, 1, 82]3,

are BKLC. Notice that in this last case we provide the true
minimum distance; the parameters of the codes with minimum
distance 4, 8 and 10 are not new, they were obtained in [17,
Example 22].

Example 6. With the same notation as in the above example,
let p = 3 and r = 8. Setting N = 42, it holds that A1 =
{0, 1, 2, 4, 7, 8} and we obtain ternary LCD codes with length
41 and 42 and the same dimension and minimum distance.
The parameters in the first case are:

[41, 40, 2]3, [41, 32, 5]3, [41, 24, 8]3, [41, 16, 14]3, [41, 8, 22]3,

where those with minimum distance 2, 5 and 22 are BKLC; as
before, we are providing the true minimum distance. Articles
[17], [18] do not provide LCD codes with length 41. Examples
33 and 40 in [17], provide LCD codes with parameters
[40, 31, 4]3, [40, 23, 8]3, and [40, 5, 20]3.

Example 7. Here we apply the same procedure we used for
constructing the first family of LCD codes in Example 4. Set
p = 3, r = 8, m = m1 +m2 +m3, N1 = N2 = · · · = Nm1 =
3, Nm1+1 = Nm1=+2 = · · · = Nm2

= 5 and Nm1+m2+1 =
Nm1+m2+2 = · · · = Nm = 6. Then we get LCD codes with
parameters

[2m14m25m3 , 2m14m25m3 −m1 − 3m2 − 4m3 − 1,≥ 4]3.

Some optimal codes in this family have the following parame-
ters: [16, 11, 4]3, [32, 26, 4]3, [128, 120, 4]3 and [64, 57, 4]3. A
BKLC with parameters [160, 150,≥ 4]3 belongs also to the
previous family.

An analogous reasoning as was given for the last family of
codes in Example 4 gives rise to a new family of LCD codes
with parameters

[2m−1(3k/2 + 1), 2m−1(3k/2 + 1)− (m− 1)− k − 1,≥ 3]3.

Some codes in this family have true minimum distance equal
to 4 with parameters [20, 14, 4]3, [40, 33, 4]3, [56, 48, 4]3 and
[164, 154, 4]3. The first two codes are optimal and the last two
are BKLC.

Finally, again for p = 3, any r, N1 = N2 = · · · = Nm = 3
and J = {2, 3, . . . ,m} we have that Remark 22, for t = 4,
gives a set N0(J, 4) containing the elements of the axes and
their reciprocal. When the non-vanishing coordinate is not the
first coordinate, there is only one new reciprocal element and
therefore we consider two elements in N0(J, 4)σ; otherwise
we must consider three elements instead, since one of them
is symmetric. This procedure gives rise to LCD codes with
parameters [3 · 2m−1, 3 · 2m−1 − 2m− 1,≥ 4]3. For instance,
for m = 7, the parameters are [192, 177,≥ 4]3; codes with
the same parameters and distance one unit more are optimal.
To the best of our knowledge there are no known LCD codes
with the same length as the codes in this example, with the
exception of [40, 33, 4]3. However, Example 33 in [17] gives
an LCD code with parameters [40, 31, 4]3, which has again
worse parameters than the code provided in this example.
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