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Introduction  

Matrix-assisted laser desorption-ionization mass spectrometry imaging (MALDI imaging) has 

advanced and is capable of visualizing diverse molecular alteration signatures in tissue 

sections1,2. The MALDI imaging technology is, in contrast to traditional 

immunohistochemistry, an antibody-independent technology which can be utilized to localize 

small molecules, lipids, peptides and proteins following a single analysis. MALDI imaging 

requires highly optimized conditions for optimal data acquisition for each class of biomolecule. 

One key issue is signal suppression effects which reduces the ionization of analytes, 

particularly in complex mixtures. This effect has been reported previously when analyzing 

simple specimens on a MALDI target plate3 and occurs to a higher degree when analyzing a 

complex tissue section. Signal suppression effects can arise from several sources e.g. by a 

variable degree of analyte ionization efficiency or presence of ion suppressing molecules such 

as salts, alkali-metals and lipids that competes with the ionization4. Further, post-translational 

modified peptides are known to empirically ionize significantly less efficient than un-modified 

counterparts5,6. Strategies to counteract these issues are critical for obtaining optimal results in 

MALDI imaging especially for biological specimens. Optimizations include sample 

pretreatment steps, such as sample handling, washing, matrix chemical and deposition and 

parallel approaches like laser capture microdissection to accumulate of discrete target material 

directly from tissue sections. Different solubilized MALDI matrices, such as sinapinic acid 

(SA;7), α-cyano-4-hydroxycinnamic acid (CHCA;8) and 2,5-dihydroxybenzoic acid (DHB;9), 

gave rise to high quality mass spectra of peptide and protein containing specimens. Different 

matrix additives and organic acids e.g. trifluoroacetic acid (TFA) improved the matrix 

capabilities and robustness10–12. All implying that enhanced sensitivity and improved 

reproducibility is achievable by homogenous crystal size, analyte embedding and reducing the 

effects of alkali-metal and salts. The development of the ‘super-DHB’ matrix (S-DHB) 

improved matrix properties by increasing the S/N ratios of membrane protein samples 
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containing contaminants13 in MALDI-MS further. The matrix is a mixture of 2,5-DHB and 2-

hydroxy-5-methoxybenzoic acid (9:1; w/w;11,13,14). The combinatory effect of adding 

phosphoric acid (PA) to the DHB matrix significantly enhanced the detection of 

phosphopeptides and non-phosphopeptides by reducing adduct formation (e.g. alkali-metal 

adducts) and thus signal suppression5,6,12,15. These techniques were applied in previous 

MALDI-MS studies but not in MALDI imaging. We reason that such capabilities are 

advantageous especially in MALDI imaging on complex tissue material with high background 

inducing signal suppression (e.g. brain tissue sections having high lipid content).  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects memory and 

cognition and is the most common cause of dementia in the elderly. Extracellular amyloid 

plaques composed mainly of 38–43 residue beta-amyloid (Aβ) peptides are a histopathological 

hallmark of AD16. Aβ peptides originate from sequential cleavage of the membrane-spanning 

amyloid precursor protein (APP). Based on the ‘amyloid cascade hypothesis’ a chronic 

imbalance between production and clearance of Aβ peptides leads to increased levels and an 

excessive deposition of Aβ peptides into amyloid plaques17,18, eventually resulting in neuronal 

dysfunction and dementia 19–21. Transgenic (tg) mouse models have been developed to mimic 

amyloid pathology observed in AD. These models are based on familial AD (FAD) mutations 

which cause an increased Aβ load and early-onset inherited AD in humans22. 

Aβ peptides associated with amyloid plaques in brain tissue from both tg mouse models and 

AD have been investigated by MALDI imaging previously. However, Aβ species coverage and 

signal-to-noise (S/N) ratios have been highly diverging and variable peptide compositions have 

been reported23–30, making it difficult to conclude on the different study results. We reason that 

eliminating the issue of signal suppression in brain tissue could improve robustness and 

comparability of MALDI imaging analysis of amyloid plaques. 

In this study, we investigated Aβ plaques with MALDI imaging by combining two parallel 

approaches that together provide a novel strategy for overcoming signal suppression: 1) Laser 

microdissection to extract and accumulate Aβ plaques and 2) PA as additive to the S-DHB 

matrix. Both strategies were integrated to investigate whether signal suppression effects 

hampering MALDI imaging analysis of Aβ proteoforms previously could be counteracted. We 

analyzed Aβ proteoforms from postmortem AD brains and tg APPPS1-21 mice overexpressing 

FAD mutations in APP and presenilin-1 (PS1)31. Laser microdissection allowed extraction and 

accumulation of thioflavin-T stained Aβ plaques. The enrichment improved matrix:analyte 

ratio, enabled tandem MS fragmentation analysis and comparison of PA and TFA as matrix 
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additives to the S-DHB matrix. PA added to the S-DHB matrix, improved the S/N ratio of 

several m/z values, including Aβ1-42 (m/z range: 4300-4900), compared to CHCA, SA and S-

DHB containing TFA as matrix additive in our MALDI imaging analysis. PA addition 

improved the analysis of Aβ proteoforms specially from AD brain enabling us to investigate 

several significant differences in Aβ plaque composition isolated from AD compared to 

APPPS1-21 brains.  

Experimental. 

Chemicals 

Chloroform (99%), methanol (MeOH; 99%), acetonitrile (ACN; 99%), acetic acid (100%), 

phosphoric acid (PA; 85 wt. % in H2O), S-DHB (99%) and CHCA (99%) matrices were 

purchased from (Sigma Aldrich; Denmark). The SA matrix was purchased from (Bruker 

Daltonics; Germany), formic acid (FA; 98%) was purchased from (Fluka; Denmark), TFA 

(99%) was purchased from (Fisher Scientific; Denmark) and thioflavin-T from (Merck 

Eurolab; Denmark).   

Human brain tissue 

Prefrontal cortex (PFC) regions from five AD patients (two males and three females) were 

obtained from Tissue Solutions Ltd (Scotland). The tissue specimens were collected at a 

postmortem interval between 2-20 hours, snap frozen and stored at -80°C. The specimens were 

pathologically staged according to Braak and Braak32 and staged between V and VI.  Four of 

the patients had reported history of AD in their families. 

Animal brain tissue 

Three 9-month old female APP transgenic mice (APPPS1-21) were used for the analysis 

(Charles River; Germany)31. The mice were group-housed (five/cage). Water and food were 

supplied ad libitum, clean cages were provided twice a week and mice were kept on a 12hr/12hr 

light/dark schedule. Room humidity was 55%±5%, and room temperature (RT) was 21±2°C. 

All animal experiments were performed in accordance with Danish legislation and animal 

welfare laws. 

The mice were euthanized by decapitation. The brains were extracted, split into two 

hemispheres with a razor blade, frozen with dry ice and stored at -80°C. Brain tissue used for 

MALDI imaging analysis were cut into 12-µm thick sagittal sections using a cryostat 

microtome (Leica CM3050 S) and attached to Indium tin oxide (ITO) coated glass slides 

(Bruker Daltonics; Germany). Brain tissue used for laser capture microdissection was cut into 
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25-µm thick sagittal sections and attached to a polyethylene naphthalate (PEN) membrane glass 

slide (Thermo Fisher; Denmark). The glass slides (both ITO coated and PEN membrane) 

containing tissue sections were fixated in 70% EtOH and 99% EtOH for one minute in each 

solution and allowed to dry at RT. The slides were then stored at -80°C until further use.  

Sample preparation for MALDI imaging 

The glass slides containing the attached sections were dried at RT in a vacuum desiccator for 

30 minutes. Next, they were rinsed in a series of solutions: 70% EtOH, 99.9% EtOH, Carnoy’s 

fluid (EtOH, chloroform, acetic acid (60/30/10, v:v:v), 99.9% EtOH, ddH2O, 99.9% EtOH. 

The glass slides were left for 30 seconds in EtOH and ddH2O and two minutes in Carnoy’s 

fluid33. They were subsequently left to dry for 45 minutes in a vacuum desiccator.  

Matrix deposition 

Three matrices (CHCA, SA and S-DHB) were chosen for the comparison. The CHCA matrix 

(7 mg/ml) was dissolved in 50:50:0.2 (v:v:v) ACN:ddH2O:TFA. The S-DHB matrix (30 

mg/ml) was dissolved in 50:50:0.2 (v:v:v) MeOH:ddH2O:TFA or PA. The SA matrix (10 

mg/ml) was dissolved in 60:40:0.2 (v:v:v) ACN:ddH2O:TFA.  

The matrices were deposited by using the ImagePrep robot (Bruker Daltonics) and company 

provided default deposition programs (DHB_nsh04 for S-DHB, HCCA_nsh04 for CHCA and 

SA_nsh04 for SA). Data logger software was used together with a coverslip (Bruker Daltonics) 

added on top of the glass slides to further validate and improve the deposition (Supplementary 

Figure 1). Average values acquired from the matrix deposition were manually noted and listed 

in (Table 1). 

Laser capture microdissection of plaque regions 

The PEN membrane glass slide containing one brain tissue section from each APPPS1-21 

mouse was dried at RT for 25 minutes, dip washed in ddH2O and stained in 1% thioflavin-T 

solution for 10 minutes in darkness. The sections were washed in ddH2O for three minutes 

three times and dried at RT for 1 hour. The Veritas laser microdissection instrument (Arcturus 

Bioscience) was utilized to microdissect plaques and adjacent control regions from each brain 

section. The microdissected material was collected in CapSureTM Macro LCM caps (Thermo 

Fisher). On average, 36 plaques corresponding to an area of 123.9 µm2 and 35 adjacent control 

regions corresponding to an area of 251.4 µm2 were extracted per section. The sample material 

was extracted from the caps by adding and resuspending 15 µl of 70% FA/ddH2O on the cap 

surface three times followed by incubation in the 70% FA solution O/N at 37°C. Next, the 
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tubes were inserted into a SpeedVac (miVac, GeneVac) for 3 hours and stored at -80°C until 

further use. The dried material was reconstituted in 12 µl 20% ACN/ 0.1% FA solution. The 

samples were prepared on a MALDI target plate (Bruker Daltonics) with the dried droplet 

method by applying 1 µl of sample material and subsequently mixing with 1 µl of S-DHB/PA 

or S-DHB/TFA matrix solutions.       

Data acquisition 

MALDI imaging data was acquired in linear positive mode optimized for imaging average 

masses in the m/z 1-20 kDa range (UltrafleXtreme MALDI TOF/TOF, Bruker Daltonics, 

Germany). A Smartbeam-II laser system (Nd:YAG 355 nm) was used. Further, the laser 

repetition rate was set to 1 kHz and 500 shots per spot. The detector gain voltage was set to 

2887 V and 2514 V for linear and reflectron mode, respectively. The pulsed ion extraction 

(PIE) was set to 250 ns. Furthermore, the laser diameter was set to medium and the raster step 

size to 300 µm in the matrix comparison experiment. Realtime smoothing was set to medium, 

baseline offset adjustment was set to 0.0% and sample rate and digitizer setting was set to 1.25 

GS/s. The same settings were used for the analysis of the human tissue material except the 

raster step size which was set to 200 µm.     

MALDI-MS data was acquired in reflector positive mode optimized for the isotopic resolution 

in the m/z range 800-6000 Da. A total of 5000 shots per sample spot were used with a medium 

laser diameter and complete sample function to cover the entire spot. The laser repetition rate 

was set to 1 kHz and PIE was set to 170 ns.  

A ClinProt Standard was used to generate calibration spectra for all conditions. This was 

composed of a mixture (1:1) of Protein Calibration Standard I and Peptide Calibration Standard 

II (Bruker Daltonics, Germany) and consisted of the following references: ACTH_clip (1-17) 

2094.42700 Da; ACTH_clip (18-39) 2466.68100 Da; Somatostatin (28) 3149.57300 Da; 

Insulin 5734.51800 Da; Ubiquitin I 8565.76400 Da; Cytochrom C 12360.97400 Da; 

Myoglobin 16952.30600 Da.  

Aβ1–42 was synthesized according to Axelsen et al. (2009) with standard procedures using 

Fmoc-strategy on an automatic ABI 433 synthesizer (Applied Biosystems)34. The mass of the 

synthesized peptide was analyzed by MALDI-TOF (Autoflex, Bruker Daltonics, Germany). 

The peptide was subsequently purified by preparative high performance liquid 

chromatography, on a SymmetryPrep TM C18 7 µm, 7.8 × 300 mm column (Waters; United 

Kingdom) by collecting the main peak, which was then subjected to analytical HPLC using a 
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Symmetry C18 5 µm, 4.6 × 25 cm column (Waters; United Kingdom) and the fractions were 

subsequently lyophilized. 

The Aβ1-42 peptide was added adjacent to the calibration standard and used to verify the m/z 

value and tandem MS fragmentation pattern of Aβ1-42 in the tissue sections prior to the 

analysis.   

Data processing of mass spectrometry spectra 

Matrix comparison 

The data files were imported into SCiLS Lab software (v2017a, Bruker Daltonics, Germany) 

where data for the statistical analysis was extracted. In brief, the .mis files obtained in 

FlexImaging (v4.0) were imported to SCiLS Lab and processed by top hat baseline correction 

(width: 200) and TIC normalization. Brain sections (both tg mouse and human) were grouped 

into their respective matrix treatment (S-DHB/PA, S-DHB/TFA, SA/TFA and CHCA/TFA) 

and the Find Peaks function was used on the different groups to identify peaks. The report table 

was used to export the average peak information per matrix condition (centroid (m/z); add 

mean intensities; maximum intensity in interval; standard deviation at maximum, m/z at 

maximum and area under curve).  

Regions of interest (ROIs) with increased presence of selected Aβ species were isolated and 

used for statistical analysis. The normal distributed data was analyzed with two-tailed paired t-

test (p < 0.05). A similar approach was used to create the enriched Aβ1-42 mass spectra. In 

brief, peaks corresponding to the calculated mass of the Aβ1-42 peptide were highlighted to 

visualize the spatial localization. The three highest intensity spots where selected for each brain 

tissue section and used to create a combined mass spectrum containing a total of 27 spots 

(mouse) and 30 spots (human) with the S-DHB/PA matrix. The intensity bar was adjusted in 

case of no clear visualization of the corresponding m/z value.  

Laser microdissection and LIFT analysis 

GPMAW software (v. 8.20; Lighthouse data) was used to compare the acquired mass spectra 

from the LIFT analysis to an in-silico fragment tandem MS of the Aβ1-42 peptide.  

Data acquired from the laser microdissected plaque extract analysis was imported to Flex 

Analysis and individually processed with smooth function, baseline subtraction and find mass 

list functions. The signal-to-noise (S/N) value of the peaks corresponding to the Aβ1-42 peptide 

(Aβ1-42; [M+H]+
mono = 4512.2774) was noted and adjacent peaks were matched to known Aβ 
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peptide variants including possible modifications using the modification list at 

www.unimod.org and GPMAW software.  

The MALDI imaging data of the mouse brain tissue have been deposited to the 

ProteomeXchange Consortium via the PRIDE35 partner repository with the dataset identifier 

PXD009353.  

 

Results and Discussion 

Improved detection of Aβ1-42 by laser microdissection and the matrix additive PA     

Aβ plaques visualized with thioflavin-T staining were observed in the cerebral cortex of 9-

month old APPPS1-21 mice (Figure 1A) confirming previous reports31. Thioflavin-T stained 

plaques were laser microdissected from indicated areas as shown in (Figure 1A). This 

enrichment by laser microdissection was necessary as Aβ peptides were difficult to identify 

with MALDI imaging in previous pilot studies due to restricted plaque areas and also likely to 

other molecules than Aβ peptides from the tissue which could suppress the Aβ signal (data not 

shown).  

The analysis of the microdissected material was acquired on a MALDI target plate in reflector 

mode enabling acquisition of monoisotopic masses with high intensities. From the Aβ plaque 

analysis, we identified several peaks, where the most abundant was corresponding to human 

Aβ1-42 as presented in the mass range m/z: 4300-4650 (Figure 1B). We anticipated this 

finding, since the human Aβ1-42 species are the main component of amyloid plaques in the tg 

APPPS1-21 mouse31. By fragmentation analysis we obtained a sufficient sequence coverage of 

Aβ1-42 fragment ions that, when compared to an in-silico fragmentation spectra, confirmed 

the presence of the Aβ1-42 peptide with multiple assigned peptide fragment ions 

(Supplementary Figure 2). No signal could be detected when analyzing extracts from adjacent 

control regions (data not shown). 

In MALDI-MS, the addition of PA to the DHB matrix reduced signal suppression5,6,12,15. We 

investigated here, whether this beneficial effect was also observed when analyzing Aβ plaques. 

We compared PA and the standard additive, TFA, in the S-DHB matrix to investigate possible 

ionization difference of the Aβ plaques. The signal-to-noise (S/N) ratio of Aβ1-42 was 

improved two- to three-fold by PA when compared to the S-DHB matrix with TFA (PA: 31.5; 

TFA: 12.5; Figure 1C and 1E; Supplementary table 1). Similar improvement was found when 

analyzing a synthetic Aβ1-42 peptide (PA: 113.5; TFA: 59.5; Figure 1D and 1E; 

http://www.unimod.org/
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Supplementary table 2). We are the first to report that the S-DHB/PA matrix provided a higher 

S/N ratio compared to the S-DHB/TFA matrix when analyzing both synthetic Aβ1-42 peptides 

and microdissected Aβ1-42 from amyloid plaques with MALDI-MS. 

Brain tissue includes several ion-suppressing features that compete with ionization and 

interfere with MALDI imaging analysis. The S/N of the extracted plaque material (Figure 1C 

and 1E) was three- to four-fold lower compared to the synthetic Aβ1-42 (Figure 1D and 1E) 

indicating a source of signal suppression from the actual tissue.  After establishing that PA 

addition was beneficial for MALDI-MS of Aβ1-42 peptides, we next investigated whether 

similar advantages with PA were present in MALDI imaging of Aβ proteoforms. PA was 

reported advantageous in concentration up to 1% (v/v) in MALDI-MS6. However, we 

optimized PA concentration to 0.2% in MALDI imaging, since higher acid concentrations 

(>1%) were deleterious for the ImagePrep setup and increased matrix wetness and analyte 

diffusion during matrix deposition (data not shown).  

To this end, we compared brain sections from APPPS1-21 mice (Figure 2A-D) treated with S-

DHB/PA or S-DHB/TFA to two matrices CHCA/TFA and SA/TFA that recently were used in 

MALDI imaging of Aβ proteoforms in brain tissue28,30. The S-DHB, CHCA and SA matrices 

can deteriorate over time and thus impair ionization efficiency when analyzing several tissue 

sections. By using a low spatial resolution, we could decrease the time necessary for analyzing 

the tissue sections and thus limit the influence of such bias. Linear mode is generally preferred 

in MALDI imaging with high spatial resolution because of the increased speed compared to 

the reflector mode where the TOF event is longer. We used linear mode for this analysis 

because of its increased analyte stability compared to reflectron mode that can affect the 

energetic stress during passage through the reflector. This could lead to false-positive m/z 

values that could match truncated Aβ species. 

Several shared as well as exclusive peaks were observed in the four matrices and supported 

matrix dependent variance in line with previous MALDI-MS studies. The S/N level of several 

peaks across m/z mass range 4500 - 16000 were detected with the S-DHB matrix for PA and 

TFA additives (Figure 2A-B). An increased baseline in the lower region of the mass spectrum 

(m/z 1000 - 3000) was observed with the S-DHB/TFA matrix after sufficient top hat baseline 

processing favoring the PA over the TFA additive (Figure 2B). The SA matrix illustrated 

efficient ionization of higher molecular weight (MW) biomolecules; MW > 18 000 Da (Figure 

2C). In contrast, the “hot” CHCA matrix (Figure 2D) illustrated an efficient ionization in the 

lower region of the mass spectra compared to the other matrices which could be explained by 

in-source fragmentation or post-source decay tendencies36.  
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Since the Aβ1-42 peptide (including modified proteoforms) was the most abundant species 

observed in microdissected plaques of the APPPS1-21 mouse brain (Figure 1B), the calculated 

mass of Aβ1-42 ([M+H]+
Avg = 4515.1088) was selected as a marker for plaques in the MALDI 

imaging data analysis. We detected suboptimal ionization of Aβ1-42 with SA/TFA = 0.19 

absolute intensity value (AIV) (Figure 2C) and CHCA/TFA = 0.25 AIV (Figure 2D). We 

detected improved signal of Aβ1-42 with S-DHB/PA = 0.54 AIV (Figure 2A; Figure 3B and 

3E) and S-DHB/TFA = 0.37 AIV (Figure 2B; Figure 3B and 3E) and selected the S-DHB 

matrix as the most appropriate matrix with the PA additive.  

The S-DHB/PA matrix provided clear visualization of Aβ1-42 and other Aβ species such as 

Aβ8-40, Aβ1-40 and Aβ1-43 in APPPS1-21 mouse brain tissue (Figure 3A).   

When comparing the PA and TFA additives on regions of interest (ROIs) with high Aβ load 

from the APPPS1-21 mice, we observed a significant improvement in detection of Aβ1-42 (p 

= 0.0157) and Aβ1-43 (p = 0.0192) (Figure 3D). In contrast, similar AIVs were observed for 

Aβ8-40 and Aβ1-40 with the PA and TFA additives (Figure 3D). Our previous spectral 

comparison of S-DHB matrix in MALDI imaging revealed no clear difference in the lower m/z 

region (m/z: 1000 – 4500) whereas a clear difference was observed between the two additives 

for detecting peptides with higher MW (m/z > 4500) (Figure 2A and 2B). This finding from 

our MALDI imaging data is different from previous MALDI-MS studies where the beneficial 

effect of PA also was observed for peptides with lower MW (m/z > 2000) compared to TFA15.  

Taken together, the S-DHB matrix was found superior for detecting human Aβ1-42 peptides 

and therefore analysis of AD tissue was performed exclusively with this matrix. First, we 

compared detection of Aβ1-42 peptides in one postmortem AD brain comparing PA and TFA 

additives. The advantageous effect of PA was more pronounced in tissue from AD compared 

to APPPS1-21 brain tissue. We observed a two- to three-fold improvement of AIV with PA = 

0.88 vs TFA = 0.31 for Aβ1-42 detection in AD brain tissue (Figure 3C and 3E). Interestingly, 

the improved effect was also observed for detection of pyroglutamate-modified Aβ1-42 

(N3pE42; Figure 3E).  

The sensitivity gain by PA in MALDI-MS was hypothesized to be caused by an increased ionic 

strength upon evaporation of solvent that is incorporated into the matrix5,6. In MALDI imaging, 

the observed improvement of the S/N ratio, specifically in the AD brain tissue, could be 

additionally explained by the capability of S-DHB/PA to limit effects of interfering molecules 

such as lipids and salts known to cause signal suppression.   
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Aβ1-42 co-localizing peptides in AD and tg mouse tissue  

Various Aβ species including different truncations and posttranslational modifications 

associate with AD plaques17–19. Taking advantage of the optimized detection-method of the S-

DHB matrix with PA as matrix additive, we analyzed the presence of low abundant analytes 

that co-localized with Aβ1-42. We merged 27 spots from the APPPS1-21 mice to create an 

enriched mouse Aβ1-42 mass spectrum (Figure 4A).  

This approach revealed several m/z values corresponding to the calculated mass of other 

murine (m) and human Aβ species, including mAβ11-42, Aβ8-40, Aβ1-38, mAβ1-40, Aβ1-40, 

mAβ1-42, Aβ1-42, Aβ1-42 oxidized (Ox), Aβ1-43, Aβ1-43 Ox (Figure 4A). Most human Aβ 

species detected in the APPPS1-21 mice were full-length except for Aβ8-40 which was N-

terminal truncated. In contrast, when analyzing five postmortem AD brains to create an 

enriched human Aβ mass spectrum (n = 30 spots; Figure 4B), we detected mostly N-truncated 

Aβ species. Oxidized and N-truncated species, including pyroglutamate-modified peptides 

(NXpEX), were detected in AD brains previously30,37–40. All five AD samples showed spectral 

similarities of Aβ species matching Aβ1-29, N11pE42, Aβ11-42, N11pE43, Aβ1-31, Aβ10-

42, Aβ9-42, Aβ1-32, Aβ8-42, Aβ8-42Ox, Aβ1-33, Aβ8-43, Aβ7-42, Aβ7-43, Aβ6-42, Aβ5-

42, N3pE40, Aβ4-42, N3pE42, Aβ1-40, Aβ2-42, Aβ1-42, Aβ1-42 Ox, Aβ1-43, Aβ1-43 Ox.  

Variants such as Aβ1-40 and Aβ1-43 were detected in the enriched Aβ1-42 mass spectra from 

both tg mouse and AD (Figure 4) but we found a more complex co-localization in AD 

compared to the APPPS1-21 mouse brains. The major difference was the degree of N-truncated 

Aβ species in AD (Figure 4B). However, we cannot exclude that the level of N-terminal 

truncation could increase with progressing age in the APPPS1-21 mice. In another tg mouse 

strain (APP23) pyroglutamate-modified Aβ peptides were detectable in older mice at 24-month 

of age41.  

We observed a particular ratio in all five AD samples between N3pE42, Aβ1-40 and Aβ1-42 

which was not detected in the 9-month old APPPS1-21 mice. Since the S-DHB/PA matrix 

favored the Aβ1-42 and N3pE42 compared to Aβ1-40 peptides (Figure 3C), we asked whether 

this ratio was derived from the use of the S-DHB/PA matrix. However, this ratio of high Aβ1-

42 and N3pE42 and low Aβ1-40 was also observed previously in AD brains analyzed with a 

different matrix than S-DHB/PA and use of formic acid (FA) pretreatment30. We detected 

pyroglutamate-modified Aβ species using PA as matrix additive and without FA pretreatment, 

suggesting that the observed ratio between high Aβ1-42 and N3pE42 and low Aβ1-40 is 
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unlikely to be dependent on the S-DHB/PA matrix and could reflect the actual amyloid plaque 

composition in AD.  

Aβ1-42 species form the senile plaque core while Aβ1-40 species are accumulating in the 

vasculature as main component in amyloidosis42,43. We identified the pyroglutamate-modified 

Aβ peptides as a noticeable component co-localized with Aβ1-42 in AD brains. Apart from the 

prominent N3pE42, we also observed similar intensity of a co-localizing peak matching 

N11pE-42. We speculate that the hydrophobicity of Aβ1-42 (defined by the C-terminus) 

determines that the N-terminal part is accessible to truncation and modification by glutaminyl 

cyclase to generate the pyroglutamate-modification. This modification renders Aβ peptides 

resistant to protein degradation and could explain the higher abundancy of the N3pE-42 and 

N11pE-42 co-localized with Aβ1-42 (the main constituent of amyloid plaques in AD brains).  

N-truncation and modified Aβ species are believed to be disease relevant and thus detailed 

identification and detection by MALDI imaging of such complex composition will help 

understanding the underlying disease pathology in AD.        

Conclusions 

Enrichment of Aβ plaques by laser microdissection was critical for detailed analysis. Head-to-

head comparison of commonly used matrices revealed improved detection of Aβ1-42 with PA 

as matrix additive to the S-DHB matrix in MALDI imaging. Reduction of signal suppression 

by PA was especially advantageous when identifying complex plaque composition from AD 

brains. We recommend a parallel strategy of using laser microdissection and MALDI imaging 

with an enhanced matrix to limit ion suppression effects and increase the detection rate of Aβ 

plaque-associated peptides. 
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Table 1: Average values acquired from the matrix deposition of mouse brain tissue. 

 
DHB/ 0.2% 

PA 

DHB/ 0.2% 

TFA 

SA/ 0.2% 

TFA 

CHCA/ 0.2% 

TFA 

Average 

deposition layer 

(Light scattering 

intensity) 

4.7 4.3 3.3 4.1 

Average 

deposition time 

(Minutes) 

94 75 58 60 
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Figure 1: Improved detection of beta-amyloid (Aβ) species by phosphoric acid (PA) 

matrix additive in MALDI-MS. A) Thioflavin-T staining of APPPS1-21 brain tissue section 

prior to laser capture microdissection. A plaque is highlighted with a green circle and an 

adjacent control area is highlighted with a red circle. The image was acquired with a 20X 

objective lens. B) Mass spectrum acquired from microdissected APPPS1-21 plaque material. 

Data was acquired in positive ion reflectron mode; mass range: m/z 4300-4650. Identified 

peaks were calculated to Aβ1-40, Aβ1-40 Oxidation (Ox; M+16), Aβ1-42, Aβ1-42 Ox, Aβ1-

43 and Aβ1-43 Ox. The observed and calculated m/z, including differences, are presented in 

the associated table. C) Signal-to-noise (S/N) comparison of extracted plaque material from 

APPPS1 mice using the DHB/PA matrix (black) or S-DHB/TFA matrix (grey). D) S/N 

comparison of synthetic amyloid beta (Aβ)1-42 peptide using the SDHB/PA matrix (black) or 

S-DHB/TFA matrix (grey). Mass range in C) and D) = m/z 4506 - 4526. E) Representation of 

mean S/N (mean ± s.e.m; n = two replicates). 
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Figure 2: Matrix comparison in MALDI imaging. Processed and normalized mass spectra 

at different matrix conditions. Each mass spectrum is an average of nine tissue sections (three 

tissue sections per APPPS1-21 mouse brain). A) S-DHB/PA matrix. B) S-DHB/TFA matrix. 

C) SA/TFA matrix. D) CHCA/TFA matrix. Mass spectra are visualized with absolute 

intensities at mass range: m/z 1000-20000. AIV = absolute intensity value. The position of 

the beta-amyloid (Aβ)1-42 peptide is visualized with an arrow. 
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Figure 3: Improved detection of beta-amyloid (Aβ) species from APPPS1-21 and AD 

brain tissue by phosphoric acid (PA) matrix additive in MALDI imaging. A) Single ion 

images of beta-amyloid (Aβ) peptide species (Aβ8-40, Aβ1-40, Aβ1-42, Aβ1-43) with 

MALDI imaging (linear mode; 300 μm resolution; S-DHB/PA matrix; weak denoising; n = 

three APPPS1-21 mice (three sections per mouse brain); Scale bar = 4 cm). B) Absolute 

intensity spectra of Aβ1-42 when using S-DHB/PA (black) and S-DHB/TFA (red) on 

APPPS1-21 mouse brain tissue (n = 9). C) Absolute intensity spectra of Aβ1-42 when using 

S-DHB/PA (black) and S-DHB/TFA (red) on Alzheimer’s disease (AD) brain tissue (n = 2). 

D) Absolute intensity values (AIVs) of Aβ1-43, Aβ1-42, Aβ1-40 and Aβ8-40 proteoforms in 

selected ROIs when using PA and TFA matrix additives on APPPS1-21 mouse brain tissue. 

Data represent mean ± s.e.m.; Paired t-test, *p < 0,05; n = 9. E) Single ion images of Aβ1-42 

(4515.109 m/z) and pyroglutamate-modified Aβ1-42 (Np3E42; 4310.926 m/z) in APPPS1-21 

(upper) and AD (lower) brain tissue when using S-DHB with PA (left) or TFA (right) matrix 

additive (300 and 200 μm resolution for mouse and AD tissue, respectively; weak denoising; 

Scale bar = 1.9 and 1.4 cm, respectively. 
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Figure 4: Enriched Aβ1-42 mass spectrum from transgenic APPPS1-21 mouse and 

Alzheimer’s disease (AD) brain tissue. A) Enriched Aβ1-42 mass spectrum from transgenic 

APPPS1-21 mouse brain tissue (n = 27 spots; from 3 APPPS1-21 mice). Identified peaks 

were calculated to murine (m)Aβ11-42, Aβ8-40, Aβ1-38, mAβ1-40, Aβ1-40, mAβ1-42, Aβ1-

42, Aβ1-42 oxidized (Ox; M + 16), Aβ1-43, Aβ1-43 Ox. B) Enriched Aβ1-42 mass spectrum 

from Alzheimer’s disease (AD) brain tissue (n = 30 spots; five AD patients). Identified peaks 

were calculated to Aβ1-29, pyroglutamate modified Aβ (NXpEX) N11pE42, Aβ11-42, 

N11pE43, Aβ1-31, Aβ10-42, Aβ9-42, Aβ1-32, Aβ8-42, Aβ8-42 Ox, Aβ1-33, Aβ8-43, Aβ7-

42, Aβ7-43, Aβ6-42, Aβ5-42, N3pE40, Aβ4-42, N3pE42, Aβ1-40, Aβ2-42, Aβ1-42, Aβ1-42 

Ox, Aβ1-43, Aβ1-43 Ox. The data was acquired in linear mode; m/z 1000-20000; S-DHB/PA 

matrix. Aβ proteoforms exclusive to mouse and human are indicated by dotted green and blue 

lines, respectively. Shared peaks are indicated by dotted red lines. 

 

 


