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A B S T R A C T

A significant challenge in surface electromyography (sEMG) is the accurate identification of onsets and offsets of
muscle activations. Manual labelling and automatic detection are currently used with varying degrees of re-
liability, accuracy and time efficiency. Automatic methods still require significant manual input to set the op-
timal parameters for the detection algorithm. These parameters usually need to be adjusted for each individual,
muscle and movement task. We propose a method to automatically identify optimal detection parameters in a
minimally supervised way. The proposed method solves an optimisation problem that only requires as input the
number of activation bursts in the sEMG in a given time interval. This approach was tested on an extended
version of the widely adopted double thresholding algorithm, although the optimisation could be applied to any
detection algorithm. sEMG data from 22 healthy participants performing a single (ankle dorsiflexion) and a
multi-joint (step on/off) task were used for evaluation. Detection rate, concordance, F1 score as an average of
sensitivity and precision, degree of over detection, and degree of under detection were used as performance
metrices. The proposed method improved the performance of the double thresholding algorithm in multi-joint
movement and had the same performance in single joint movement with respect to the performance of the
double thresholding algorithm with task specific global parameters. Moreover, the proposed method was robust
when an error of up to±10% was introduced in the number of activation bursts in the optimisation phase
regardless of the movement. In conclusion, our optimised method has improved the automation of a sEMG
detection algorithm which may reduce the time burden associated with current sEMG processing.

1. Introduction

Surface electromyography (sEMG) is widely used for measurement
of muscle activity in biomechanics, biomedical and sports science areas
(Hogrel, 2005; Reaz et al., 2006; Massó et al., 2010; Niazi et al., 2011;
Ahmadian et al., 2013; Karimi et al., 2017; Chowdhury et al., 2013;
Luca, 1997; Hermens et al., 2000). From sEMG recordings, the accurate
identification of intervals of muscle activity has applications in the
study of different pathologies such as neck or back pain (Falla et al.,
2004; Larivière et al., 2010), in analysis of event-related brain signals
(Boxtel et al., 1993) and in movement rehabilitation (Kawakami et al.,
2016; Cauraugh et al., 2000; Hara et al., 2013) among others. The
identification of these intervals is a multifaceted challenge, due to
difficulty in defining onsets and offsets (Magda, 2015), and large
variability in the amplitude of the sEMG signal across different muscles,
movement tasks and populations (Robichaud et al., 2009; Yang et al.,

2017). Furthermore, different applications involving online or offline
processing impose different constraints of time and computational
complexity (Drapała et al., 2012).

When the sEMG is processed offline, onsets and offsets are identified
either automatically using an algorithm (Chowdhury et al., 2013; Yang
et al., 2017; Guerrero and Macías-Díaz, 2014; Staude et al., 2001; Merlo
et al., 2003), or manually labelled by an expert (Falla et al., 2004;
Worsley et al., 2013; Moseley et al., 2003; Vasseljen et al., 2006;
Hodges et al., 2003). The limitations of the manual labelling method
are the time needed to label individual onsets/offsets and the risk of
subjective bias. Whereas, automatic methods use algorithms which
dictate the amplitude and duration of activity that should be classified
as on or off. Nonetheless, the expert has to select an appropriate algo-
rithm and a set of parameters for the algorithm, such as the number of
standard deviations above baseline mean for sEMG activity to be clas-
sified as on. Fully automatic processing can be achieved by selecting a
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single set of parameters and applying it to the entire dataset. Such a
single set of parameters is referred to as global parameters in this paper.
The automatic method involving an algorithm along with a global set of
parameters is time efficient but also prone to error (Jubany and Angulo-
Barroso, 2016) and has poor repeatability (Hodges and Bui, 1996).
Commonly researchers use a hybrid approach with an algorithm used
initially, followed by visual inspection and manual adjustment of the
detected sEMG bursts. However, this still requires the expert to
manually adjust the parameters of the algorithm in response to varying
signal characteristics, so that the algorithm detects muscle activity
appropriately. To reduce this time burden, a method is needed to op-
timise the detection algorithm parameters with minimal additional
input from the expert.

The aim of this research is to provide a simple and efficient method
to optimise sEMG detection algorithms. We achieve this by exploiting
the assumption that an expert can accurately visually identify the
number of bursts in a sEMG signal. It is more difficult to visually identify
the precise onsets and offsets since this requires inspecting the signals in
detail. We propose an optimisation method which takes the estimated
number of sEMG bursts in the signal as the only input from the expert
and finds an optimal set of parameters for the sEMG detection algo-
rithm. The proposed method can be used in two possible ways: (i) for
finding an optimal set of parameters from a single trial that has a known
number of bursts and then applying these obtained optimal parameters
to subsequent trials, or (ii) for finding an optimal set of parameters for
each trial separately. The advantage of the first technique is that the
expert has to estimate the number of sEMG bursts only in one trial. The
disadvantage is that the detection algorithm may not achieve desired
performance on the subsequent trials with parameters obtained from a
single trial. The second technique overcomes this problem as an optimal
set of parameters is obtained for each trial separately. When these op-
timal parameters are used to detect sEMG bursts from the same trial, it
results in an optimal detection of onsets and offsets for that trial. The
application of this technique may not be feasible with existing opti-
misation methods for which the expert has to manually select a number
of different parameters some of which can be nonintuitive. With our
proposed method the application of the second technique is feasible as
the expert’s initial input is reduced to estimating the number of bursts
in the signal.

In theory the proposed optimisation method can be used with any
detection algorithm which is deemed appropriate for a particular study.
Here we use it in combination with an extended version of the widely
adopted double thresholding algorithm (Bonato et al., 1998; Staude
et al., 2001; Jubany and Angulo-Barroso, 2016). To evaluate our pro-
posed method, we test it on sEMG data from two different lower limb
tasks in a healthy population. We compare the quality of the activation
bursts detected by the extended double thresholding algorithm opti-
mised with the proposed method in each trial separately against the
bursts manually labelled by an expert in that trial and the bursts de-
tected by the extended double thresholding algorithm with task specific
global parameters.

2. Methods

2.1. Proposed optimisation method

Given the number of muscle activations, an optimal set of para-
meters (P) was found by solving the following optimisation problem.

− + +

⩽ ⩽
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min || (Λ( , )) ||
P

i e
N
N

E
E

l u
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A B

(1)

where n (.) denoted the operation which gave the number of onset/
offset pairs in the set returned by the detection algorithm (Λ). The al-
gorithm took an initial set of parameters (Pi) and a sEMG signal (X). Ne
was the estimated number of onset/offset pairs supplied by the expert

as input. NA and N denoted the number of samples contained by the
detected onsets/offsets and total number of samples in the sEMG signal.
EB and E represented the energy outside the detected onsets/offsets and
total energy of the sEMG signal. The Teager-Kaiser operator was used to
find the energy from the sEMG signal (Solnik et al., 2010). Bl and Bu

denoted the lower and the upper bounds on the parameters of the de-
tection algorithm (Λ).

The proposed optimisation problem in Eq. (1) is a heuristic opti-
misation problem (Gilli, 2004; Pearl, 1984). The heuristic based on the
difference between the number of estimated bursts and the number of
detected bursts directed the search strategy to the nearest minimum
from the initial conditions in the solution space while disregarding the
quality of the detected bursts. A very fast convergence (approximately
⩽5 iterations) could be achieved by only using this heuristic, for
achieving optimal quality for the detected bursts, the two balancing
terms which minimise samples and maximise energy of the bursts were
also used.

Solving the optimisation problem stated in Eq. (1) with a traditional
derivative based search strategy, such as gradient decent (Ruder, 2016),
required mathematical derivation of the gradients. Such a derivation
can only be performed if the detection algorithm (Λ) is known and its
processing steps are differentiable. Furthermore, the convexity of the
optimisation problem in Eq. (1) has to be mathematically established
for a given detection algorithm (Λ) so that a gradient based method can
be used effectively. If the chosen detection algorithm (Λ) makes the
optimisation problem non-convex, the quality of its solution depends
heavily on the chosen initial parameters (Pi). To avoid these problems,
we used the particle swarm algorithm described in Eberhart and
Kennedy (1995) as the search strategy. A detailed tutorial explaining
the particle swarm algorithm along with practical examples can be
found in Marini and Walczak (2015). The particle swarm algorithm is a
global approach to optimisation, and it can find a global or a near-
global solution even when the optimisation problem is non-convex
(Selvakumar and Thanushkodi, 2007; Parsopoulos and Vrahatis, 2002;
Zhang et al., 2015; Rashid et al., 2019). Moreover, the particle swarm
algorithm is a derivative-free method (Rios and Sahinidis, 2012), and
the initial parameters (Pi) can be chosen randomly within the bounds
(Bl and Bu). The optimisation problem proposed in Eq. (1) is referred to
as nOptim method in the subsequent sections.

2.2. Extended Double Thresholding Algorithm (eDTA)

The input to the algorithm was preprocessed sEMG data and a set of
parameters. A low pass and a high pass filter were used to preprocess
the data. Both the filters were zero-phase to avoid adding any time
delay in the signal. Additional characteristics of the filters are discussed
in Section 2.3 after introducing the experimental dataset. The output
was a set of pairs of onsets and offsets. The parameters of the algorithms
are listed below followed by the operations briefly explained in se-
quence. The last three operations (5, 6, 7) can be disabled when not
required by appropriately setting the corresponding parameters.

Lb: Length of the baseline segment.
Kb

th: The rank of the moving average value which was used to select
the baseline segment.

Nsd: Number of standard deviations of the baseline segment.
Ton: Time in seconds for detecting an onset.
Toff : Time in seconds for detecting an offset.

Ts: Time in seconds for the shortest sEMG burst.
Nnt: Number of standard deviations of the root mean square (RMS)

values of the detected bursts.
Tj: Time in seconds for the window in which two or more sEMG

burst were joined into a single burst.

1. Baseline detection. Given a preprocessed sEMG signal, the first step
was the automatic selection of a baseline segment and estimation of
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baseline mean and standard deviation. This was achieved by first ap-
plying full wave rectification to the sEMG signal. This rectified signal
was then passed through a moving average filter with a window length
of Lb seconds. Using this moving average of the rectified signal, a
baseline segment of length Lb seconds was selected from the rectified
sEMG signal such that the rank of the corresponding moving average
was Kb

th. The reason to select the Kb
th minimum value instead of the

global minimum was that in some cases the rectified sEMG signal had a
high noise content and choosing the quietest region as baseline was not
the most suitable option. The baseline mean and standard deviation
were estimated from the baseline segment of the rectified signal using
sample mean and standard deviation formulae. It should be noted that
the moving average filter was only used to select the baseline segment
and the baseline mean and the standard deviation were computed from
the preprocessed rectified signal without applying a moving average.
Moreover, no moving average was applied to the signal in the sub-
sequent operations of the algorithm.

2. First threshold using baseline parameters. Thresholding with base-
line mean plus a number of baseline standard deviations (Nsd) was
applied to the rectified sEMG signal to detect bursts of muscle activity.
This operation resulted in a train of 1’s and 0’s. A run of consecutive 1’s
corresponded to muscle activity and a run of consecutive 0’s corre-
sponded to a muscle resting state. This operation resulted in a large
number of false positives. Most of these false positives were removed by
applying a second threshold (Bonato et al., 1998).

3. Second threshold using on time. In the train of 1’s and 0’s from the
previous step, the first 1 in a run was considered the onset of muscle
activity only if the run lasted for Ton seconds. And the last 1 in the run
was considered the offset. This operation successfully removed very
short runs, for example, burst trains of 1 or 2 consecutive ones.
However, it also resulted in multiple onsets for a single movement.

4. Third threshold using off time. To overcome the problem of mul-
tiple onsets, another threshold was applied along the time dimension.
An offset from the last operation was only considered a true offset if it
was not followed by another onset for at least Toff seconds.

5. Prune short events. False positives resulting from short bursts in
the sEMG signal were removed by applying another time threshold to
all the onset/offset pairs (Merlo et al., 2003). An example of such a
burst is shown in Fig. 1. Thus, an onset/offset pair which had a time
difference shorter than Ts seconds was removed.

This pruning operation was applied after onsets and offsets had been
defined by the on time and the off time. This operation allowed the
algorithm to have a sensitive threshold for the on time (Ton). If a larger
on time threshold was used to remove the short bursts of activity, such
as the one shown in Fig. 1, it resulted in delayed onset detection. This
operation decoupled the sensitivity of the algorithm in detecting onsets
and its ability to remove short bursts without decreasing the sensitivity.
It gave the algorithm another degree of freedom.

6. Prune non-typical bursts. In contrast to short bursts, there were
situations when the sEMG signal had artefacts which last for a long time
but had smaller amplitude compared to the typical bursts. An example
non-typical burst is shown in Fig. 1. These bursts were removed by
applying a threshold on the root mean square (RMS) value. This can be
done in two ways. Either by directly specifying a RMS threshold value,
or, in the case of repeated movements, by specifying the number of
standard deviations (Nnt) to create acceptable bounds around the mean
RMS value of all the detected bursts. The latter approach was adopted
in this study.

7. Join movement components. Finally, this operation was introduced
for situations where a movement had two components and it was de-
sirable to represent the whole movement with one pair of an onset and
an offset. For example, in the case of a step on/off a step-stool, the
movement had two components. The onset/offset pairs from the two
components were joined together by specifying a time window of Tj
seconds.

2.3. Experimental dataset

The sEMG data used in this study was collected as part of a pre-
viously published study. Further details about the study and the ex-
perimental protocol can be found in Rashid et al. (2018).

Participants. Twenty-two healthy participants (Average age:
36 ± SD 6 years, 10 Female) took part in the experiment conducted at
Auckland University of Technology, New Zealand. Participants were
excluded if they had a history of any neurological disorders or epilepsy.
All the participants signed a written consent form before data collec-
tion. The ethics for the study was approved by Central Health and
Disability Ethics Committee (HDEC) (17/CEN/133), New Zealand in
accordance with the Declaration of Helsinki.

Experimental protocol. For each participant, data was collected in one
session. The participants executed 50 single joint movements (right foot
ballistic ankle dorsiflexions) while seated and 50 repetitions of multi-
joint movements (right foot step on and off a step-stool which was
approximately 23 cm high and placed at a comfortable distance) while
standing. For ankle dorsiflexion, participants were seated in an ergo-
nomic dentist-like chair with their back slightly reclined. Their legs
were supported in approximately 25 degrees knee flexion and they had
their ankle in a relaxed position. They were advised to look forward,
flex their right ankle by pulling their toes towards their face in fast but
controlled manner. For step on/off, participants were advised to place
their right foot on the step-stool and immediately bring it back to the
ground. They executed the tasks at their own pace while pausing for at
least five seconds between each repetition. The order of the tasks was
chosen at random.

Two surface electrodes (Ambu® BlueSensor N) were placed on the
right tibialis anterior (TA) muscle. The electrodes were connected to a
NuAmps (Compumedics Neuroscan) amplifier which was used for im-
pedance measurement and data recording. Preparation included
shaving, exfoliating with the Nuprep Gel (Weaver and Company, USA),
subsequent cleansing with disposable alcohol swabs and accepting the
electrode impedance below 10 kΩ. Data was recorded with the Acquire
software (Compumedics Neuroscan). The sample-rate was set at
500 Hz. Examples of sEMG bursts for ankle dorsiflexion and step on/off
are shown in Fig. 2.

Signal processing. The data was processed on MATLAB 2017b
(MathWorks, Inc.). The data from one sEMG electrode was subtracted
from the other to form a single differential derivation. This channel was
then filtered using a high pass and a low pass 2nd order, zero-phase,
Butterworth filter with cut-off at 10 Hz and 200 Hz respectively.

Manual labelling by an expert. To conduct a comparison between the
proposed nOptim method applied on eDTA and manual labelling, full
wave rectified experimental data was manually labelled by an expert.
The expert scrolled through the full wave rectified data using a custom
graphical user interface (GUI) tool and manually placed onsets and
offsets of muscle activity. The custom graphical user interface tool was
developed on MATLAB 2017b.

2.4. Software implementation

The MATLAB 2017b based graphical user interface tool developed
as part of this study is shown in Fig. 3 and has been made available
online.1 This toolbox includes the extended double thresholding algo-
rithm and the proposed nOptim method. This software can be used to
visually estimate the number of bursts in multi-channel sEMG data and
then obtain an optimal set of bursts using the nOptim method against
that estimate. The individual onsets/offsets can be added, removed and
moved. Other algorithms can easily be added to it and used with the
nOptim method without the need to change any GUI related code. Al-
though the toolbox allows processing of multi-channel data, each

1 https://github.com/GallVp/emgGO.
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channel has to be processed separately as it keeps the algorithm para-
meters for each channel separate. This was implemented under the
assumption that different channels may represent sEMG from different
muscles with varied signal characteristics.

2.5. Global parameters for eDTA

To conduct a comparison between the proposed nOptim method

applied on eDTA and eDTA with global parameters, a separate set of
global parameters was tuned for each task. Instead of obtaining the
global parameters by manual tuning, an empirical approach was taken
to select the best possible parameters. For each task, data from 6 par-
ticipants was chosen at random as a training set. We chose 6 partici-
pants instead of all 22 for training as it represented a practical approach
where data is manually labelled for a randomly chosen smaller set and
algorithm parameters are obtained from this labelled data for use with
the rest of the unseen unlabelled data. An optimal set of parameters was
found for each participant in the training set by minimising the fol-
lowing cost function.

−

⩽ ⩽

C P X R

B P B

min ||1 (Λ( , ), )||
P

i

l u

2

(2)

where R represented the set of onset/offset pairs manually labelled by
the expert, and C denoted the concordance between the expert and the
algorithm (see further details on concordance in Section 2.6.2). Particle
swarm algorithm was used for optimisation. To avoid overfitting on a
single participant, the obtained set of parameters was used to compute

cross-validation cost, defined as − C P X R||1 (Λ( , ), )||2, for the re-
maining five participants in the training set. The set of task specific
parameters which gave lowest mean leave-p-out cross-validation cost
was selected and applied to all the 22 participants.

2.6. Statistical analysis

Statistical analysis was performed in MATLAB 2017b. Four

Fig. 1. Example of a short burst and a non-typical burst.

Fig. 2. Example muscle activation bursts for ankle dorsiflexion (a) and step on/
off (b).

Fig. 3. The graphical user interface (GUI) tool developed in this study. The left window shows the main GUI with options to find estimated number of onset/offset
pairs. The right window shows one onset/offset pair with rectified sEMG signal. It allows the user to move, insert and delete individual events.
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important questions needed to be answered with experimental data.
First, what was the detection rate of the proposed nOptim method ap-
plied on eDTA and of the eDTA with global parameters, i.e., did these
methods successfully produce as many onset/offset pairs as labelled by
the expert? Second, what was the quality of their detections in com-
parison with the expert? Third, what was the quality of the detections of
nOptim method applied on eDTA compared to the eDTA with global
parameters? And fourth, what was the quality of the detections of
nOptim method applied on eDTA if there was an error in the estimated
number of onset/offset pairs as compared to the actual number of sEMG
bursts present in the signal. To answer these questions we ran the
nOptim method on eDTA for each participant and task separately. The
estimated number of onset/offset pairs (Ne in Section 2.1) was set equal
to the number of onset/offset pairs manually labelled by the expert. For
the eDTA, results were obtained using the task specific global para-
meters as explained in Section 2.5. The methods used to investigate
these four questions are detailed in the following subsections.

2.6.1. Detection rate
Detection rate (DR) was obtained to quantify the difference in the

number of detected pairs of onsets/offsets and the number of pairs
manually labelled by the expert. It was defined as the percentage of the
number of onset/offset pairs detected by the algorithm to the number of
sEMG bursts labelled by the expert. It was obtained for both the nOptim
method applied on eDTA and for eDTA with the global parameters.
Statistical tests were performed to evaluate differences across the
methods. Statistical tests are explained later in Section 2.6.3.

2.6.2. Comparison with the expert
To answer the second question we obtained concordance (CO),

degree of over detection (OD), degree of under detection (UD) and F1
score (a combined measure of sensitivity and precision). These mea-
sures were defined in terms of following quantities and expressed as
percentages (Jubany and Angulo-Barroso, 2016).

- True positives (TPs): sEMG signal samples classified as burst by both
the expert and the algorithm.

- False positives (FPs): Signal samples classified as burst by the al-
gorithm and not by the expert.

- True negatives (TNs): Signal samples not classified as burst by both
the algorithm and the expert.

- False negatives (FNs): Signal samples not classified as burst by the
algorithm and classified as burst by the expert.

CO was defined as the percentage of the sum of TPs and TNs to total
number of signal samples. OD was defined as the percentage of FPs to
the sum of TPs and FNs. UD was defined as the percentage of FNs to the
sum of TNs and FPs. F1 score was defined as the harmonic mean of the
sensitivity and precision as follows:

= ×
×

+
× =

×

× + +
×F

sensitivity precision
sensitivity precision

TPs
TPs FNs FPs

2 100 2
2

1001

Where sensitivity (true positive rate) and precision (positive predictive
value) were defined as follows.

= ×

= ×

+

+
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CO was interpreted as the level of agreement between the algorithm
and the expert in correctly classifying the signal as on or off. F1 was
interpreted as the combined measure of the sensitivity and the precision
of the algorithm compared to the expert. OD/UD were interpreted as
the degree to which the algorithm detected the onset early/late and
detected the offset late/early with respect to the expert.

2.6.3. eDTA with nOptim versus eDTA with global parameters
The third question was answered by comparing CO, F1, UD and OD

obtained with the proposed nOptim method applied on eDTA against
eDTA with global parameters. Medians, inter quartile ranges, minimum
and maximum values were reported for the measures as the perfor-
mance measures exhibited substantial skew and large number of out-
liers. We tested for the equality of medians across the two methods
(nOptim vs. Global) within each task. For comparison of medians,
Wilcoxon’s signed rank test with approximate method was performed.
Significance level was set at 0.05.

2.6.4. Sensitivity to Induced Error
The fourth question was answered by running the proposed nOptim

method on eDTA with an error introduced in the estimated number of
onset/offset pairs for all the participants. Concordance was used for
evaluation of its performance under ± 0%, ± 2%, ± 4%, ± 6%, ± 8%
and ± 10% error. For example, if the expert had labelled 50 onset/offset
pairs for a participant, an error of ± 10% was induced by running the
nOptim method on eDTA with the estimated number of onset/offset
pairs (Ne in Section 2.1) set to either 45 or 55 chosen at random.

To test the statistical significance of the differences in concordance
across different levels of induced error, we performed a Friedman’s test
with levels of error as the column factor and movement type as the
block factor. Significance level was set at 0.05. One important limita-
tion of the Friedman’s test is that despite being a two-way model it does
not test for the interaction effect or the row effects. It only tests the
column effects after adjusting for the row effects (Hogg and Ledolter,
1987; Hollander et al., 2015). However, the advantage of using the
Friedman’s test is that it accounts for the repeated measures in the data
(Bewick et al., 2004).

3. Results

3.1. Global parameters for eDTA

The results for global parameter selection are shown in Fig. 4. For
dorsiflexion, parameters from the 2nd training set were selected as they
produced lowest mean cross-validation cost. The parameters were
{0.152, 5, 2, 0.01, 0.968, 0.012, 4, 0} in the following order
L K N T T T N T{ , , , , , , , }b b

th
sd on off s nt j . In the same order, parameters for step

on/off were selected from the 3rd set, {0.28, 40, 2, 0.01, 1, 0.01, 7,

Fig. 4. Training and cross-validation natural log costs for selection of global
parameters for the extended double thresholding algorithm. Cross-validation
costs were computed using leave-p-out cross-validation. p was five in this case.
Costs were plotted on the log scale as most of the individual cross-validation
costs were too close to be distinguished from each other when plotted on a
linear scale.
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1.456}. The units of time parameters were seconds. These global
parameters were used to detect onsets/offsets for all the 22 participants.

3.2. Detection rate

The detection rate for the nOptim method applied on eDTA was
100% for all the participants in both tasks. On the other hand the de-
tection rate with the global parameters ranged from 0 to 120% and 0 to
143% in dorsiflexion and step on/off respectively. However, there were
no statistically significant differences in the median detection rate of
two methods. Detailed results are presented in Table 1. These results
indicate that nOptim method did always converge to the estimated
number of onset/offset pairs.

3.3. eDTA with nOptim versus eDTA with global parameters

Concordance, F1 score, degree of under detection and over detection
of eDTA against the expert with the nOptim method and the global
parameters are shown in Fig. 5. Medians, inter-quartile ranges,
minimum and maximum values and results of significance tests for
equality of medians are presented in Table 1. These results indicated
that the nOptim parameters generally resulted in performance metrices
with smaller variability compared to the global parameters.

The differences in the median performance of the two methods were
more subtle. In the case of dorsiflexion, there were no statistically
significant differences in the median concordance or F1 score across the
two methods. In the case of step on/off, both the median concordance

and the median F1 score of the nOptim parameters were higher com-
pared to the global parameters. These results indicated that the nOptim
parameters resulted in same (ankle dorsiflexion) or better (step on/off)
concordance and F1 score compared to the global parameters. Thus, the
nOptim method did not only produce the required number of onset/
offset pairs, it also produced results which were in good agreement with
the expert.

In the case of dorsiflexion, the nOptim parameters resulted in higher
degree of under detection and lower degree of over detection compared
to the global parameters. In the case of step on/off, there were no
statistically significant differences across the two methods in both the
degree of under detection and over detection. These results indicated
that the nOptim method resulted in same (step on/off) or higher under
detection (ankle dorsiflexion) compared to the global parameters.
These results are further discussed later in Section 4.

3.4. Sensitivity to induced error

The percentage concordance with zero up to ±10% error is shown in
Fig. 6. A smooth decrease in median concordance and increase in
variability with an increase in error was observed. There was no sta-
tistically significant (χ2 = 6.39, p=0.27) difference in median con-
cordance across different levels of induced error. These results sug-
gested that the nOptim method was robust to error in the estimated
number of sEMG bursts.

Table 1
Medians, inter-quartile ranges, minimum and maximum values and results of significance tests for equality of medians. Note: Mg and Mn stand for median of the
measure with global parameters and median of the measure with nOptim parameters. H0 stands for the null hypothesis.

Measure Movement Median ± IQR [min, max] % H0: Mg = Mn

With global With proposed nOptim z-value, p-value

Detection rate Dorsiflexion 100 ± 0 [0, 120] 100 ± 0 [100, 100] −0.534, 0.594
Step on/off 101.9 ± 4 [0, 142.9] 100 ± 0 [100, 100] 0.761, 0.447

Concordance Dorsiflexion 97.7 ± 3.5 [68.7, 99.6] 96.7 ± 3.8 [87.7, 99.1] 1.055, 0.291
Step on/off 92.2 ± 13.8 [64.9, 98.5] 94.8 ± 6.9 [79.5, 98.7] −1.997, 0.046

F1 score Dorsiflexion 92.7 ± 7.9 [0, 98.1] 87.7 ± 6.5 [73.8, 96.2] 1.088, 0.277
Step on/off 87.5 ± 15 [0, 95.5] 89.7 ± 8.7 [77.0, 97.2] −1.997, 0.046

Degree under Dorsiflexion 1.2 ± 1.6 [0.1, 21.3] 3.7 ± 5.7 [1, 17.9] −2.841, 0.005
Detect Step on/off 4.4 ± 19.5 [1.2, 56.7] 5.9 ± 9.6 [1.2, 15.1] 0.666, 0.506

Degree over Dorsiflexion 1.3 ± 14.2 [0, 221.2] 0 ± 0 [0, 0.1] 3.621, < 0.001
Detect Step on/off 2.4 ± 21.5 [0, 38.8] 2.1 ± 7.7 [0, 29] 0.643, 0.520

Fig. 5. Movement wise results for concordance, F1 score, degree of over detection and under detection with global parameters and the proposed nOptim method.
Note: Dors stands for dorsiflexion and Step for step on/off. Each box represent data from the 22 participants. The statistic line represents the median. The edges
represent 1st and 3rd quartiles (Q1 and Q3). The lower and upper whiskers are at Q1-1.5(Q3-Q1) and Q3+1.5(Q3-Q1) respectively.
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4. Discussion

We have proposed an optimisation method (nOptim) for sEMG de-
tection algorithms. We have evaluated it as a method that can be used
to obtain an optimised set of sEMG bursts from a trial given an estimate
of the number of bursts in the trial. Its ability to optimise burst detec-
tion based on the estimated number of bursts is the key feature which
stands out from previous optimisation methods in the sEMG literature
(Staude et al., 2001). On sEMG data from 22 healthy participants ex-
ecuting single and multi-joint movements, the proposed nOptim method
applied on an extended version of the double thresholding algorithm
has shown good agreement with the bursts manually labelled by an
expert in terms of concordance, F1 score as an average of sensitivity and
precision, degree of over detection and degree of under detection.
When compared against bursts detected using eDTA with global para-
meters, the proposed nOptim method had same (single joint movement)
or better (multi-joint movement) performance in terms of concordance,
sensitivity and precision. However, the proposed nOptim method had a
tendency to under detect sEMG bursts in the single joint movement
compared to the global parameters.

4.1. eDTA and selection of global parameters

We have also extended the double thresholding algorithm and have
proposed a method for selection of global parameters. The global
parameter selection method can be used to tune parameters from a
smaller set of data manually labelled by an expert and apply these
parameters to the rest of the unseen unlabelled data. Although the
performance of eDTA with global parameters selected using this
method was less consistent compared to the nOptim method, it may be
useful to researchers interested in deploying sEMG detection algorithms
on small portable low power devices which cannot afford to run an
optimisation routine for each data recording (Balouchestani and
Krishnan, 2014; Pashaei et al., 2015).

4.2. Detection rate

The proposed method detected 100% of the number of sEMG bursts
identified by the expert across all the participants in both single joint
and multi-joint movements. These results are in agreement with the
results of optimisation methods previously proposed (Staude et al.,

2001). However, our proposed method only requires a single input from
the user to perform the optimisation and minimal time in manually
analysing the signal.

4.3. eDTA with nOptim versus eDTA with global parameters

Compared to the bursts detected by the extended double thresh-
olding algorithm with the global parameters, the proposed nOptim
method generally had smaller variability in concordance, F1 score,
degree of under detection and over detection. The worst case outliers
for concordance and F1 score were above 70%, and below 20% for
degree of under detection and over detection. A smaller variability in
performance metrices suggests better consistency with implications for
the amount of time spent by the expert on adjusting the onsets and
offsets detected by using an algorithm.

The nOptim method had same median concordance and F1 score in
the single joint movement compared to the global parameters. Whereas
it had higher concordance and F1 score in the multi-joint movement.
This difference may be explained by the fact that the nOptim method
optimised the sEMG burst detection for each participant individually
while the global parameters were applied under the assumption that
sEMG signal has adequate similarity across participants. As multi-joint
movements involve larger number of degrees of freedom, it is reason-
able to expect that different participants used different strategies in
performing these movements and recruiting their muscles. Thus, nOptim
performed better in the case of the multi-joint movement as it did not
require the assumption that the sEMG signal from different participants
was similar.

The degree of under detection with the proposed method was higher
in the single joint movement compared to the extended double
thresholding algorithm with the global parameters. This is perhaps due
to the fact that the proposed method minimises the number of samples
contained in the detected bursts while maximising the Teager-Kaiser
energy. Although it requires further investigation, we hypothesise that
the degree of under detection could be improved by adding weights to
different terms in the cost function.

4.4. Sensitivity to induced error

We also investigated the sensitivity of the proposed method to in-
duced error in the estimated number of onsets/offsets compared to the
actual number of bursts present in the sEMG data. The results showed
that with up to ± 10% error in the estimated number of onset/offset
pairs, the worst case outlier for concordance remained above 70%.
However, a gradual decrease in median concordance and increase in
variability was observed. These results suggest that the proposed
method has a degree of tolerance to inaccuracy in the estimate of the
number of sEMG bursts and its performance does not drop strikingly.

4.5. Limitations

The findings from this research should be considered in light of a
number of factors. First, the cost function used for tuning the global
parameters was based on the concordance measure which was also used
for comparing the nOptim method against the global parameters. This
favoured the performance of the global parameters as they were spe-
cifically optimised to perform better in terms of the concordance
measure. Thus the comparison was likely conservative and aligned
against the proposed nOptim method. Second, although particle swarm
optimisation is a global approach to optimisation, a failure to detect the
required number of onsets/offsets can be expected in some situations as
the proposed method is not guaranteed to result in the global optimum.
In such a case, running the optimisation with different initial conditions
can help convergence to a more optimal solution. Third, a single expert
manually labelled the sEMG data and their results were treated as the
gold standard. This was done under the assumption that the results of

Fig. 6. Concordance between the expert and the algorithm using the proposed
nOptim method with increasing percentage of induced error in the estimated
number of sEMG activation bursts. Note: Each box represent data from the 22
participants. The statistic line represents the median. The edges represent 1st
and 3rd quartiles (Q1 and Q3). The lower and upper whiskers are at Q1-1.5(Q3-
Q1) and Q3+1.5(Q3-Q1) respectively.
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manual labelling are reliable and repeatable (Jubany and Angulo-
Barroso, 2016; Hodges and Bui, 1996). Fourth, the quantitative mea-
sures, such as concordance, used to evaluate the performance of the
proposed methods do not measure the exact timing of the onsets and
the offsets.

4.6. Recommendations for future work

The potential of the proposed nOptim method has not be fully
evaluated yet. It may prove to be more useful with following future
works.

1. A possible direction for future work is the use of the proposed
nOptim method to obtain a global set of detection parameters that
can be generalised across trials or within a long recording file. This
might require adding a regularisation term to its cost function
(Rakitianskaia and Engelbrecht, 2014). This approach may allow to
optimise the parameters with the proposed nOptim method using a
relatively short initial segment of the signal and then applying the
optimised detection to the rest of the recording.

2. In this study we have used particle swarm optimisation as the search
strategy for the proposed nOptim method. This allowed us to per-
form the optimisation without deriving the gradients of the cost
function. The downside of this approach is that the particle swarm
optimisation is a computationally expensive algorithm. This opens
two possible directions for future work. First, to choose a detection
algorithm which would allow derivation of gradients for the nOptim
cost function and use a less computationally expensive search
strategy such as gradient decent. Second, to evaluate the proposed
nOptim method with a real-time implementation of the particle
swarm algorithm (Liu et al., 2008).

3. sEMG data for both the single joint and the multi-joint movement in
this study was processed as a single channel. Thus, a possible di-
rection for future work is the evaluation of the proposed nOptim
method on a movement, for example continuous walking, in which
multi-channel data is recorded from different muscles which have
different patterns of activation (Brantley et al., 2018). This, how-
ever, may also require using a detection algorithm other than the
proposed extended double thresholding algorithm.

5. Conclusion

The proposed nOptim method can be used to obtain accurate esti-
mates of onsets and offsets of muscle activity from a sEMG signal by
simply inputting an estimate of the number of muscle activation bursts
in the signal. The nOptim method exhibited good performance in terms
of detection rate, concordance, F1 score (sensitivity and precision),
degree of under detection and over detection on sEMG data for both
single joint and multi-joint movements manually labelled by an expert.
This method may reduce the time burden associated with current sEMG
processing.
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