

Aalborg Universitet

Study of thermochromic glass performance in the Danish climate and visual comfort perspectives

Imbert, Pierre; Larsen, Olena Kalyanova; Johra, Hicham

Creative Commons License Unspecified

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Imbert, P., Larsen, O. K., & Johra, H. (2019). Study of thermochromic glass performance in the Danish climate and visual comfort perspectives. Poster presented at CISBAT 2019 – International Scientific Conference:, Lausanne, Switzerland.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Study of thermochromic glass performance in the Danish climate and visual comfort perspectives

Paper ID: 1358

Pierre Imbert, Department of Civil Engineering – National Institute of Applied Sciences (INSA) of Strasbourg – France **Olena Kalyanova Larsen**, Department of Civil Engineering - Aalborg University - Denmark **Hicham Johra**, Department of Civil Engineering - Aalborg University - Denmark

Introduction

Windows are key elements in the building envelope in terms of energy performance and comfort. Thermochromic materials change their tint, visible-light transmittance and infrared transmittance as a function of temperature. They can be used to form dynamic façade elements for self-regulation of solar gains in order to avoid over-heating inside buildings.

The recent development of these so-called smart thermochromic glazings with the purpose of improving thermal comfort inside buildings raises the question of the visual comfort level offered by such glazings.

Objectives

This numerical study investigates the indoor illuminance comfort level of thermochromic glazing systems under Danish climate conditions.

Methodology

The indoor illuminance comfort level inside a Nordic building is simulated for 5 different commercial thermochromic glazing systems:

- Thermochromic Suntuitive® from Pleotint company
- 3 thermochromic glazing systems from Lawrence Berkeley National Laboratory
- Thermochromic Ravenbrick® from RavenWindow company

The numerical study was performed with DesignBuilder (EnergyPlus) Software on a one-room building model.

Glazing system	T _{int} transition state	T _{vis} in clear state
Thermochromic Suntuitive®	5 °C to 95 °C	$T_{vis} > 0.6$
Lawrence Berkeley National Laboratory 1	25 °C to 75 °C	$T_{vis} > 0.6$
Lawrence Berkeley National Laboratory 2	25 °C to 75 °C	$T_{vis} \sim 0.55$
Lawrence Berkeley National Laboratory 3	25 °C to 75 °C	$T_{vis} < 0.36$
Thermochromic Ravenbrick®	34 °C to 35 °C	$T_{vis} < 0.36$

Results and conclusions

The thermochromic effect is not activated for a major part of the year because of the cold climate.

Thermochromic systems improve the visual comfort level and reduce glare discomfort by reducing over-lit annual time but increase the demand for artificial lighting.

Wind exposure driving convective heat transfer at the surface of the glazing systems, and sky conditions (cloud cover) have a major impact on the thermochromic glazing's response.

