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Abstract 

This paper proposes for the first time to analyse the impact of embedding the regulatory 

framework constraints inside a model for the energy management optimization of a microgrid. 

As a case study, a low voltage microgrid using solar energy under the Spanish self-

consumption scheme has been selected. The proposed model is based on a previous one 

elaborated by the authors, which did not include the regulatory framework. The results provided 

by the former and the new model have been compared, corroborating the importance of taking 

into account the economic aspects of the regulatory constraints when managing the facility. 

Furthermore, the results also highlight the urgency to extrapolate this approach to other 

countries, in order to enhance the economic feasibility of these facilities and aid to their 

deployment. In addition, the performance of the model has been experimentally validated at the 

Microgrid Research Laboratory of Aalborg University. 



2 

 

Keywords 

Self-Consumption, microgrid, energy management, regulatory framework 

 

1. Introduction 

The European Union’s (EU) energy policy has made it a world leader in the promotion of 

renewable energy [1]. The consumer rights and protection are a crucial part of this policy. In this 

regard, the EU is currently working to guarantee that the European consumers may have the 

right to produce, store, consume, and resell their self-generated electricity to the grid. In fact, 

self-consumption is nowadays a reality in a significant part of the EU countries and around the 

world [1].  It is expected to be a promising tool to promote renewable energy in the tertiary and 

domestic sectors, with microgrids being an intrinsic part of the self-consumption facilities. 

Hereof, research on microgrids has deserved special attention in these last decades, and 

some recent studies have focused on reviewing their evolution. Some of these reviews provide 

a holistic view of the microgrid concept and allow to see its intricacies [2], while others focus 

their attention on specific parts or processes, such as energy management systems (EMS) of 

microgrids [3, 4]. In this regard, an update on the state of the art of the EMS has been here 

conducted, elaborating on the studies [3, 4]. This update includes both new articles and some 

older ones not covered by the aforementioned reviews. The resulting upgraded state of the art 

is shown in Table 1. 

Table 1. State of the art of microgrid research. Source: self-elaboration based on [3, 4]. 

The rows of Table 1 are grouped into two sections. Whereas the upper rows contain 

references using single objective optimisation (SOO), the lower rows collect those with a multi-

objective optimisation (MOO) approach. Both the SOO and the MOO sections of Table 1 are 
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further divided into new subsections containing the most relevant objective functions identified 

in [3]. Likewise, the columns of Table 1 are grouped into two sections. The columns on the left 

side include references considering a single energy vector (electricity), while the columns on the 

right side gather those using multiple energy vectors (electricity, heating/cooling and/or water). 

In turn, a second level of classification is established in each of the single/multiple energy vector 

sections, according to the implementation or not of a demand response system in the microgrid 

EMS. Finally, the references are sorted depending on whether additional features such as grid 

model, uncertainty, experimental validation, regulatory framework, etc., are considered. 

As can be seen in Table 1, SOO prevails over the MOO approach. Regarding the objective 

function type, the minimisation of the system operating cost is the most spread, followed by the 

minimisation of the energy purchasing cost and the maximisation of the revenue of energy 

selling. At all events, economic considerations in the objective function predominate over the 

environmental issues. On the other hand, electricity is the only energy vector considered by 

over 65% of the references, and 78% of the studies do not contemplate the use of a demand 

response system when managing the energy system. Also, 58% of the references include some 

of the listed additional features in their models. In this regard, 38% of the studies opted for 

incorporating uncertainty in their analyses. 

Nevertheless, to the authors’ knowledge and according to the state of the art in Table 1, 

97% of the analysed research don’t incorporate in their algebraic models the regulatory 

constraints. This is at least surprising considering the deep impact of the regulatory frameworks 

in the economic performance of the energy assets [98, 99]. Even though the energy sector is 

highly regulated, only a few articles [88, 91, 97] contemplated the use of regulatory constraints 

in their models, but they did not analyse neither their impact nor their importance. As a result, 

the lack of studies  elucidating the influence of regulatory constraints on energy management 

results may induce to think that there is no need to incorporate such limitations in the models. 

To overcome this gap, the article is aimed to give clear evidence that regulatory framework 

constraints alter the optimal energy management of a microgrid. To do so, a model used in 

previous works [59,60] has been modified in order to consider the regulatory framework applied 



Table 1. State of the art of microgrid research. Source: self‐elaboration based on [3, 4]. 

Electricity  Electricity, Heat (cooling) and (or) Water 

Type of management  Type of management 

 

Energy management 
Energy management and  
Demand Response System 

Energy management 
Energy management and  
Demand Response System 

N
o
 a
d
d
it
io
n
al
 f
ea
tu
re
s 

Dealing With additional features 

N
o
 a
d
d
it
io
n
al
 f
ea
tu
re
s 

Dealing With additional features 

N
o
 a
d
d
it
io
n
al
 f
ea
tu
re
s 

Dealing With additional features 

N
o
 a
d
d
it
io
n
al
 f
ea
tu
re
s 

Dealing With additional features 

 

P
o
w
er
 f
lo
w
 

 /
G
ri
d
 m

o
d
el
 

     
 

U
n
ce
rt
ai
n
ty
 

 

Ex
p
er
im

en
ta
l 

 v
al
id
at
io
n
 

R
eg
u
la
to
ry
 

 f
ra
m
ew

o
rk
 

O
th
er
s 

P
o
w
er
 f
lo
w
 

 /
G
ri
d
 m

o
d
el
 

 

U
n
ce
rt
ai
n
ty
 

 

Ex
p
er
im

en
ta
l 

 v
al
id
at
io
n
 

R
eg
u
la
to
ry
 

 f
ra
m
ew

o
rk
 

O
th
er
s 

P
o
w
er
 f
lo
w
 

 /
G
ri
d
 m

o
d
el
 

 

U
n
ce
rt
ai
n
ty
 

 

Ex
p
er
im

en
ta
l 

 v
al
id
at
io
n
 

R
eg
u
la
to
ry
 

 f
ra
m
ew

o
rk
 

O
th
er
s 

P
o
w
er
 f
lo
w
 

 /
G
ri
d
 m

o
d
el
 

 

U
n
ce
rt
ai
n
ty
 

 

Ex
p
er
im

en
ta
l 

 v
al
id
at
io
n
 

R
eg
u
la
to
ry
 

 f
ra
m
ew

o
rk
 

O
th
er
s  

Ty
p
e 
o
f 
O
b
je
ct
iv
e 
Fu
n
ct
io
n
s 

Si
n
gl
e
 O
b
je
ct
iv
e 
O
p
ti
m
iz
at
io
n
 (
SO

O
) 

Ty
p
e 
o
f 
O
b
je
ct
iv
es
 

M
in
im

iz
e 
th
e 

ri
sk
 /
 

D
ev
ia
ti
o
n
s 

 

[7
3
,7
4
,8
1
] 

[7
0
] 

[7
0
,7
4
,8
1
] 

        [6
9
] 

   

[8
]               

 

   

M
in
im

iz
e 

p
o
llu
ti
n
g 
ga
s 

em
is
si
o
n
 

[3
6
,5
4
,5
8
] 

  [4
0
] 

              [5
6
] 

             

 

   

M
ax
im

iz
e 
th
e 

re
ve
n
u
e 
o
f 

M
G
 

[3
6
,5
8
,6
3
,8
0
, 

8
3
] 

[1
6
,2
5
,2
6
,5
2
] 

[6
,1
6
,2
5
,2
6
, 

5
5
,5
9
] 

[1
5
] 

   

[3
3
,2
5
] 

     

[8
,1
8
,3
4
,5
6
] 

 

[1
7
,2
3
,5
1
] 

  [8
8
] 

 

[7
,2
9
,3
2
,5
0
] 

[1
1
] 

[1
1
] 

[1
1
] 

[9
7
] 

 

M
ax
im

iz
e 

co
m
fo
rt
 

/e
n
e
rg
y 

o
u
tp
u
t 
D
ER

 

 

[6
6
] 

[7
0
,8
4
] 

[7
0
] 

                           

 

   

M
in
im

iz
e 
th
e 

sy
st
em

 

o
p
er
at
in
g 

co
st
 

[2
2
,3
0
,3
6
,5
4
,

5
8
,6
0
,9
4
] 

[5
,6
,1
6
,2
0
,2
5
,

2
6
,5
2
] 

[6
,1
6
,2
1
,2
5
, 

2
6
,2
8
,3
7
,4
0
, 

4
1
,4
2
,4
5
,4
6
, 

4
9
,5
5
,5
9
,6
5
,8
7
] 

[1
5
,2
1
,2
8
] 

  [7
5
] 

[3
3
,3
5
,6
2
] 

[7
2
] 

   

[8
,1
8
,3
1
,3
4
, 

3
8
, 5
6
,6
7
] 

 

[1
7
,2
3
,4
3
,5
1
,

8
9
] 

[8
2
,9
3
] 

[9
1
] 

 

[7
,2
9
,3
2
,5
0
] 

[1
1
] 

[1
1
,9
0
] 

[1
1
,7
6
,7
7
,7
9
] 

   



M
in
im

iz
e 
th
e 

en
er
gy
 lo
ss
 

  [5
] 

                               

 

   

M
in
im

iz
e 
th
e 

to
ta
l c
o
st
 f
o
r 

p
u
rc
h
as
in
g 

el
ec
tr
ic
it
y 

[2
2
,3
6
,5
8
,6
0
,

9
5
,9
6
] 

[5
,6
,1
6
,2
5
,2
6
,

5
2
] 

[6
,1
6
,2
5
,2
6
, 

,5
5
,5
9
] 

[1
5
] 

    [3
5
] 

     

[8
,1
8
,3
4
, 5
6
] 

 

[1
7
,2
3
,5
1
] 

     

[7
,2
9
,3
2
,5
0
, 

9
2
] 

[1
1
] 

[1
1
] 

[1
1
] 

   

M
u
lt
i‐
O
b
je
ct
iv
e 
O
p
ti
m
iz
at
io
n
 (
M
O
O
) 

Ty
p
e 
o
f 
O
b
je
ct
iv
es
 

M
in
im

iz
e 
th
e 

ri
sk
 /
 

D
ev
ia
ti
o
n
s 

[1
9
,6
4
] 

    [8
5
] 

                           

 

   

M
in
im

iz
e 

p
o
llu
ti
n
g 
ga
s 

em
is
si
o
n
 

[5
7
,6
8
,7
1
] 

 
[9
,4
4
,7
8
] 

         

[1
3
,2
7
] 

    [6
1
] 

  [1
4
] 

      [5
3
] 

 

 

   

M
ax
im

iz
e 
th
e 

re
ve
n
u
e 
o
f 

M
G
 

[1
9
,4
8
,5
7
,6
4
] 

[2
4
] 

[9
,1
2
,3
9
,4
7
] 

          [2
7
] 

        [1
4
] 

     

[1
0
,5
3
] 

 

 

   

M
ax
im

iz
e 

co
m
fo
rt
 

/e
n
e
rg
y 

o
u
tp
u
t 
D
ER

 

[4
8
] 

    [8
5
] 

                       

[1
0
,5
3
] 

 

 

   

M
in
im

iz
e 
th
e 

sy
st
em

 

o
p
er
at
in
g 

co
st
 

[1
9
,4
8
,5
7
,6
8
,

7
1
] 

[2
4
] 

[9
,1
2
,3
9
,4
4
, 

4
7
,7
8
] 

         

[1
3
,2
7
] 

    [8
6
] 

  [1
4
] 

         

 

   

M
in
im

iz
e 
th
e 

en
er
gy
 lo
ss
 

  [2
4
] 

                               

 

   

M
in
im

iz
e 
th
e 

to
ta
l c
o
st
 f
o
r 

p
u
rc
h
as
in
g 

el
ec
tr
ic
it
y 

[1
9
,4
8
, 5
7
] 

[2
4
] 

[9
,1
2
,3
9
] 

[8
5
] 

        [2
7
] 

    [8
6
] 

  [1
4
] 

     

[1
0
,5
3
] 

 

 

   

 



4 

 

to a consumer owning a microgrid. In addition, the characterisation of the regulatory framework 

has been realised accurately, not just conceptually. Concerning this, the Spanish regulatory 

framework has been selected for this study as it is considered one of the most complex systems 

in the EU countries, either due to its energy contracts or to the self-consumption scheme 

applied to consumers.  

To this end, the paper provides a description of the energy contracts and the self-

consumption regulatory scheme applied to low voltage consumers in Spain (section 2). Next, 

the research methodology is introduced (section 3) and the model addressing the regulatory 

framework (section 4) is described. Then, a case study is undertaken, and the obtained results 

are experimentally validated at the Microgrid Research Laboratory of Aalborg University 

(section 5) [100]. Finally, all the factors deemed relevant are duly systematised, and 

conclusions are raised (section 6). 

2. Setting the context  

2.1. Energy bill structure for low voltage consumers 

Low voltage consumers not exceeding 10kW are allowed to choose between two types of 

energy contracts, either those under the Royal Decree (RD) 216/2014 [101] (a sort of energy 

contract with regulated energy prices) or those under the rules of the liberalised energy market. 

The rest of low voltage and all the high voltage consumers are forced to hire energy in the 

liberalised energy market. In all cases, the resulting cost for a consumer is a function of the 

energy cost and the access tariff cost. In this article, the attention will be focused on the energy 

contracts in the liberalised energy market, as they are the common case of energy contracts 

applicable to all type of energy consumers.  

In Spain, the energy cost is the result of three processes, i.e., the cost of producing energy 

in the Iberian Electricity Market (IEM) (subjected to the RD 2019/1997 [102] and the Day-Ahead 
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and Intraday Electricity Market Operating Rules of May 2018 [103]), the energy transport and 

distribution losses and the economic margin of the retailer.  

Regarding the cost of producing energy in the IEM, sale and purchase bids are made one 

day ahead, considering between 1 and 25 energy blocks with their respective power and energy 

prices offers for each hour of the day. For purchase bids, preference is given to those bids that 

have the highest energy prices. For sale bids, it is quite the opposite. As a result, a marginal 

price is determined for each hour of the following day, called the daily market price (Pmh). 

Nevertheless, this price is increased due to the cost of all the required services addressed to 

guarantee the energy supply (technical constraints, ancillary services, capacity payments, etc.), 

resulting in a final price called average hourly final price.  

Due to the energy losses of the grid, a loss coefficient increasing the energy price is applied 

to the energy consumption according to the voltage level and the rated power of the consumers. 

Additionally, the commercial margin of the retailer is charged to the consumers, giving as a 

result, the final energy purchased price (fepph) 1. In this regard, the hourly demand of the 

consumer (DHh) is calculated according to this final energy purchased price, resulting in the 

energy cost (see Figure 1). 

The other significant term in the energy bill is the access tariff cost to the grid. In this regard, 

(article 16 of the Law 24/2013 [104] of the Spanish Electricity Sector (LSES)) the access tariffs 

are applied to energy consumers to guarantee the incomes of the Spanish Electricity Sector 

(SES) and the retribution of the regulated activities (mainly, transport and distribution and the 

specific retribution of renewable energy). According to the RD 1164/2001 [105] and its 

subsequent amendments, all the consumers of the SES are classified according to their voltage 

level and rated power. Each group has its corresponding type of access tariff, which, at the 

                                                      

1 Depending on the type of contract, this energy price might be charged to the consumer either in form of fixed rate (i.e., the 

energy price remains stable throughout all the hours of the day and month) or variable rate (the energy price may change 
depending on the period of the day, or from month to month, etc.) or indexed to the IEM (pass‐through). In this study, it was 
assumed that the consumer’s facility had an indexed contract as it is the type of contract where the variation of the energy prices 
in the IEM might be easily translated into economic decisions for the consumer. 
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same time, is composed by two terms, i.e., the energy term and the power term. The consumer 

will be charged for the energy consumption and the rated power according to the energy term 

(AE_Grid) and to the power term (AP_Grid), respectively (see Figure 1). 

 

Figure 1. Conceptual definition of the consumer’s total energy cost. Source: Self-elaboration. 

2.2. Describing 2015-2018 RD 900/2015 self-consumption regulatory 

framework applied to low voltage premises   

Article 9 of the LSES enabled consumers to produce and consume their own generated 

electricity. Nevertheless, it was not until 2015 when the economic scheme applied to self-

consumption became a reality by virtue of the RD 900/2015 [106].  

The RD 900/2015 defines two types of self-consumption economic schemes, i.e., Type I 

and Type II schemes. While the Type II scheme allows the consumer to sell the produced 

energy to the market, for Type I any excess generated energy injected into the grid will not be 

rewarded anyhow. 

Only consumers’ facilities with rated power (PR) equal or less than 100kW are 

authorised to opt for Type I scheme. Conversely, all the consumers (regardless their PR ) may 
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opt for the Type II scheme. Nevertheless, for both schemes the rated power of the generation 

facility (PVGN) cannot exceed the PR of the consumer's facility: 

				 	 	 	 1  

When the consumer’s PR is less than 100 kW, the electric scheme will be the same for 

either Type I or Type II economic schemes (see Figure 2). As can be seen, the only smart meter 

that is shown in Figure 1 remains connected in Figure 2, after the point of common coupling of 

the facility. Besides, according to RD 900/2015 (article 11 and tenth transitory disposition) the 

energy storage system (ESS), if any, is forced to share the meters and protections of the 

generation facility. As a result, there are two differentiated power lines in a self-consumption 

facility, one related to consumption and the other related to power generation.  

When comparing Figure 1 and Figure 2 it is easy to realise that the self-consumption 

regulatory framework has introduced an amendment in the consumer’s bill due to the existence 

of the so-called self-consumption charges. These charges were first introduced by article 16 of 

the LSES2 to mitigate the economic impact regarding income reduction for the SES that self-

consumption might produce. In particular, self-consumption in Spain is taxed by means of two 

types of charges3, namely, the charges related to the cost of the SES (fixed charges and 

variable charges) and the charges related to other system services.  

In brief, some of the intricacies and complexity between the measures and the charges 

are depicted in Figure 2. As it can be seen, all charges are related somehow to the 

measurements of meters 1 and 2, either regarding power or energy. 

                                                      

2 As well as RD 900/2015, articles 17 and 18.  
3 RD 900/2015, articles 17 and 18. 
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Figure 2. Electric scheme and conceptual definition of the energy cost for a generalised low voltage consumer with a  

Type I self-consumption facility. Source: Self-elaboration based on [106]. 

3. Applied methodology 

A representation of the different stages followed in this study is made in Figure 3. After the 

analysis of the Spanish self-consumption regulatory framework, a new EMS model able to 

consider the regulatory restrictions introduced by the RD 900/2015 was developed. In this 

model, the formulation of the physical elements of the facility was based on a former model 

used by the authors in a previous study [60]. To compare how the constraints related to the self-

consumption regulatory framework might alter the energy management of a microgrid, a case 

study of a low voltage facility with a rated power less than 10kW4 was undertaken. In the case 

study, the optimal energy management of the energy asset was determined by using both the 

                                                      

4
 According to the First Transitory Disposition of RD 900/2015, facilities under the Type I self‐consumption scheme with PR not 
exceeding 10kW are exempt to pay the variable charges. Despite this fact, as a worst‐case scenario, most companies promoting 
and installing facilities under the self‐consumption scheme do not consider this exemption when analysing the economic results of 
the energy asset (due to the "transitory" characteristics of this Disposition). In the same way, the study here conducted does not 
contemplate this exemption in the new model formulation. 
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former and the new energy management models. The results of the two models were compared 

to determine the effects of the self-consumption regulatory framework on the energy 

management of the microgrid. Next, an experimental validation was conducted to corroborate 

the theoretical results, and finally, a set of conclusions regarding the research study were 

drawn.   

 

Figure 3. Methodology applied in the research study. Source: Self-elaboration. 
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4. New model description  

4.1. New model with self-consumption regulatory restrictions 

The new model is based on a previous authors’ work [60] and it is defined in time discrete 

values, with h being the elementary unit of time within the range of twenty-four hours h=1,	2,	...,	

24 and 24∙Δh its time horizon. The main variables of the model are depicted in Figure 4, and its 

central intrinsic relations are stated in the following.  

 

Figure 4. Electrical scheme according to RD 900/2015 for a low voltage consumer  

with rated power equal or less than 100kW. Source: Self-elaboration based on [106]. 

a) Energy balance 

The formulation of the energy balance is consistent with the definitions and the electrical 

scheme stated by the RD 900/2015. As can be seen in Figure 4, two complementary energy 

balances can be formulated at the nodes after the meters 1 and 2:  

_ _ _ , _ , , _ , , _ 0, ∀	

	 	 2  

_ _ ,			 _ , , _ , 0, ∀	 	

	 	 3 	
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with  EX_Ch being the aggregated hourly consumption of the overall facility, EX_Eh the 

aggregated hourly injected  energy into the grid, C_EHCh the aggregated hourly consumption of 

the consumer, EHCh and EGEh the aggregated hourly consumption and the aggregated net 

hourly generation related to the power generation line of the facility, CSAh the aggregated hourly 

auxiliary consumption related to the RES and the ESS, EGTh the aggregated net hourly 

generation related to the RES, and ES_Ch and ES_Eh the aggregated hourly charged and 

discharged energy in the entire set of the ESS, respectively. 

b) Generation 

EGTh		in eq. (4) is calculated as: 

∑ , , 0, ∀	 							 	 	 4 	

The new model contemplates a set of renewable energy sources (RES) present in the 

microgrid, with index t. The energy supplied by the RES t  at a particular hour h  (EGTt,h) is 

defined according to the following equations:  

, , ∙ ∆ ,			 , , , 0,			∀	 , 		 	 5 	

	 _ , , ∀	 , 					 	 	 6  

_ , _ , , , 0, ∀	 , 							 	 	 7 	

Where PGTt,h is the power provided by the RES t within the hour h, PGT_Maxt,h is the 

maximum value of PGTt,h, and PGT_curtt,h is the power curtailed from PGT_Maxt,h for the RES t  

within the hour h. 

c) Storage 

Concerning the storage system, there is a set of different types of ESS present in the 

microgrid, with index ts. Nevertheless, the storage formulation in the new modelchanged 

compared to the previous model in [60]. The expression of the state of charge (SoCts,h) for the 
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ESS ts within the hour h was modified by adding two new variables PS_Cts,h and PS_Ets,h, which 

are, respectively, the power charge and discharge of the ESS ts	within the hour h. According to 

this SoCts,h is defined as: 

, ,
_ , _ ,

_
,			 , , _ , , _ , 0, ∀ , 				 	 8 	

Where PST_Nts is the nominal power of the ESS ts, In this regard, the SoC is forced at the 

end of the time horizon to be equal to or greater than its initial value: 

∑ , , 0, ∀ , 23				 	 	 	 9 	

ES_Ch and ES_Eh are calculated as: 

_ ∑ _ , , _ 0, ∀ 				 					 	 	 10 	

_ ∑ _ , , _ 0, ∀ 				 					 	 	 11 	

with ES_Cts,h and ES_Ets,h being the energy charged and discharged, respectively, to the ESS 

ts within the hour h, which are calculated as: 

_ , _ , ∙ ∆ ,			 _ , 0, ∀ , 							 	 	 12 	

_ , _ , ∙ ∆ ,			 _ , 0,			∀ , 				 	 	 13 	

_ _ , 0, ∀ 				 					 	 	 14 	

Another constraint on the SoC has the purpose of avoiding any chance of overcoming its 

cap value (SoC_Maxts) and its floor value (SoC_Mints). Consequently, for a better performance of 

the energy management of the ESS, a threshold SoC (SoC_thts) is introduced for each ESS to 

limit the values of PSTts,h. By using the binary variable Statusts,h, the model can determine 

whether the SoC is above SoC_thts.	In this case, Statusts,h turns to 1 and limits the value of PS_Cts,h 

and PS_Ets,h,  between more restrictive discharge (PS_E_thts) and charge (PS_C_thts) threshold 
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limits. Otherwise, the charge and discharge limits are widened to PS_C_Maxts and PS_E_Maxts, 

respectively. 

, _ , ∙ 	 _ _ 				 	 	 	 15 	

, _ , ∙ 	 _ _ 				 	 	 	 16 	

_ , _ _ 1 , ∙ 	 _ _ _ _ 					 	 17 	

_ , _ _ 1 , ∙ 	 _ _ _ _ 					 	 18 	

d) Energy incomes and costs  

The equations related to the grid energy cost (with and without self-consumption) are 

described according to the conceptual model proposed in [107] to simplify the model 

formulation: 

a. Energy cost without self-consumption 

_ _ _ ∙ _ 1 _ ∙ _ 1 _ 																																					

19 	

_ 1 	∑ _ 1 																																					 20 	

_ 	∑ _ 1 ∙ 																																					 21 	

with Energy_M1 , Energy_M1h and Power_M1 being the daily and hourly energy and the 

power related to the meter 1 in Fig. 4. 

b. Energy cost with Type 1 self-consumption 

_ _ _ _ _ ∙ _ 1 _ ∙

_ 2 _ _ ∙ _ 1	 _ ∙ _ 2 _ 																																					

22 	
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with E_Charges and P_Charges being the energy and power charges defined by the RD 

900/2015 according to the voltage level and type of self-consumption, and Energy_M2 and 

Power_M2  the daily energy and power related to the meter 2 in Fig. 4.  

c. Income and cost with Type II self-consumption 

In case of being under the Type II scheme, the owner of the facility would not only be 

considered a consumer but also a producer. As a producer, the owner would perceive an 

emolument (INC_Self) for the energy injected into the grid (eq. (23)), but at the same time, would 

undergo the costs (IMP_INC,	IMP_EGE) arising from the charges and taxes applied to the 

producers by the Royal Decree-Law (RDL) 14/2010 [108] and the Law 15/2012 [109], 

respectively (eq. (24)):  

_ ∑ _ ∑ _ 1 ∙ 				 	 	 23 	

_ _ _ _ 						 	 	 24 	

e) Generation and storage cost 

The daily generation (CT_EGT ) and storage (CT_St) total costs are the sums of their 

fixed (CF_G,	CF_St) and variable (CV_G,	CV_St) costs (Eqs. (25), (26)). In this regard, fixed 

costs are the product of the power rating of each RES and ESS of the facility and the values 

of the fixed cost parameters for each technology (CF_Gt and CF_Stts) (Eqs. (27), (28)). In the 

same way, the variable costs of each RES and ESS of the facility are a function of the 

energy delivered or consumed (Eqs. (29), (30)).  

CT_EGT CF_G CV_G	 	 								 																				 25 	

CT_St _ CV_St		 							 																																											 26 	

_ ∑ CF_Gt∙PGTtt 	 	 																																						 27 	

_ ∑ CF_Stts _ts 	 	 																																													 28 	
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CV_G ∑ ∑ EGTt,h CV_Gth 	 																																																			 29 	

CV_St ∑ ∑ _ , 	 _ , _ts 	 																																	 30 	

f) Objective function 

A new objective function is introduced, based on the Earnings Before Interest Taxes 

Depreciation and Amortization (EBITDA). It is addressed to optimise the savings of the system 

by minimising the difference between the EBITDA of the former model and the new EBITDA 

(EBITDA_Self) under the self-consumption scheme. This function is defined as follows: 

O_function _ 				 		 	 	 31 	

Which for a Type I self-consumption scheme amounts to: 

O_function _ _ _ _ _ 						 	 	 32 	

And for a Type II self-consumption scheme:	

O_function T _ _ _ _ _ _ _ _ 		 33   

4.2. Regarding the meters and the need of using a disjunctive program  

Both the energy cost and income present a disjunctive nature. That is, either the facility is 

consuming energy from the grid (in which case there will be an energy cost for the system and, 

consequently, no energy income at all) or it is injecting the surplus energy into the grid (in which 

case there will be an energy income but no energy cost). The same considerations apply to 

Meter 2. 

In this regard, the disjunctive nature between energy cost and incomes equations and the 

measurements of the meters was solved by using a disjunctive program. A disjunctive program 

can be formulated as a special type of MINLP whose constraints can be defined using the 
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logical “exclusive or” operator [110]. Concerning this, the big-M (BM) method was used to 

formulate the problem [111]. 

    

5. Case study: analysis of the impact of the RD 900/2015 Spanish 

self-consumption regulatory framework on the energy 

management of a low voltage microgrid  

5.1. Problem definition 

An actual consumer’s low voltage facility with PR	=5kW was used to analyse the impact of the 

Spanish self-consumption regulatory framework on the energy management of a microgrid 

(Figure 5). This microgrid is formed by a 2 kW PV system and an 8.9 kW ESS.  

The operating costs of the PV system and the ESS are, 36.1€/kW/year [112] and 

6.1€/kW/year and 0.49€/MWh [113], respectively. The other parameters related to the ESS, 

including the initial conditions of the ESS ts (SoCts,0) can be found in Table 2. 

 

PS_C_Maxts	

[W]	

PS_E_Maxts	

[W] 

PS_C_thts	

[W] 

PS_E_thts	

[W] 

SoC_Maxts SoC_Mints SoC_thts SoCts,0 

1000 1000 100 100 1 0.4 0.96 0.6 

Table 2. Parameters related to the ESS model. 
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The values of the access tariff cost and the self-consumption charges were provided by the 

several Spanish Ministerial Orders such as IET 107/2014 [114] and ETU 1976/2016 [115]. In 

Figure 5, the consumption of the system, the maximum capacity of generation and the energy 

prices are also depicted. 

 

Figure 5. Conceptual approach to the problem description. Source: Self-elaboration. 

The facility has an EMS that optimises the consumer’s energy cost, which includes the 

required communication equipment for applying the set points to the DC/AC converters of the 

energy system. The employed model only states the optimal scheduling for one day and does 

not contemplate the optimal sizing of the power ratings of the facility components. The EMS is 

aimed to determine the energy plan of the microgrid, including production, storage and the 

energy exchange with the grid. This EMS has been operated considering the former model with 

self-consumption and the new model (Section 4) for both Types 1 and 2 of self-consumption. 

This facility was emulated at the Microgrid Research Laboratory of Aalborg University [100] 

using hardware in the loop (HiL) architecture. As can be seen in Figure 6, this architecture has 

three levels: the software level, the real-time simulator level and the physical level. 
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The software level was developed in the microgrid computer. There, using the developed 

models and the data storage, the EMS provided the scheduling to be applied to the system. The 

optimisation was achieved using the AIMMS Academic License [116] and its solver AIMMS 

Outer Approximation, as an Algebraic Modelling Language.  In the same way, the software level 

was also in charge of the substation monitoring. 

The real-time simulation level was performed on the platform dSPACE 1006, which includes 

the generation and consumption profiles, as well as a detailed model of a battery based energy 

storage system as proposed in [117]. This latter model allows reproducing the main dynamic 

and static characteristics of the battery variables such as voltage, current, and SoC. On top of 

that, the real-time level contains the controllers for the inverters implemented at the physical 

level, which are controlled as power sources or loads in accordance to generation or 

consumption profiles, presented in Figure 5, defined to emulate the behaviour of the renewable 

sources and the load, respectively. Meanwhile, the power references for the inverters that 

interconnect the energy resources are defined by the upper control levels to guarantee 

compliance with the energy plan provided by the EMS. The details of the control level can be 

read in [60].   Although the dSPACE platform was running in real time, the time slot of the 

energy profiles and the scheduling were scaled down to 60s. As a result, the whole simulation 

lasts 1440 s. Besides, the capacity of the ESS was also scaled in the same proportion [60]. 

Finally, the physical level is composed by the three inverters that emulate the PV system, 

the consumption, and the storage system which are interconnected to common AC bus through 

LCL filters, where a resistive load and the main grid are connected. The inverters are fed by a 

stiff regenerative DC source, which enables bidirectional power injections. The experimental 

setup was adapted to fit the electrical scheme imposed by the regulatory framework. The 

parameters of the microgrid are depicted in Table 3.  
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Figure 6. HiL implementation and experimental setup. 

 

Parameters Symbol Value 

 Power stage  

Nominal Voltage E* 230·√2V 

Nominal Frequency ω* 2·π·50 rad/s 

Inverter inductors L 1.8mH 

Filter Capacitor C 27μF 

Nominal Load C_EHC_N 1000W 

Maximum (RESs) and (ESSs) Power Rating Pmax 1600W 

Reactive power Reference Q* 0 VAR 
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 Battery Array  

Nominal Voltage Vbat 672V 

Regulation Voltage Vr 756V 

Nominal Battery Capacity Cbat 16Ah 

Table 3. Parameters of the microgrid 

5.2. Assessment of the results 

The results of both models applied to the facility under study are shown in Figures 7, 8 and 

9.  These figures are composed of six charts where different indicators of the facility are 

depicted. The charts belonging to the left side of the pictures illustrate the EMS scheduling 

results while those in the right side depict the experimental results of the EMS scheduling once 

applied on the setup. For each image, sections a, b and c represent, respectively, the inner 

relations between the consumption and generation line with the grid, the inner relationships in 

the generation power line and the performance of the ESS regarding its power and SoC. 

Figure 7 shows the results of the EMS when the former model is applied. Specifically, 

Figure 7.a represents the aggregated consumption of the consumer, the energy provided or 

injected into the grid (meter 1) and the energy consumed or supplied by the generation power 

line (meter 2). There it can be seen that during the first hours of the day (3 am to 6 am) the EMS 

is focused on charging the ESS. In this regard, when looking at the charts 7.b and 7.c, it is 

possible to see that the energy consumption measured by meter 2 (positive value) is coincident 

with the ESS charge. At 7 am, once the ESS has been charged at a value close to SoC_thts, the 

energy provided by the grid to the facility becomes zero (see meter 1), and all the energy 

required by the consumer is provided either by the RES or by the ESS. Regarding the RES, 

from 7 am to 9 am it contributes along with the ESS to provide the necessary energy to 
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guarantee the needs of the consumer. From 10 am to 18 pm, the RES performs a vital role in 

the system as it is responsible for charging the ESS near to its threshold limits and providing the 

necessary energy to the consumer. After that, it is the ESS the maximum energy contributor, 

discharging at the end of the day to its initial condition. As a result, the use of the former model 

by the EMS allowed the facility to reduce its energy consumption from the grid up to 56%. 

 

Figure 7. EMS solution applied to the facility under study according to 

the former model and its experimental results. Source: Self-elaboration. 

Next, Figures 8 and 9 provide the results of the EMS when the new model subjected to the 

Spanish self-consumption regulatory scheme is employed. In this regard, the regulatory 

constraints and the new objective function introduce a remarkable difference when managing 
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the energy consumed or injected into the grid. As a result, for both Types I and II of self-

consumption (see Figure 8.a and 9.a), just 5% of the energy consumption of the facility is 

provided by the grid, which is a non-despicable effect that highlights the importance to 

accurately define the regulatory constraints in models focused on managing this type of 

facilities. 

The only slight difference between both types of self-consumption lies on the fact that, for 

self-consumption Type II, the total amount of energy injected into the grid during the day (2.2 

kWh) is greater than the energy injected under the Type I scheme (1.6kWh). As the injection of 

the energy to the grid is rewarded in Type II scheme, this difference seems perfectly 

reasonable. In this regard, when comparing Figures 8.a and 9.a, it is easy to see that this 

incentive forces the EMS to increase the injection of the energy when the energy market price is 

higher to increase the value of the incomes. 

Regarding the energy management response in the self-consumption scheme, a resulting 

consequence of using the new model is that the elements belonging to the generation power 

line are forced to increase their participation in the energy supply (see Figures 8.b and 9.b) 

when comparing with the results of the former model (see Figure 7.b).  In the case of the ESS 

under Type I and II regulatory scheme, the increase of energy supplied by the ESS if compared 

with the former model was about 8.3% and 20.9%, respectively. Ergo, under both types of self-

consumption schemes, the ESS was compelled to reach its SoC limits (minimum and threshold) 

(see Figure 8.c and 9.c). Regarding the RES, this increase was even higher. For both types of 

regulatory schemes, the RES was forced to supply its maximum production of energy. 

Concerning the experimental results, the set of figures have also demonstrated the 

excellent performance of the local controllers of the setup, which proved to be able to follow the 

scheduling provided by the EMS. 
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Figure 8. EMS solution applied to the facility under study according to the  

Type I self-consumption scheme and its experimental results. Source: Self-elaboration. 
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Figure 9. EMS solution applied to the facility under study according to the  

Type II self-consumption scheme and its experimental results. Source: Self-elaboration. 

6. Conclusions   

A new model addressed to optimise the energy management of a low voltage microgrid 

has been developed. While most of all the existing models do not consider the regulatory 

restrictions applied to the facilities when optimising the energy management, the proposed new 

model contemplates in detail this type of constraints. 
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A low voltage microgrid under the Spanish self-consumption scheme was selected as a 

case study and emulated at the Microgrid Research Laboratory of Aalborg University. The 

obtained results were analysed to determine whether the modelling of the regulatory scheme 

was relevant or not for the management of these types of facilities. 

The results have corroborated the importance of considering the regulatory constraints 

when managing the facility, especially in relation to highly complex regulatory frameworks. 

Significant differences have appeared regarding the exchange of energy between the facility 

and the grid with and without taking into account the regulatory framework, such as a drastic 

reduction of the energy consumption provided by the grid and an increase of the use of the ESS 

and the RES of the system. These differences for the analysed case prove the weight that the 

regulatory constraints may have on the results of the optimisation process. 

Microgrids are called to be handy tools for the deployment of renewable energy systems, 

especially on buildings and industry. In this regard, the results also corroborate that those 

microgrid manufacturers interested in differentiating themselves from competitors might see the 

energetic and economic performance of their products increased by embedding these 

regulatory constraints in their EMS. In this regard, the Regulatory-Framework-Embedded 

energy management system approach could be a useful tool to improve the optimal use of 

microgrids. 
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Acronyms  

DER: Distributed Energy Resources 

EBITDA: Earnings Before Interest Taxes Depreciation and Amortization 

EMS: Energy Management System 

ESS: Energy Storage System 

EU: European Union 

HiL: hardware in the loop 

IEM: the Iberian Electricity Market 

LSES: Law of the Spanish Electricity Sector 

MINLP: Mixed-Integer Nonlinear Problem 

MOO: Multi-Objective Optimization Approach 

RD: Royal Decree 

RDL: Royal Decree-Law 

RES: Renewable Energy Source 

SES: Spanish Electricity Sector 

SoC: State of Charge 

SOO: Single Objective Optimization Approach 
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Indexes, parameters and variables 

Indexes 

h: time intervals within a day 

t: RES generators in the microgrid 

tl: electric appliances in the microgrid 

ts: ESSs in the microgrid 

Parameters 

AE_Grid: daily energy term of the access tariff cost [€/Wh] 

AP_Grid: daily power term of the access tariff cost [€/W]  

CF_Gt: fixed generation cost per unit of rated power of an RES t [€/W] 

CF_Stts: fixed storage cost per unit of rated power of an ESS ts [€/W] 

CV_Gt: variable generation cost per unit of energy of an RES t [€/Wh] 

CV_Stts: variable storage cost of an ESS ts [€/Wh] 

E_Charges, P_Charges: daily energy and power charges defined by the RD 900/2015 according to 

the voltage level and type of self-consumption scheme [€/Wh] and [€/W] 

Nts: total number of ESS in the microgrid 

PR: rated power of the consumer’s facility [W] 

PGT_Maxt: maximum power of an RES t [W]	

PST_Maxts,	PST_Mints: maximum positive (charge) and minimum negative (discharge) values of 

PSTts,h when SoCts,d,h  SoC_thts [W]	

PST_th1ts, PST_th2ts: positive (charge) and negative (discharge) limited values of PSTts,h when 

SoCts,d,h > SoC_thts [W] 
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PST_Nts: nominal power of an ESS ts [W] 

PS_C_thts, PS_E_thts:  limited values of PS_C_thts,h and PS_E_thts,h when SoCts,d,h > SoC_thts [W] 

PS_C_Maxts, PS_E_Maxts: maximum values of PS_C_thts,h and PS_E_thts,h when SoCts,d,h  SoC_thts [W] 

SoC_Maxts,	SoC_Mints: cap and floor values of SoCts,h for an ESS ts  

SoC_thts: threshold value of SoCts,d,h from which PST_Maxts	and	PST_Mints	are limited to PST_th1ts 

and PST_th2ts	

SoCts,0: the initial conditions of the ESS ts	

Δh: duration of the time intervals h [h] 

φts:  parameter of the ESS ts  

Variables 

CF_G: daily fixed generation cost [€]	

CF_St: daily fixed storage cost [€] 

CSAh: auxiliary consumption related to the RES generators and ESS  within the hour h [Wh]	

CT_EGT: daily total generation cost  [€]		

CT_St: daily total storage cost  [€]		

CV_G: daily variable generation cost [€]	

CV_St: daily variable storage cost [€] 

C_EGh: cost of the energy supplied by the grid within the hour h [€/Wh] 

C_EGTth: cost of the energy supplied by a RES generator t within the hour h [€/Wh]   

C_EHCh: aggregated consumption of the consumer within the hour h [Wh]	

DHh: consumer’s demand within the hour h [Wh]  

EGh: energy consumed from the grid within the hour h [Wh]  
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EGEh: net generation related to the power generation line of the facility within the hour h [Wh]	 

EGTh: energy supplied by the RES generators within the hour h [Wh]	

EGTt,h: energy supplied by a RES generator t within the hour h [Wh]  

EHCh: energy consumption related to the power generation line of the facility within the hour h 

[Wh]  

ELtl,h: energy consumption of the appliance l within the hour h [Wh]	

ELossesh: average energy loss in the microgrid within the hour h [Wh]	

Energy_M1,	Energy_M2: daily energy measured by meter 1 and by meter 2, respectively, under 

the self-consumption scheme [Wh]   

Energy_M1h: energy measured by meter 1 under the self-consumption scheme within the hour h 

[Wh] 

ESTts,h: energy charged (positive) or discharged (negative) of the ESS ts within the hour h [Wh]	

ES_Ch: energy charged to all the ESS within the hour h [Wh]  

ES_Cts,h: energy charged to the ESS ts within the hour h [Wh]  

ES_Eh: energy discharged from all the ESS within the hour h [Wh]  

ES_Ets,h: energy discharged to the ESS ts within the hour h [Wh]  

EX_Ch: consumption of the overall facility within the hour h [Wh]  

EX_Eh: energy injected into the grid within the hour h [Wh]  

fepph: purchased energy final price within the hour h [€/Wh]  

IMP_EGE: daily cost of the tax set by the Law 15/2012 [€] 

IMP_EX_E: sum of the costs of the charges and taxes applied to electricity producers under a 

Type II self-consumption scheme [€]  
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IMP_INC: daily cost from the charge set by the RDL 14/2010 [€] 

INC_Self: daily income related to the energy injected into the grid [€]	

Pmh: daily market price within the hour h [€/Wh]  

PGh: power provided by the grid within the hour h [W]  

PGTt,h: power provided by the RES t within the hour h [W]  

PGT_curtt,h: power of a RES t within the hour h curtailed from PGT_Maxt,h	 [W] 

Power_M1,	Power_M2: daily power measured by meter 1 and by meter 2, respectively, under the 

self-consumption scheme [W] 

PSTts,h: charged (positive) or discharged (negative) power of the ESS ts within the hour h [W]  

PS_Cts,h: charged power in the ESS ts  within the hour h [W] 

PS_Ets,h: discharged power in the ESS ts within the hour h [W]	

PVGN: rated power of the generation facility [W]  

Statusts,h: binary variable activated when SoCts,h SoC_thts  

SoCts,h: state of charge of the ESS ts within the hour h 
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