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Graphical abstract 

 

Highlights 

 

 Production of endo and total polygalacturonases (PGs) by A. aculeatus was 

optimized; 

 Fermentation kinetics was studied, and the highest PG activity detected after 96 

h; 

 Optimized pectin hydrolysis reduced the viscosity of hog plum juice by almost 

100%; 

 Mathematical models performed by central composite design showed high 

adjustments; 

 A novel zymography method was successful to determine the protein size. 
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Abstract 

 

Production of total polygalacturonase (PG) and endo-polygalacturonases (endoPG) from 

Aspergillus aculeatus URM4953 was optimized in submerged fermentation using passion 

fruit peel as substrate for pectin hydrolysis in hog plum juice. The highest activities of 

PG (2.92±0.12 U/mL) and endoPG (6.51±0.04 U/mL) were obtained using 3% substrate 

and 0.1% of yeast extract after 96 h. Under these optimized conditions, the maximum 

specific growth rate of the microorganism was 0.06 h-1, saturation constant 9.9 mg/mL, 

yield of biomass on consumed substrate 1.44 g/g, yields of PG and endoPG on consumed 

substrate 0.33 and 0.81 U/mg, and yields of PG and endoPG on biomass 0.45 and 0.95 

U/mg, respectively. EndoPG, which is responsible for reduction of fruit juice viscosity, 

displayed an optimum temperature of 60°C and two optimal pH values under acidic (5.0) 

and neutral (7.0) conditions. A novel zymogram method showed PG activity in 

correspondence to a protein band of 31.7 kDa. The enzyme mixture was used for pectin 

hydrolysis in hog plum juice, which took place optimally at 40°C, achieving a juice yield 

of 35.3% and reducing fruit viscosity by 96.8% within 88 min. A. aculeatus 

polygalacturonases demonstrating great industrial potential for pectin hydrolysis in fruit 

juices. 

 

 

Key-words: Polygalacturonases; Hog plum juice (Spondias mombin L); Pectin 

hydrolysis; Optimization; Aspergillus aculeatus.  
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1. Introduction 

   

Polygalacturonases (PGases) are the most important pectinolytic enzymes, whose 

great commercial interest is related to their ability to hydrolyze the α-1,4 glycoside bonds 

of polymeric chain of pectin [1], a polysaccharide component of vegetable cell wall that 

confers tissue rigidity [2]. In particular, total polygalacturonase activity is the sum of exo-

polygalacturonase activity (EC 3.2.1.15), responsible for hydrolysis of glycoside bonds 

from the non-reducing pectin end chain releasing monomers of galacturonic acid, and 

endo-polygalacturonase activity (EC 3.2.1.67), which hydrolyzes pectin chain randomly 

releasing oligo-galacturonic acids, hence reducing pectin solution viscosity [3].  

PGases are produced by higher plants [4], insects and protozoa [5], some phyto-

parasitic nematodes [6] and microorganisms, i.e., bacteria, yeasts and filamentous fungi 

[7]. Strains belonging to the Aspergillus genus have been widely used for PGases 

industrial production [8].  

Many studies have been reported on the use of submerged (SmF) and solid-state 

(SSF) fermentations to produce PGases. Although SSF are cheaper [9] and allow for 

higher enzyme activity [10], about 90% of industrial pectinases are produced by SmF [11] 

due to easier control of process parameters and scale-up [12].  

PGases production requires special attention because it is directly influenced by 

several factors, i.e., the strain, carbon source, medium composition, cultivation 

conditions, type of fermentation, pH, temperature, oxygen supply, agitation and 

incubation time [13,14,15]. Agroindustry wastes such as wheat bran [16], sugarcane 

bagasse [9], citrus peel [17], apple [18], beet marc [8], have gained much attention for 

pectinase production in the last years, because they are cheap and rich in organic carbon 

and nitrogen supplements [19].  
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PGases, which together with other pectinases account for 25% of the global sales 

of food enzymes [20], are used mainly to extract and clarify wines and fruit juices [21,22], 

reduce viscosity [23] and enhance the filtration process and juice yield [24].  

 Hog plum (Spondias mombin L) is a seasonal and perishable fruit from the 

American continents, which, despite being widely consumed raw, needs being processed 

as fruit jellies, juices or ice creams to be found during the whole year [25,26].  

Based on this background, the present work aimed at optimizing the production 

of PGases from Aspergillus aculeatus URM4953 in submerged fermentation using 

passion fruit peel as substrate and determining the kinetic parameters of fermentation. 

The goal was to use these polygalacturonases to carry out and optimize pectin hydrolysis 

in hog plum juice.  

 

 

2. Materials and methods 

 

2.1 Microorganism 

 

Thirty-seven Aspergillus strains were obtained from the URM culture collection 

of the Federal University of Pernambuco (UFPE), Brazil, and grown in Czapek medium 

by incubation at 30ºC for 7 days. 

 

2.2 Screening of fungi by submerged fermentation 

  

Fungal screening for total PG production was performed in submerged 

fermentation using a medium made up of 10% passion fruit peel (granulometry from 0.5 
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to 2.0 mm) in a nutrient solution, pH 5.5, consisting of 0.1% yeast extract, 0.7 mM 

(NH4)2SO4, 0.8 mM MgSO4.7H2O and 5.0 mM K2HPO4. After sterilization in autoclave, 

50 mL of the medium were added in 250-mL Erlenmeyer flasks, inoculated with 105 

spores/mL of each one of the Aspergillus strains. Fermentations were carried out at 30ºC 

for 72 h and 100-rpm orbital agitation, model TE-424 (Tecnal, Piracicaba, SP, Brazil). 

The crude extracts were obtained by centrifugation (Sorvall ST16R, Thermo Fisher 

Scientific, Osterode, Germany) of the extract at 5000 rpm for 15 min at 4°C. 

Polygalacturonase productions were evaluated using the one-way analysis of variance 

(ANOVA) and Tukey’s test with a confidence level of 95% (p < 0.05). Aspergillus strains, 

which statistically (Tukey’s test) displayed the highest total PG production, were 

submitted to mycotoxin test. Aflatoxin production was detected by the method described 

by Lin and Dianese [27]. 

 

2.3 Optimization of polygalacturonases production 

 

Total polygalacturonase and endo-polygalacturonase were produced in 

submerged fermentation by the Aspergillus URM4953 strain selected by the above fungal 

screening. To prepare the fermentation media as described later, it was used passion fruit 

peel flour with smaller granulometry than that used for the screening medium (< 0.5 mm) 

to increase the surface area [28].  

Fermentations were carried out according to a central composite design (CCD) 

where yeast extract (nitrogen source) and substrate (carbon source) concentrations were 

selected as the independent variables. Suspension of 3.4% (w/v) passion fruit peel flour 

was prepared in deionized water and autoclaved for 20 min at 121°C to extract the pectin 

from flour. After extraction, the mixture was filtered to remove suspended solids. The 
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supernatant was collected, and the pectin material extracted was quantified as described 

in section 2.5 and diluted to 2.0, 3.5, 7.0, 10.5 and 12.0 mg/mL. Thereafter, salts 0.7 mM 

(NH4)2SO4, 0.8 mM MgSO4.7H2O and 5.0 mM K2HPO4 and yeast extract (0, 0.1, 0.2, 0.3 

and 0.34%) were added into the pectin solutions. The fermentation medium was finally 

sterilized in autoclave as described above.  

Fermentation medium were inoculated with 105 spores/mL. The fermentation was 

carried out at 30°C and shaking at 130 rpm for 72 h. After this time, the fermented broth 

was filtered and centrifuged for 5 min at 4000 rpm. The supernatant was called crude 

enzyme extract and stored frozen (-20°C). Enzyme activities were determined in 

triplicate. The regression model and individual linear, quadratic, and interaction terms 

were determined using the Statistic 8 program (StatSoft Inc., Tulsa, OK, USA) with p < 

0.05 and used to generate the response surface plots and Pareto Charts.  

2.4 Pectinase activities  

 

Total polygalacturonase activity was determined by the method of Miller [29]. 

Briefly, 500 µL of the crude extract incubated with 500 µL of 10 mg/mL citrus pectin in 

1.0 M acetate buffer, pH 4.5, at 50ºC for 40 min in a water bath. A 100-µL aliquot was 

removed and added to 1.0 mL of a 0.1 mg/mL dinitrosalicylic acid (DNSA) solution in 

0.4 M NaOH and 1.55 M sodium tartrate. The mixture was boiled for 5 min and cooled 

in an ice bath. Distilled water (5.0 mL) was added, and the mixture homogenized. The 

absorbance was measured with a UV-Vis spectrophotometer, model SP-1105, (Spectrum, 

Curitiba, Brazil), at 540 nm. Data were plotted on a standard curve of optical density 

versus concentration of α-D-galacturonic acid as a reducing sugar. One unit of pectinase 

activity was defined as the amount of enzyme required to One unit of pectinase activity 
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was defined as the amount of enzyme required to release 1 μmol of galacturonic acid per 

minute. 

Endo-polygalacturonase activity was determined incubating 250 µL of the 

enzymatic extract with 5.5 mL of 25 mg/mL citrus pectin in 1.0 M acetate buffer, pH 4.5. 

This mixture was incubated at 50ºC for 10 min and then cooled in an ice bath. The 

viscosity reduction of pectin solution was measured using an Ostwald’s viscometer.   A 

viscosimetric unit (U/mL) was defined as the amount of enzyme required to decrease the 

initial viscosity per min by 50%, under the conditions previously described Marciel et al 

[30]. 

 

2.5 Fermentation kinetics  

 

Kinetics of fermentation carried out under the best conditions pointed out by the 

CCD described in section 2.3 was investigated along 112 h. Biomass concentration was 

determined gravimetrically by filtering 50 mL of the fermented medium through a 

Whatman filter no. 1 and drying at 105°C in oven for 12 h and desiccator for 12 h. Pectin 

concentration was determined by the method of Mccomb and Mccready [31] with some 

modification. Briefly, aliquots (50 μL) of the fermented medium were taken at different 

times and dissolved in 0.05 M NaOH solution for de-esterification and then in 6 mL of 

concentrated H2SO4 previously cooled in ice bath. The reaction was carried out in boiling 

water bath for 10 min. After that, 500 μL of 1.5 mg/mL carbazole reagent were added, 

the resulting mixture was stabilized for 30 min at room temperature, and the absorbance 

measured at 520 nm using the same UV-Vis spectrophotometer described above. Pectin 

concentration was expressed as reducing sugars (mg/mL) by a calibration curve obtained 

using galacturonic acid as standard. 
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Due to the different A. aculeatus URM4953 growing phases, the specific rates of 

biomass growth (μ), substrate consumption (qs) and enzyme productions (qp) were plotted 

as functions of biomass concentration (X) at a given time (t), according to the equations: 

 

𝜇 =
1

𝑋

𝑑𝑋

𝑑𝑡
 (1) 

𝑞𝑠 = −
1

𝑋

𝑑𝑆

𝑑𝑡
 (2) 

𝑞𝑝 =
1

𝑋

𝑑𝑃

𝑑𝑡
 (3) 

 

where S and P are the concentrations of substrate (pectin) and of each enzyme (PG or 

endoPG), respectively. 

Kinetic parameters such as the specific growth rate (µmax) and saturation constant 

(ks) were determined by the empirical Monod equation using the least square method: 

 

𝑑𝑋

𝑋𝑑𝑡
=

𝜇𝑚𝑎𝑥 [𝑆]

𝑘𝑠+[𝑆]
  (4) 

 

The yield of biomass on substrate (YX/S) was calculated from the curves of μ and 

qs during the exponential growth rate using the equation: 

 

𝑌𝑋/𝑆 =
𝜇

𝑞𝑠
  (5) 

 

while, the yields of biomass on product (YX/P) and of product on substrate (YP/S) were 

calculated from the curves of μ and qp and of qp and qs up to the achievement of the 

maximum enzyme activities (96 h) by the equations: 

 

𝑌𝑋/𝑃 =
𝜇

𝑞𝑝
  (6) 

𝑌𝑃/𝑆 =
𝑞𝑝

𝑞𝑠
  (7) 
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2.6 Biochemical characterization 

 

 In previous study PG from A. aculeatus URM4953 was characterized in terms of 

biochemical features [32] therefore, only the endoPG was biochemically characterized in 

the present study as described below. 

 

2.6.1 Effect of pH on endo-PG activity and stability 

 

 The effect of pH on endoPG activity was investigated at 50°C using 10 mg/mL 

pectin solutions in different 0.1 M buffers, namely sodium acetate (pH 3.5 – 5.0), sodium 

citrate (pH 5.5 – 7.0), and Tris-HCl (pH 7.0 – 9.0). For comparison purposes, the endoPG 

activity, determined as described in section 2.4, was expressed as percentage relative 

activity with respect to its maximum value. All experiments were performed in triplicate 

and the results expressed as mean values  standard deviation. EndoPG stability was 

determined incubating the enzyme-containing samples in the buffers described above 

without substrate, determining the enzyme activity at different times (0, 12 and 24 h) and 

expressing it as percentage residual activity with respect to its initial value. 

 

2.6.2 Effect of temperature on endoPG activity and stability 

 

 The influence of temperature on endoPG stability was assessed on aliquots of the 

enzyme previously submitted to exposition at different temperatures (from 30 to 70 °C) 

for up to 60 min and determining the residual endoPG activity using a 10 mg/mL pectin 

solution in 0.1 M sodium acetate buffer, pH 4.5. As for the effect of pH, for comparison 
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purposes the enzyme activity was expressed as percentage relative activity with respect 

to its maximum value.  

 On the other hand, the effect of temperature on the starting activity was 

investigated in the range 30-70 °C through triplicate experiments carried out using the 

same pectin solution as above, but without any previous incubation. Once again, for 

comparison purposes the results were expressed as percentage residual endoPG activity 

with respect to its initial value. 

 

2.7 SDS-PAGE and zymogram analysis 

 

Proteins from A. aculeatus URM4953 crude extract were detected by SDS-PAGE 

electrophoresis, which was performed using a 12% (v/v) polyacrylamide running gel. 

Protein weigh molecular markers were 97.0 kDa (phosphorylase b), 66.0 kDa (albumin), 

45.0 kDa (ovalbumin), 30.0 kDa (carbonic anhydrase), 20.1 kDa (trypsin inhibitor) and 

14.4 kDa (α-lactalbumin). Protein bands were then stained by using a Coomassie Brilliant 

Blue R-250 solution made up of methanol, acetic acid and water and destained with the 

same solution without Coomassie.  

The total polygalacturonase activity was determined by a novel zymogram method 

using the same zymogram gel as that used for SDS-PAGE. Crude extract was deionized, 

lyophilized and resuspended in 10 μL of a sample buffer, which was made up with 10% 

(v/v) of 10 mg/mL SDS solution, 10% (v/v) of glycerol and 2.5% of 2 mg/mL 

bromophenol blue solution in a 0.5 M buffer Tris-HCl pH 6.8. The electrophoresis was 

carried out at a constant current of 300 V at 25°C for approximately 2 h. Afterwards, the 

gel was incubated for 30 min at room temperature with 2% (v/v) Triton X-100 under 

orbital shaking at 60 rpm, washed with deionized water several times and incubated for 1 
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h at 60 rpm in a 0.5% polygalacturonic acid solution in 50 mM Tris–HCl buffer, pH 8, to 

incorporate it into the gel and allow for protein renaturation. The gel was then incubated 

at 50ºC for 40 min in a water bath to determine pectinase activity. Then, the gel was 

washed with deionized water, let to react with dinitrosalicylic acid solution (section 2.4), 

boiled for 5 min and cooled in an ice bath. The gel was washed with deionized water till 

the bands became visible.  

 

2.8. Substrate specificity of total PG 

 

Substrate specificity of pectinases from A. aculeatus URM4953 was studied by 

incubating the pectinolytic extract at 50°C, pH 4.5, for 40 min with different substrates at 

10 mg/mL concentration, namely polygalacturonic acid, citrus pectin, xylan and 

carboxymethylcellulose as described in section 2.4. 

 

2.9 Pectin hydrolysis of hog plum juice 

 

Hog plum juice was obtained processing the fruits in a commercial fruit pulper, 

model DES-60 (Braesi, Caxias do Sul, RS, Brazil), followed by sieving to remove the 

remaining residues. Hog plum juice was stored at -20oC until use. After mixing 1.0 U of 

crude extract per mL of hog plum juice, pectin hydrolysis was performed according to a 

preliminary 2²-factorial design repeating three times the central point, where the 

hydrolysis time (20, 40 and 60 min) and temperature (40, 50 and 60°C) were selected as 

the independent variables and the percentage reduction of viscosity (RV), total soluble 

solids (TSS), pH and juice yield (YJ) as the responses. To this purpose, RV (%) was 

determined from absolute viscosity data collected by an Ostwald viscometer, TSS level 
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(ºBrix) using a refractometer (RHB32, AKSO, São Leopoldo – RS, Brazil), pH using a 

digital pH meter (Tec5, Tecnal, Piracicaba, SP, Brazil), and Y (%) by difference of final 

and initial free volumes of processed and fresh juice, respectively. Aliquots of hydrolyzed 

juice were centrifuged for 10 min at 4000 rpm to separate the aqueous phase from the 

portion of undegraded pulp.  

 Such a preliminary factorial design allowed identifying RV and YJ as the only 

statistically significant responses and 60 min and 40°C as the best hydrolysis time and 

temperature, therefore these conditions were set as central point of an additional central 

composite design (CCD) with the aim of optimizing pectin hydrolysis. For this purpose, 

the hydrolysis time was varied from 32 and 88 min and temperature from 25 and 54°C. 

The regression model and individual linear, quadratic, and interaction terms were 

determined using the Statistic 8 program (StatSoft Inc., Tulsa, OK, USA) with p < 0.05 

and used to generate the corresponding response surface plots and Pareto Charts. 

 

3. Results and discussion 

 

3.1 Screening of Aspergillus strains with polygalacturonase activity 

 

Fungal screening is the first step to select industrial microorganisms with high 

enzyme activities [30]. Of the 36 Aspergillus strains with potential total 

polygalacturonase activity available in the URM collection of UFPE institution, 27 

sporulated after 7 days of incubation (Table 1). The ANOVA analysis followed by the 

Tukey’s test evidenced statistically significant differences in their ability to produce PG; 

in particular, three of them, belonging to Aspergillus niger (URM5741 and URM5838) 
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and Aspergillus aculeatus (URM4953) species, stood out showing the highest PG 

activities (3.8-4.06 U/mL) (Table 1).  

When these three strains were subjected to mycotoxin qualitative test, upon 

exciting the agar-coconut medium at 366 nm (data not shown), only A. niger URM5838 

showed an intense fluorescent halo, which is characteristic of the intense aflatoxin 

fluorescence emission [33] associated to aromatic groups [34,35].  

Although A. niger enzymes are generally recognized as safe by the United States 

Food and Drug Administration [36] and A. niger URM5741 was negative to the 

qualitative mycotoxin analysis, it has been reported that some A. niger strains, under 

stress conditions, can produce carcinogenic mycotoxins such as ochratoxin A and 

aflatoxin [37]. A. aculeatus URM4953 was then selected as PG producer in this study not 

only because it displayed an PG activity statistically coincident with that of A. niger 

URM5741 and URM5838 (p > 0.05), but also because there is no report in the literature 

about toxin production by the species to which it belongs and currently its pectinases are 

marketed all over the world.   

 

3.2 Optimization of polygalacturonases production  

 

 Table 2 lists the activities of total polygalacturonase (PG) and endo-

polygalacturonase (endoPG) produced by A. aculeatus URM4953 in submerged 

fermentations carried out according to the Central Composite Design (CCD) described in 

section 2.3. The best results were obtained, as a whole, using concentrations of passion 

fruit peel flour (substrate) and yeast extract (nitrogen source) of 3.0% and 0.1%, 

respectively, conditions around which the response surfaces pointed out optimum regions 

for both total PG (Fig. 1A) and endoPG (Fig. 1C) activities.  
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The statistical analysis revealed that substrate concentration was the independent 

variable that most significantly influenced PG production (Pareto Chart of Fig. 1B). Its 

positive linear effect means that an increase in substrate concentration until 3.0% led to a 

progressive activity increase, while the negative quadratic one that this response 

decreased beyond that concentration threshold. The same trend was qualitatively 

observed for yeast extract concentration, whose increase till 0.2% improved PG activity, 

but beyond this value it exerted a strong negative quadratic effect on such a response. 

However, interaction of the two independent variables (1Lx2L) was significantly 

negative, thereby configuring an antagonistic effect [38]. Resuming, PG production was 

enhanced by increasing the level of variable with the stronger positive effect, i.e. substrate 

concentration, while decreasing that of the less-influencing or even negatively-

influencing one, i.e. yeast extract concentration [39]. 

For endoPG, the statistical analysis showed a qualitatively similar behavior to that 

of PG, except for the statistical insignificance (p > 0.05) of the linear effect of yeast 

extract concentration and the interaction one (Fig 1D).  

The optimal conditions for PG (APG) and endoPG (AendoPG) activities were then 

predicted by the second order polynomial equations: 

 

APG = - 0.537 + 1.651 x – 0.291 x2 + 6.628 y - 11.981 y2 - 0.760 xy (8) 

AendoPG = - 6.133 + 6.664 x – 1.059 x2 + 33.182 y – 73.421 y2 – 3.533 xy (9) 

 

where x and y are the coded levels of substrate and yeast extract concentrations, 

respectively. The values of the determination coefficient (R2) were very high (0.994 and 

0.962, respectively), and the lack of fit value was not statistically significant (p > 0.05), 

evidencing good adjustment.  
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3.3 Fermentation kinetics 

 

Fig. 2 illustrates the time behaviors of biomass and substrate (pectin) 

concentrations as well as PG and endoPG activities during A. aculeatus URM4953 

fermentation carried out under the optimum conditions pointed out by the CCD. After a 

12-h lag phase, the microorganism grew exponentially up to 38 h, with maximum specific 

growth rate (μmax) of 0.06 h-1 and saturation constant of 9.93 mg/mL, kept in the stationary 

phase up to 96 h and then suffered the typical decline phase owing to substrate starvation 

[40]. Malvessi and Silveira [41] observed higher μmax (0.15-0.30 h-1) for pectinase-

producing Aspergillus oryzae CCT3940 in wheat bran medium at different pH values. 

Pectin concentration progressively decreased from 10.5 to 1.8 mg/mL, 

corresponding to a yield of biomass on consumed substrate (YX/S) of 1.44 gX/gS. Reginatto 

et al. [42] observed lower YX/S values (0.326-0.989 gX/gS) for pectinase-producing A. niger 

LB-02-SF at different levels of glucose, ammonium sulfate and wheat meal extract in the 

medium. 

Meanwhile, PG activity increased progressively, achieved a maximum value of 

2.92±0.12 U/mL after 96 h and then decreased concomitantly with the biomass 

concentration decay. The average yields of PG on consumed substrate (YP/S) and biomass 

(YP/X) were 0.33 U/mgS and 0.45 U/mgX, respectively. EndoPG activity also increased till 

96 h achieving a maximum value of 6.51±0.04 U/mL and then decreased, corresponding 

to YP/S and YP/X of 0.81 U/mgS and 0.95 U/mgX, respectively. 

  

3.5 Pectinases characterization  
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 Enzyme biochemical characterization is of paramount importance in industrial 

processes because provide information on how to maintain their activity as longer as 

possible. In particular, pectinase characteristics depend on several factors, mainly the 

fungal species and the carbon source [4]. 

A. aculeatus URM4953 total PG was previously characterized by Silva et al. [43], 

in terms of optimum hydrolysis temperature (50°C), stability (90% of residual activity 

after 60 min at 30-40°C) and optimal pH under acidic (4.0) and neutral (7.0) conditions.  

 The results of endoPG biochemical characterization are summarized in Fig 3. The 

activity profile versus temperature shows that endoPG acts optimally at 60°C using citrus 

pectin as a substrate and is quite stable in the range 30-40°C, with more than 90% of 

activity retained after 60-min incubation (Fig 3A). EndoPG optimum temperature usually 

ranges from 30 to 55ºC [44]; to give only a few examples, Maciel et al. [30] and Yuan et 

al. [45] reported optimum temperature of 40ºC for endoPG from A. niger URM4645 and  

Penicillium sp. CGMCC 1669, respectively. 

Likewise, endoPG showed two optimum pH values, the one under acidic (pH 5.0) 

and the other under neutral conditions (pH 7.0) (Fig. 3B), likely due to the occurrence of 

different endoPG isoforms, like the highly homologous ones secreted by A. niger 

(endoPG I, II and A, B, C, D and E) [46]. Consistently with the literature [44], endoPG 

was stable in a wide pH range (3.0-6.0), yielding more than 100% of residual activity 

after 24 h (Fig 3C). It has been reported that such a hyperactivation under acidic 

conditions may be the result of structural conformational changes due to the influence of 

medium dielectric constant on the polarization of enzyme molecules [47]. Indeed, 

interacting with enzyme molecules, polar solvent molecules generate pronounced dipoles 

on their surfaces, hence active sites may become more solvent exposed to react [48]. 
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Different substrates were also used to test the total PG activity, namely 

galacturonic acids, citrus pectin, xylan and carboxymethylcellulose (Fig 3D). One can see 

that citrus pectin was the best substrate for the activity of A. aculeatus URM4953 

pectinase, thus confirming literature data [44]. 

SDS-PAGE revealed bands corresponding to crude extract proteins with 

molecular weight from 15.2 to 59.9 kDa, while the zymogram showed total PG activity 

in correspondence to 31.7 kDa (Fig. 4). Polygalacturonase zymograms are generally 

revealed with a solution of ruthenium red [44], a chemical compound that reacts with 

acidic substances. Since this reagent is expensive and potentially carcinogenic, we 

propose in this study a new alternative to reveal bands with pectinolytic activity using 

DNSA, i.e. the same reagent used to determine total polygalacturonase activity. Such a 

new method was able to correlate the activity band revealed by zymography with the 

protein one revealed by SDS-PAGE. 

Ahmed et al. [17] reported an almost coincident molecular weight (30 kDa) for a 

A. niger pectinase, while other authors found polygalacturonase molecular weights close 

to that of this study, i.e. 34 kDa [49], 37 kDa [45], 42 kDa [50], and 45 kDa [51].  

 

3.5 Pectin hydrolysis in hog plum juice 

  

EndoPGs are pectinases that hydrolyze glycosidic bonds randomly, releasing 

compounds with short molecular structures; therefore, they are of special interest for food 

industries. Owing to the consequent reduction in viscosity, less energy is required for 

juice transport through the pipes, thus reducing the process costs, shortening the filtration 

time and increasing the yield of free juices [15].   
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Aiming these benefits, pectin hydrolysis in hog plum juice was performed 

according to a 22-factorial design where the hydrolysis time and temperature were 

selected as the independent variables and the viscosity reduction (VR), levels of reducing 

sugars (RS) and total soluble solids (TSS), pH and yield of free juice (YJ) as the responses 

(Table 3). Whereas variation of RS, pH and TSS were not statistically significant (p > 

0.05), those of VR and YJ were (p < 0.05), with the highest values of these responses 

[96.4% and 35.3% (v/v), respectively] being observed at 40°C after 60-min hydrolysis 

time. 

Figs. 5A and C illustrate the simultaneous effects of temperature and hydrolysis 

time on viscosity reduction and juice yield, while the Pareto Charts of Figs. 5B and D 

allow identifying the statistically significant effects. It is noteworthy that the hydrolysis 

time exerted a strong positive effect on VR, while that of temperature was not statistically 

significant. On the other hand, their interaction led to an antagonist effect, i.e. VR may be 

enhanced by simultaneously decreasing the less influencing variable (temperature) and 

increasing the most influencing one (time). Despite these variables showed the same 

effect values, a similar trend was observed for statistical analysis of juice yield (%) (Fig 

5D). The time exerted the strongest positive effect on the yield, followed by its negative 

interaction with temperature, which was confirmed by the negative effect of temperature.  

Pectin hydrolysis was then optimized through a set of runs carried out according 

to an additional CCD where the conditions of independent variables previously ensured 

the highest RV and Y values (40°C and 60 min) were selected as the central point. The 

results of pectin hydrolysis in hog plum juice listed in Table 4 show that the run performed 

at 40°C for 88 min ensured be the best performance, corresponding to the optimum region 

in the response surfaces (Figs. 6A and C). Even though under these conditions VR 

achieved a maximum value of 96.8%, it has been reported that long-term exposition of 
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fruit juices to high temperatures may confer undesirable cooked taste and cause 

degradation of several thermolabile bioactive compounds such as vitamins, sugars, amino 

acids, ascorbic acid, carotenoids, phenolic acids, flavonoids and tannins [52]. Therefore, 

we selected the central point conditions as the optimal ones, for they ensured almost the 

same mean VR (96.2%) and YJ (35.5% v/v) values in shorter time (60 min). The modeling 

of hog plum juice processing showed high adjustment for VR (R2 = 0.96) and YJ (R
2 = 

0.88), and these responses were described by the following second order polynomial 

equations: 

 

VR = 3.528 + 0.398 x - 0.00223 x2 + 3.668 y - 0.0409 y2 - 0.00181 xy (10) 

YJ = -211.746 + 1.174 x - 0.0124 x2 + 10.274 y - 0.135*y2 + 0.0104 xy (11) 

 

where x and y are the coded levels of time and temperature, respectively.  

The statistical analysis of linear, quadratic and interaction terms is depicted in the 

Pareto Charts of Figs. 6B and D. Temperature was the variable that more significantly 

influenced VR exerting a positive linear effect up to 40°C (Table 4). However, beyond 

this temperature, this response was not favored even for short exposure times due to the 

prevalence of the strong negative quadratic effect. Such a behavior can be related to 

polygalacturonase thermosensibility that reduced the endoPG activity [53]. The time 

exerted a positive linear effect on VR, which, however, was overcome by the its strong 

negative quadratic effect for hydrolysis time longer than 60 min, while the interaction 

term was not statistically significant (Fig. 6B).  

Even though the hydrolysis time linearly enhanced YJ (Fig 4D), its quadratic 

negative effect was stronger, suggesting that the prolonged exposure to high temperature 

ACCEPTED M
ANUSCRIP

T



21 
 

led to endoPG denaturation and, as a result, the increase in viscosity induced by gelatinous 

structure hindered juice formation by pressing and reduced the yield [54]. 

 

4. Conclusions 

 

Aspergillus aculeatus URM4953 was chosen among thirty-seven Aspergillus 

strains to produce polygalacturonases in submerged fermentation using passion fruit peel 

as carbon source and yeast extract as the nitrogen one. Optimum conditions to produce 

total PG and endoPG were concentrations of these ingredients of 3.0 and 0.1%, 

respectively. Fermentation carried out for 112 h under these conditions showed the 

highest total PG and endoPG activities after 96 h. EndoPG, which was characterized 

biochemically, showed hyperactivity under acidic conditions and high stability after 24 

h. Citrus pectin was shown to be the proper substrate to determine total PG activity. A 

novel zymogram method allowed correlating the activity band with the protein one 

revealed by SDS-PAGE. Pectin hydrolysis was optimized and reduced the viscosity of 

hog plum juice in almost 100%. The results of this work give an idea of the great potential 

of A. aculeatus URM4953 PGs for possible industrial applications such as pectin 

degradation in fruit juices. Once such pectinases promoted high reduction of the viscosity 

and yield without change the physical-chemical parameters of the juice. 
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Figures Captions 

 

Fig 1. Statistical analysis of optimized productions total polygalacturonase (PG) and 

endo-polygalacturonase (endo-PG) from Aspergillus aculeatus URM4953 in 72-h 

submerged fermentations using passion fruit peel as a substrate. Fitted Surfaces of total 

PG (A) and endo-PG (C) activities. Pareto Charts of the effects of the independent 

variables on total PG (B) and endo-PG (D) activities.  

 

  

ACCEPTED M
ANUSCRIP

T



31 
 

Fig 2. Time behaviors of biomass concentration (♦), pectin (substrate) concentration (●), 

total polygalacturonase activity (■) and endo-polygalacturonase activity (▲) during 

submerged fermentation by Aspergillus aculeatus URM4953 at 30°C and pH 4.5 using 

3.0% (w/v) passion fruit peel as substrate and 0.1% (w/v) yeast extract as nitrogen source.  

 

Fig 3. Biochemical characterization of novel endo-polygalacturonase (Endo-PG) from 

Aspergillus aculeatus URM4953. (A) Activity profile and stability, (B) pH profile in 

different buffers, and pH stability as function of the time, (D) activity on different 

substrates.  
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Fig 4. SDS-PAGE and polygalacturonic acid zymography analysis. MM - molecular 

weight markers, CE – crude extract and Z – polygalacturonase zymogram on 

electrophoresis. 

 

Fig 5. Statistical analysis of pectin hydrolysis in hog plum (Spondias mombin L) juice by 

polygalacturonases from Aspergillus aculeatus URM4953 performed according to the 22-

factorial design. Pareto Charts of the effects of the independent variables on viscosity 

reduction (A) and juice yield (B).  
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Fig 6. Statistical analysis of optimized pectin hydrolysis in hog plum juice performed 

according to the Central Composite Design. Fitted Surfaces of viscosity reduction (A) 

and juice yield (C) function of time and temperature. Pareto Charts of the effects of the 

independent variables (hydrolysis time and temperature) on viscosity reduction (B) and 

juice yield (D).  
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Table 1. Screening of Aspergillus strains with total polygalacturonase (PG) activity in 

submerged fermentation using passion fruit peel as a substrate.  

Aspergillus strains PG activity (U/mL) 

A. niger URM5741 4.06±0.06a 

A. niger URM5838 3.94±0.03a 

A. aculeatus URM4953 3.87±0.17a 

A. tamarii URM4634 3.45±0.07b 

A. niger URM5756 3.44±0.01 b 

A. carbonarius URM1546 3.44±0.00 b 

A. parasiticus URM5778 3.40±0.02 b 

A. terreus URM5864 3.13±0.00 c 

A. niger URM3856 3.12±0.16 c 

A. phoenicis URM4924 3.04±0.24 c 

A. heteromorphus URM269 2.90±0.08 c 

A. flavus URM5791 2.89±0.01 c 

A. niger URM5863 2.74±0.16 c 

A. japonicus URM3916 2.72±0.01 c 

A. niger URM5218 2.65±0.01 c 

A. flavus URM5794 2.60±0.09 c 

A. japonicus URM5620 2.53±0.04 d 

A. flavus URM5740 2.45±0.01 d 

A. japonicus URM5242 2.29±0.01e 

A. niveus URM5870 2.18±0.07e 

A. niger URM5837 2.00±0.04f 

A. carbonarius URM5182 1.99±0.03f 

A. parasiticus URM5787 1.75±0.01g 

A. sydowii URM5774 1.70±0.03g 

A. carbonarius URM3818 1.48±0.05 g 

A. tamarii URM3266 1.47±0.11 g 

A. scherotiorum URM5792 1.45±0.07h 

Different superscript letters mean significant statistical difference between activities (p < 

0.05) according to the Tukey’s test.  
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Table 2. Production of polygalacturonases by Aspergillus aculeatus URM4953 in 

submerged fermentations* carried out according to the Central Composite Design 

described in section 2.3, using passion fruit peel as a substrate. 

 

Substrate  

concentration (% w/v) 

Yeast extract 

concentration (% w/v) 

Total PG Activity  

(U/mL) 

Endo-PG 

Activity (U/mL) 

1.0b 0.30 1.50±0.06 1.54±0.06 

1.0 b 0.10 1.29±0.01 1.53±0.12 

3.0d 0.30 2.06±0.06 4.97±0.03 

3.0d 0.10 2.16±0.01 6.38±0.12 

2.0c 0.20 2.12±0.01 4.90±0.05 

2.0 c 0.20 2.14±0.04 5.42±0.09 

2.0 c 0.20 2.15±0.04 5.32±0.05 

2.0 c 0.34 1.94±0.01 3.26±0.13 

2.0 c 0.00 1.58±0.00 2.84±0.24 

3.4e 0.20 1.98±0.03 4.91±0.16 

0.6a 0.20 1.01±0.01 1.00±0.01 

*Fermentations medium with initial pH 4.56, shaken at 130 rpm, at 30°C for 72 h. 

Pectin concentrations extracted from their respective substrate concentrations: a 2.0; b 3.5; 

c 7.0; d 10.5 and e 12.0 mg/mL 
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Table 3. Pectin hydrolysis in hog plum juice by polygalacturonases from Aspergillus 

aculeatus URM495. 

Time 

(min) 

Temperature 

(ºC) 

VR 

(%)a 

YJ 

(%v/v)b 

RS 

(mg/mL)c 

TSS 

(ºBrix)d 
pH 

20 40 77.8±0.1 23.5±0.2 18.3±0.1 9.0±0.1 3.7±0.2 

60 40 96.4±0.3 35.3±0.2 19.9±0.1 10.1±0.2 3.9±0.1 

20 60 84.9±0.2 23.5±0.2 19.2±0.2 9.4±0.1 3.7±0.2 

60 60 87.6±0.4 23.5±0.2 19.4±0.3 9.4±0.1 3.6±0.2 

40 50 92.9±0.1 29.4±0.2 19.4±0.3 9.9±0.2 3.8±0.1 

40 50 94.2±0.1 28.4±0.2 18.4±0.2 9.4±0.1 3.8±0.1 

40 50 93.8±0.2 29.4±0.2 19.3±0.2 9.4±0.1 3.8±0.1 

aViscosity reduction. 

bYield of free juice.  

cReducing sugar concentration. 

dTotal soluble solid level.  
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Table 4. Pectin hydrolysis in hog plum juice by polygalacturonases from Aspergillus 

aculeatus URM4953 carried out according to the Central Composite Design described in 

section 2.9. 

Essay 
Time 

Levels 

Temperature 

Levels 

Time 

(min) 

Temperature 

(ºC) 

VR 

(%)a 

YJ 

(% v/v)b 

1 -1 -1 40 30 86.3±0.4 18.7±0.2 

2 -1 1 40 50 94.0±0.1 18.7±0.2 

3 1 -1 80 30 88.6±0.2 10.3±0.2 

4 1 1 80 50 94.9±0.6 18.7±0.2 

5 - α 0 32 40 92.5±0.1 18.7±0.2 

6 + α 0 88 40 96.8±0.1 35.3±0.4 

7 0 - α 60 26 85.5±0.2 10.3±0.2 

8 0 + α 60 54 91.2±0.3 10.3±0.2 

9 0 0 60 40 96.1±0.5 35.6±0.3 

10 0 0 60 40 96.4±0.2 36.6±0.2 

11 0 0 60 40 96.0±0.7 35.3±0.3 

aViscosity reduction. 

bYield of free juice.  
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