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Abstract 
Background: Conditioned pain modulation (CPM) and offset analgesia are different features of 
descending pain inhibition. This study investigated CPM, offset analgesia and clinical pain measures 
in patients with knee osteoarthritis (KOA) before and after treatment with the combination of a non-
steroidal anti-inflammatory drug (NSAIDs) plus acetaminophen.  

 

Methods: Forty-two patients with KOA received Ibuprofen 1.2 g/daily and acetaminophen 3.0 
g/daily for three weeks. Before administration, CPM magnitude was assessed as the difference 
between cuff pain detection (cPDT) with and without a conditioning stimulus (evoked by tourniquet 
pain). Offset analgesia was assessed as the pain intensities evoked by a constant 46ºC for 30-seconds 
stimulus compared to an offset analgesia paradigm of 46ºC for 5-seconds, 47ºC for 5-seconds, and 
46ºC for 20-seconds. The worst pain within the last 24-hours and pain during activity were assessed 
before and after treatment.  

 

Results: Clinical pain significantly decreased after treatment (P<0.001) and less efficient CPM before 
treatment was associated with weaker analgesic effect (R=0.354, P=0.043). No significant 
modulation of CPM or offset analgesia were found for the treatment.  

 

Conclusion: This study found that less efficient CPM is associated with reduced analgesic effect of 
NSAIDs plus acetaminophen in patients with KOA whereas the treatment did not modulate CPM nor 
offset analgesia magnitude.  

 

Introduction  
Pain inhibitory pathways have been studied for decades, and the first studies on animals showed 
that a painful stimulus could be inhibited by another concurrent extra-segmental pain stimulus (Le 
Bars et al., 1979a, 1979b). In humans, this assessment is called conditioned pain modulation (CPM) 
(Yarnitsky et al., 2010) and is found to be impaired in patients with chronic pain (Arendt-Nielsen et 
al., 2018). Impaired CPM has been associated with poor outcome after e.g. surgery (Vaegter et al., 
2017; Wilder-Smith et al., 2010; Yarnitsky et al., 2008) and associated with the effect of duloxetine (a 
serotonin–noradrenalin reuptake inhibitor) in painful diabetic neuropathy (Yarnitsky et al., 2012). 
More recently, efficient CPM has been associated with improved analgesic effect of topical 
diclofenac in patients with osteoarthritis (Edwards et al., 2016) and patients with osteoarthritis with 
central sensitization gain less pain relief from total joint replacements (Izumi et al., 2017; Kurien et 
al., 2018; Petersen et al., 2015, 2016, 2018), indicating that measure of central sensitization might 
hold prognostic value for standard treatments of osteoarthritis. 

Offset analgesia has been suggested as another manifestation of descending pain inhibition 
(Hermans et al., 2016) and is observed as a disproportionally reduction in perceived pain following a 
slight decrease in a tonic painful stimulus intensity (Grill & Coghill, 2002). Offset analgesia has been 
suggested to act via different pain pathways than CPM (Honigman et al., 2013; Niesters et al., 2011), 
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but the specific pathways of offset analgesia are still largely unknown (Hermans et al., 2016). 
Furthermore, differences in brain activity have been recorded during an offset analgesia and CPM 
paradigm (Nahman-Averbuch et al., 2014), which further suggests that the underlying mechanisms 
are different. Patients with neuropathic pain, however, display impairments in both offset analgesia 
(Niesters et al., 2011) and CPM (Niesters et al., 2014). More evidence is needed in clinical 
populations to investigate the underlying mechanisms of these two assessments and to investigate if 
these mechanisms can be associated with analgesic effects following pharmaceutical and non-
pharmaceutical interventions.  

The prevalence of osteoarthritis is increasing worldwide and international guidelines for treatment 
of osteoarthritis (Hochberg et al., 2012; Jordan et al., 2003) recommend a combination of non-
steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen as the first line of treatment. The 
analgesic effect of NSAIDs and acetaminophen is widely documented by the underlying mechanisms 
are not completely understood (Graham et al., 2013). Both NSAIDs and acetaminophen inhibits the 
prostaglandin synthesis through the cyclooxygenase (COX) enzymes. Preclinical studies have shown 
that non-selective NSAIDs and acetaminophen enhances the activity of the cannabinoid system (Ahn 
et al., 2007) and that the analgesic effect of selective COX-2 inhibitors is depending on a intact 
serotonin system (Graham et al., 2013). Serotonin is important for descending inhibitory pain control 
(Bannister et al., 2017) and administration of COX-2 inhibitors can modulate widespread 
hyperalgesia (Malfait & Schnitzer, 2013; Reinold et al., 2005), which has been suggested to be 
associated with impaired descending pain inhibitory control (Graven-Nielsen & Arendt-Nielsen, 
2010).  

In this study, NSAIDs and acetaminophen were utilized as a standard pain treatment for 
osteoarthritis patients and the hypothesis was that CPM and offset analgesia prior to treatment 
would be associated with the analgesic effect of this treatment as seen previously (Edwards et al., 
2016). Further, we hypothesized that, endogenous pain inhibition would improve with reduced 
clinical pain and have been observed in when assessing total joint arthroplasties in knee 
osteoarthritis (Graven-Nielsen et al., 2012; Kosek & Ordeberg, 2000). Based on this rationale, the 
current study aimed to investigate: 1) the possible role of CPM and offset analgesia to predict clinical 
treatment effects, and: 2) the relationship between endogenous pain inhibition and clinical pain 
modulation in patients with knee osteoarthritis.  

 

Method  
Protocol  
Patients were recruited, and data were collected at the Orthopedic Outpatient Clinic, Aalborg 
University 
Hospital, Aalborg, Denmark in the time period between January 2016 and February 2018. The study 
was approved by The North Denmark Region Committee on Health Research Ethics (N-20140077) 
and registered at ClinicalTrials.gov (NCT02967744). The data presented here are from an 
amendment protocol to N-20140077, which was added after the first 100 patients were enrolled for 
the main protocol. The presented work is from a subsample of the original protocol with 62 patients 
being enrolled specifically for the offset analgesia and CPM paradigms. Written informed consent 
was obtained before patient inclusion. Clinical osteoarthritis was defined following the American 
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College of Rheumatology criteria (Wolfe et al., 2010). The pain during activity, the worst pain during 
the last 24 hours, CPM, and offset analgesia were assessed before treatment. The pain intensity 
during activity and the worst pain during the last 24 hours were reassessed three weeks after NSAID 
plus acetaminophen treatment. Analgesic effect was calculated as the absolute differences in pain 
intensities before and after treatment. In addition, the Knee Injury and Osteoarthritis Score (KOOS) 
questionnaire(Roos & Toksvig-Larsen, 2003) was evaluated before treatment. A percentage KOOS 
score from 0% to 100% was calculated for each dimension; 100% representing the best possible 
score.  
Exclusion criteria included the presence of other pain problems (e.g. hip osteoarthritis), sensory 
dysfunction (e.g. fibromyalgia, neuropathic pain), or mental impairment. 
Treatment 
Patients were treated with ibuprofen 400 mg (three times per day), acetaminophen 1g (three times 
per day), and pantoprazole 20 mg (once per day) for three weeks, which have previously been 
recommended for managing osteoarthritis pain(Doherty et al., 2011). Pantoprazole was 
administrated to prevent ulcers. Patients were instructed to report any adverse and severely 
adverse events. 
 

Conditioned Pain Modulation  
CPM magnitude was assessed as the changes in cuff pain detection threshold (cPDT) sensitivity with 
and without a conditioning stimulus (cuff pressure stimulation). The cPDT was applied to the lower 
leg ipsilaterally to the osteoarthritic affected knee, and the conditioning stimulus was applied to the 
contralateral lower leg. This combination has proven reliable (Graven-Nielsen et al., 2017; Imai et al., 
2016). The pressure stimuli were applied using a computer-controlled cuff algometer (Cortex 
Technology and Aalborg University, Denmark) including two 13-cm wide tourniquet cuff (VBM, Sulz, 
Germany) and an electronic VAS (Aalborg University, Denmark) for recording of the pain intensity. 
The cuffs were placed at the level of the head of the gastrocnemius leg muscle mostly affected by 
osteoarthritis. The electronic continuous VAS (sliding resistor) was 10 cm long and sampled at 10 Hz; 
0 cm indicated “no pain”, and 10 cm indicated “maximum pain”. 

For the cPDT, the pressure (in kPa) was increased by 1 kPa/s, and the patient was instructed to rate 
the pain intensity continuously on the electronic VAS until the tolerance level was reached. Further, 
the patient was asked to press a stop button after which the pressure was released immediately. 
The cPDT was defined as the pressure at which the VAS score exceeded 1 cm as previously 
used(Thomas Graven-Nielsen et al., 2015; Imai et al., 2016; Kurien et al., 2018; Rathleff et al., 2015; 
Vaegter & Graven-Nielsen, 2016). The conditioning stimulus was applied as a constant stimulus with 
the intensity of 70% of the pain tolerance level (Graven-Nielsen et al., 2017). This CPM protocol has 
previously been utilized when studying patients with chronic pain (Heredia-Rizo et al., 2019; Holden 
et al., 2018; Izumi et al., 2017; Kurien et al., 2018). The CPM-effect was calculated as the absolute 
difference in cPDT with and without a conditioned stimulus and the unconditioned cPDT was always 
assessed before the conditioned cPDT.  
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Offset Analgesia  
Heat stimuli (rise and fall rate: 6°C/s) were applied using the Medoc Pathway system (Medoc ltd., 
Ramat Yishai, Israel) with a 30×30mm squared probe to the volar forearm. 
Initially, the offset analgesia paradigm was conducted, and the patients were asked to continuously 
rate the pain intensity to the heat provocations. The stimuli were delivered in three coherent time 
intervals of 5 seconds (T1), 5 seconds (T2), and 20 seconds (T3. The baseline temperature was 35°C, 
and temperatures during the different time intervals were T1=46°C, T2=47°C, and T3=46°C.  
Secondly, a control paradigm was conducted with a constant heat provocation of 46°C for 30 
seconds. It is well known that a pain reduction due to prolonged pain heat stimuli can be caused by 
the adaptation of primary afferents known to occur during prolonged stimulation (LaMotte et al., 
1983) , and this control paradigm was conducted to account for the adaptation.  

The offset analgesia effect was calculated as the difference in average pain rating in T2 in the offset 
analgesia and the same period in the control paradigm as previously described (Ligato et al., 2018).  

 

Statistics  
The data are presented as means and standard error of the mean (SEM) if not otherwise stated. 
Paired-sample t-tests were used to compare pain intensities before and after treatment. For CPM, 
the pain inhibition was assess by paired-sample t-test comparing cPDT with and without a 
conditioned stimulus. The differences between the constant heat control paradigm and the offset 
analgesia paradigm were investigated using paired-sample t-test. Pearson correlations were used to 
investigate correlations between pain inhibitory magnitude and analgesic effect to the treatment 
and a linear regression using backwards selection was used to identified independent factors for the 
prediction of the analgesic effect. The analgesic effect on CPM and offset analgesia were 
investigated using the differences between the CPM and offset analgesia magnitude before and 
after treatment and assessed by paired-sample t-tests. The statistical analyses were performed using 
SPSS (version 23, IBM Corporation, New York, USA). P-values < 0.05 were considered significant. 

 

Results  
Sixteen patients (26%) were excluded from the data analysis due to technical issues with the Medoc 
Pathway system (incomplete data), and four subjects (6%) were excluded due to misunderstanding 
of the experimental procedure or incomplete clinical pain rating data (missing data). Forty-two 
patients had complete data set of offset analgesia, CPM, and pain rating before and after treatment 
and were therefore included in the data analysis. The patients included in the present analysis were 
not significantly different compared with the patients excluded with regards to age (P = 0.516), BMI 
(P = 0.654), worst pain during the last 24 hour, and pain during activity before treatment (P > 0.6) or 
CPM (P = 0.574). Demographics of included patients at baseline are listed in table 1.  

 

Predicting Analgesic Effect  
Both pain during activity (paired-sample t-test: P < 0.001) and the worst pain during the last 24 hours 
(paired-sample t-test: P < 0.001) were significantly decreased by the treatment. A significantly 
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positive correlation was found between the CPM before treatment and the analgesic effect using 
pain during activity (R = 0.394, P = 0.021, figure 1) indicating that less efficient CPM is associated 
with reduced analgesic effect. In addition, pain during activity before treatment significantly 
correlated with CPM before treatment (R = -0.432, P = 0.011) and the analgesic effect of the 
treatment (R = -0.436, P = 0.003). A linear regression aiming to predict the analgesic effect for pain 
during activity using pain during activity and CPM before treatment demonstrated a predictive value 
of 18.6% (adjusted R-squared) and applying backwards selection demonstrated that pain during 
activity before treatment was the only independent factor (P = 0.012).  

No significant interaction was observed for CPM and worst pain within the last 24 hours (R < 0.3, P > 
0.1) or for offset analgesia (R < 0.1, P > 0.6). 

 

Pain Inhibition before Treatment  
To investigate the CPM-effect before treatment, a conditioned and unconditioned cPDT was 
investigated and no significant difference was found for cPDT with and without the conditioning 
stimulus (paired-sample t-test: P = 0.158, figure 2A). To investigate the offset analgesia effect before 
treatment, the pain intensity to the offset analgesia and a constant control paradigm were 
investigate and a significant lowered pain response was found for the offset analgesia paradigm 
(paired-sample t-test: P = 0.075, figure 2B) during the first five seconds of T3 compared to the 
constant control paradigm.    

Analgesic effect and Pain Inhibitory Mechanisms 
The combined treatment with NSAID plus acetaminophen did not modulate CPM magnitude (paired-
sample t-test: P = 0.654) nor offset analgesia magnitude (paired-sample t-test: P = 0.185) in patients 
with knee osteoarthritis (figure 3).   

 

Discussion  
A significant clinical analgesic effect was demonstrated after three weeks of treatment with NSAID 
plus acetaminophen. CPM magnitude before treatment was correlated with the clinical analgesic 
effect. The current study is the first to investigate and compare two different pain inhibitory 
mechanisms (CPM and offset analgesia) in patients with osteoarthritis before and after 
pharmacological treatment. No changes were found when comparing CPM and the offset analgesia 
magnitude before and after treatment.   

Using Pain Inhibitory Mechanisms as Predictors for Analgesic Effect 
Increasing evidence suggests that pain mechanistic profiling can identify patients who will respond 
to analgesic treatments (Grosen et al., 2013; Sangesland et al., 2017). Specifically, impaired CPM 
have been found associated to improved analgesic effect to duloxetine (a serotonin–noradrenalin 
reuptake) (Yarnitsky et al., 2012), indicating that serotonin and noradrenalin might play a crucial role 
in functional pain inhibition. In the present study, we found that CPM magnitude associates to the 
clinical response to treatment with weak analgesics, which is similar to a recent study on topical 
diclofenac sodium gel (Edwards et al., 2016). In relation to surgery, studies have found associations 
between impaired preoperative CPM and increased chronic postoperative pain following 
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thoracotomy (Yarnitsky et al., 2008), abdominal surgery (Wilder-Smith et al., 2010), and total knee 
replacement (Vaegter et al., 2017). In combination, these studies might hold information, which can 
direct the future of personalized pain medicine but future studies targeting the pain mechanisms are 
needed to further improve the research area.  

Currently, no studies have investigated the association between offset analgesia magnitude and 
association to response to pharmaceutical treatments (Hermans et al., 2016) and the current study 
could not demonstrate a correlation between offset analgesia and the analgesic effect.  

 

Pain Inhibition and Modulation of Chronic Pain  
For CPM, a functioning inhibitory system is commonly reported in healthy subjects corresponding to 
a significant increase in the perceived intensity of a test stimulus during the delivery of a 
conditioning stimulus (Yarnitsky et al., 2010), and this is often impaired when assessed in chronic 
pain patients (Arendt-Nielsen et al., 2018). Offset analgesia has been reported to be impaired in 
clinical pain populations (Kobinata et al., 2017). Therefore, one could assume that offset analgesia 
and CPM would act via the same pain pathways, and/or that these assessments were associated, but 
recent studies have indicated differences between the two phenomena (Hermans et al., 2016).  

The analgesic effect from offset analgesia and CPM appears to add to each other in healthy subjects 
suggesting that the pathways are different (Honigman et al., 2013). This is further supported by 
studies showing that the administration of ketamine (a N-methyl-D-aspartate (NMDA) antagonist) 
influences CPM, but not offset analgesia (Niesters et al., 2011) suggesting that CPM is NMDA-
dependent, and offset analgesia is NMDA-independent. Administration of hydromorphone (an 
opioid) does not have an effect on CPM or offset analgesia in pain patients(Suzan et al., 2015). 
Administration of remifentanil (an opioid agonist) and naloxone (an opioid antagonist) to healthy 
subjects does not alter offset analgesia (Martucci et al., 2012), suggesting that offset analgesia is 
opioid-independent whereas administration of morphine impairs the CPM in healthy subjects 
(Martini et al., 2015), which suggests that CPM is opioid-dependent. Offset analgesia as an opioid-
independent measure is further supported by a recent study (Olesen et al., 2018), which found that 
administration of oxycodone to healthy male subjects did decrease the heat pain sensitivity, but did 
not change the offset analgesia effect compared with placebo. In the present study, no modulation 
of either CPM nor offset analgesia was seen after treatment with weak analgesics. The lack of 
descending pain inhibitory modulation reported in the current study in spite of a decrease in clinical 
pain intensity, questions if impairment of CPM and offset analgesia is pain intensity driven or if the 
pain should abolished for a longer period of time before pain inhibitory mechanisms are 
reestablished.  

MRI recordings have shown differences in brain activity during an offset analgesia and CPM 
paradigm (Nahman-Averbuch et al., 2014), which further suggests that the mechanisms underlying 
CPM and offset analgesia are different. A recent study found that increased heart rate variability 
(HRV) was associated with lower pain ratings during an offset analgesia paradigm (Van Den Houte et 
al., 2018), suggesting an association between offset analgesia and the autonomic nervous system 
(ANS). Nahman-Averbuch et al., (Nahman-Averbuch et al., 2016) found that increased ANS activity in 
men was associated with an increased CPM-effect and modulatory capacity to offset analgesia, 
which was not present for women, indicating sex-dependent effects, which should be investigated in 
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future studies. It could be assumed that measures of the ANS activity are associated with CPM since 
afferent baroreceptor signals have been implicated in the modulation of pain perception via 
medullary and mesencephalic neural circuitry, which influences the descending pain inhibition 
(Ghione, 1996; Thurston & Randich, 1992) and medullary transections, reducing diffuse noxious 
inhibitory control (the preclinical counterpart to CPM) in rats (Bouhassira et al., 1992). In contrast to 
this, Petersen et al., 2018 (Petersen et al., 2018) found that administration of propranolol (a beta-
blocker, increasing ANS activity) did not affect offset analgesia or CPM in healthy subjects, which 
could indicate that the ANS does not influence the pain inhibitory pathways. In addition, the current 
study found that the CPM was associated with analgesic effect to NSAID plus acetaminophen 
treatment whereas no correlation was found with the offset analgesia paradigm, which could 
indicate that these two measures represent two different pain inhibitory pathways but further 
studies are needed to investigate this.  

 

Limitations 
The current explorative study is limited by the lowered sample size due to technical errors 
associated with the heat stimulation, and unfortunately, our group has encountered these technical 
errors before in similar set-ups (Petersen et al., 2018). In general, the findings from the current study 
should be interpreted with care, and larger studies should confirm these findings. However, a clear 
analgesic effect was observed despite the lowered sample size.  

Patients with musculoskeletal pain are often pain sensitive to pressure stimuli and not necessarily to 
heat stimuli (Neziri et al., 2012; Kristian Kjær Petersen et al., 2017). Offset analgesia can be evoked 
by heat (Grill et al., 2002; Ligato et al., 2018; Kristian Kjær Petersen et al., 2018) and electrical stimuli 
(K K Petersen et al., 2018), but currently no study has demonstrated an offset analgesia effect using 
pressure stimuli. Therefore, the results from the current study using heat evoked offset analgesia 
should be interpreted with care.  

The current study is not placebo controlled, since the analgesic effect of NSAID plus acetaminophen 
is well documented (Hochberg et al., 2012; Jordan et al., 2003). Despite this, these preliminary 
results should be interpreted with care.  

 

Conclusion 
Three weeks treatment with NSAID plus acetaminophen decreased clinical pain scores in patients 
with osteoarthritis. Less efficient CPM before treatment was correlated of the analgesic effect. No 
changes were observed when comparing offset analgesia and CPM magnitudes before and after the 
treatment. These findings should be replicated in larger studies than this to confirm the validity.  
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Table 
 Mean (SD)
Age (years) 63.09 (8.60)
BMI (kg/m2) 29.84 (5.15)
Gender (percentage female) 54.8 %
Pain intensity [cm] 

- worst pain within the last 24 hours 6.93 (2.63)
- During activity 6.25 (2.37)

KOOS subscales 
- Pain 53.53 (17.67)
- Symptoms 60.79 (19.46)
- ADL 58.11 (18.78)
- Sport/Rec 28.08 (20.09)
- QoL 34.88 (19.92)

Table 1: Demographics (means and standard deviation, SD) of 42 patients with osteoarthritis before 
three weeks treatment with NSAID plus acetaminophen. Abbreviations: Body mass index, BMI; Knee 
Injury and Osteoarthritis Score, KOOS; Activities of daily living, ADL; Sport and recreation function, 
Sport/Rec; Knee-related quality of life, QOL. 
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Figure legends 
Figure 1: Pearson correlation between CPM-effect before treatment and analgesic effect of 
treatment with non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen for three weeks.  

Figure 2: Assessments of pain inhibition of patients with knee osteoarthritis before treatment 
assessed as the differences in (A) cuff pain detection threshold (cPDT) with and without a 
conditioning stimulus and (B) the difference between pain intensities to a 30-seconds constant 
control paradigm and an offset analgesia paradigm.  

Figure 3: (A) Conditioned pain modulation magnitude and (B) offset analgesia effect before and after 
three weeks of treatment with NSAIDs plus acetaminophen in patients with moderate-to-severe 
knee osteoarthritis. Offset analgesia magnitude are calculated as the difference in average and 
minimum pain intensities to a constant heat stimuli and an offset analgesia paradigm. 
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