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Highlights: 

 Moesziomyces spp. can produce high xylanase titers in xylose, xylan and BSG 

medium 
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 BSG induces remarkably high xylanase production by M. aphidis PYCC 5535T (518 

U/mL)  

 Extracellular crude extracts from Moesziomyces spp. have cellulase-free xylanolytic 

activity 

 Xylan induces the lowest activity ratios of xylanase/β-xylosidase 

 High β-xylosidase activity leads to xylose solutions without xylobiose 

accumulation 

 

 

Abstract  

Xylanases play a crucial role in the hydrolysis of xylan-rich hemicelluloses and have wide 

industrial applications in the fuel, food, feed and pulp and paper industries. The 

production of these enzymes at low cost is of paramount importance for their commercial 

deployment. Moesziomyces antarcticus PYCC 5048T and M. aphidis PYCC 5535T were 

screened for their ability to produce xylanolytic enzymes when grown on D-xylose, xylan 

(beechwood) and brewery’s spent grain (BSG). The extracellular crude extracts produced 

were characterized and tested in xylan hydrolysis.  The yeasts produced xylanolytic 

enzymes without cellulolytic activity on all the substrates tested. The highest xylanase 

volumetric activity was obtained with M. aphidis PYCC 5535T  grown on BSG, reaching 

518.2 U/ml, a value 8.4- and 4.7-fold higher than those achieved on xylan and D-xylose, 

respectively. The xylanase activities were characterized in relation to pH and temperature 

with optima at 4.5 and 50°C, respectively. The extracts from both M. antarcticus PYCC 

5048Tand M. aphidis PYCC 5535T were used in xylan hydrolysis, producing D-xylose as the 

major end product (0.43 and 0.34-0.47 gD-xylose/gxylan, respectively, at 50°C) and relatively 

low or no xylobiose accumulation (from no detection to  0.12 gD-xylobiose/gxylan at 50°C). 
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Abbreviations 

DNS, 3,5-dinitrosalicylic acid; pNPX, p-nitrophenyl-β-D-xyloside; pNPX2, p-nitrophenyl-β-

xylobioside; pNP, p-nitrophenol; PYCC, Portuguese Yeast Culture Collection; BSG, 

brewery’s spent grain. 
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Introduction 

Xylan is the major component of hemicelluloses from hardwoods (glucoronoxylans) and 

agricultural residues (arabinoxylans) and the second most abundant polysaccharide in 

nature, after cellulose. Xylan is a complex, highly branched heteropolysaccharide, with a 

backbone formed of D-xylopyranose units (D-xylose) linked through β-1,4 glycosidic 

bonds, and side-chains composed of acetyl, glucuronosyl, arabinosyl and other groups [1]. 

The enzymatic hydrolysis of xylan requires the action of several enzymes, of which the 

most important are endo-β-1,4-xylanase (β-1,4-D-xylan xylanohydrolase, EC 3.2.1.8), that 

cleaves glycosidic bonds to produce xylooligosaccharides, and β-1,4-xylosidase (β-1,4-D-

xyloside xylohydrolase, EC 3.2.1.37), responsible for the final breakdown of 

xylooligosaccharides into D-xylose [2]. These microbial enzymes can be applied in 

lignocellulose bioconversion within many biotechnological processes, such as food (e.g. 

baking), animal feed, pulp and paper, as well as for the bioconversion of lignocellulosic 

material into biofuels and other added value chemicals [3].  

While extensive research on microbial cellulase and xylanase production has been 

performed with filamentous fungi [4], which are known as efficient enzyme producers, 

ACCEPTED M
ANUSCRIP

T



 4 

reports on xylanolytic enzymes from yeasts are comparatively limited [5-10]. Among 

these, ascomycetous and basidiomycetous are described as cellulase and/or xylanase 

producers, including those belonging to the genera Cryptococcus, Scheffersomyces, Candida, 

Trichosporon, Dekkera, Hanseniaspora, Metschnikowia, Rhodotorula, Sugiyamaella and 

Wickerhamomyces [6, 10-15]. 

Moesziomyces spp. are anamorphic basidiomycetous yeasts belonging to the 

Ustilagomycetes, a group that includes the smut fungus Ustilago maydis [16]. Among the 

genus Moesziomyces, M. antarcticus, (formerly known as Pseudozyma antarctica and 

Candida antarctica), was found to produce industry-relevant extracellular lipases [17], 

which were heterologously expressed in different hosts [18-20] and commercialized. The 

extracellular production of an excellent plastic-degrading enzyme, which degrades poly-

butylene succinate and polybutylene succinate-co-adipate, was also found in the strains of 

M. antarcticus isolated from plant surfaces [21]. Recent studies describe this and other 

yeasts from the Ustilaginaceae family with the ability to produce cellulase-free xylanase 

when grown in xylan [22, 23]. Moesziomyces antarcticus and M. aphidis, well known 

producers of the biosurfactant mannosylerythritol lipids (MEL), have been reported to use 

xylan as sole carbon source [23], thereby producing xylanolytic enzymes.  

The present study investigated the production of xylanolytic enzymes by M. antarcticus 

PYCC 5048T and M. aphidis PYCC 5535T on D-xylose, beechwood xylan and brewery spent 

grain (BSG), an abundant agro-industrial residue which might be used as an inexpensive 

substrate for industrial biotechnology processes [24]. The different extracellular crude 

extracts produced were characterized and further tested for enzymatic hydrolysis of 

xylan. 

 

Materials and methods 
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Yeast strains, substrate and cultivation conditions 

Moesziomyces antarcticus PYCC 5048T and Moesziomyces aphidis PYCC 5535T were 

obtained from the Portuguese Yeast Culture Collection (PYCC), DCV, FCT/UNL, Caparica, 

Portugal. Yeasts were cultured for 3 days at 25°C on Yeast Malt Agar (YM–agar) medium 

(yeast extract, 3 g/l; malt extract, 3 g/l; peptone, 5 g/l; glucose, 10 g/l; agar, 20 g/l). Stock 

cultures were prepared by propagation of yeast cells in liquid medium as described below 

for the inoculum and stored (in 20% v/v glycerol aliquots) at -70°C for later use. Inocula 

were prepared by incubation of stock cultures at 28°C, 140 rpm, for 48 h, in liquid medium 

containing glucose (40 g/l), NaNO3 (3 g/l), MgSO4 (0.3 g/l), KH2PO4 (0.3 g/l) and yeast 

extract (1 g/l). The cultivation media, containing 40 g/l carbohydrate as carbon source, 

MgSO4 (0.3 g/l), KH2PO4 (0.3 g/l) and yeast extract (1 g/l) as supplement for other 

elements, was inoculated with 10% v/v of inoculum culture and incubated at 28°C, 140 

rpm, for 10 days. All experiments were carried out at least in biological duplicates. One-ml 

culture samples were centrifuged at 13000 rpm, 4°C, and the supernatants were stored at 

-20°C for analysis. 

Carbon sources used for enzyme induction included: D-xylose (Sigma-Aldrich, USA), 

beechwood xylan (Sigma-Aldrich, USA) and brewery’s spent grain (BSG). BSG, kindly 

provided by Sociedade Central de Cervejas (Vialonga, Portugal), was ground with a knife 

mill to particles smaller than 1.5 mm, homogenized in a defined lot, and stored in plastic 

containers at room temperature (RT). BSG had 95% dry matter content, with 36.2 g/100 

gsolids of polysaccharides, consisting of 22.1 g/100 gsolids glucan and 14.1 g/100 gsolids  xylan. 

BSG was pretreated at 121°C for 15 min with 0.16 N HCl in a liquid-to-solid ratio of 9 

(w/w) (11% (w/v) dry matter) using an autoclave. The pH was adjusted to 5.5 using 4 M 

NaOH and this pretreated slurry material was subsequently used for cultivations. All the 

experiments were carried out with 40 g/l of carbohydrates, corresponding to 4% (w/v) of 

D-xylose and beechwood xylan, and 11% (w/v) of BSG. 
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Enzyme activity assays  

Xylanase activity was assessed through the release of reducing sugars from xylan 

measured by the 3,5-dinitrosalicylic acid (DNS) method described by Miller [25] with a 

few modifications. The supernatant culture sample was appropriately diluted with 0.1 ml 

of 1% beechwood xylan solution in 50 mM potassium phthalate buffer and incubated at 

50°C for 30 min. Subsequently, 0.6 ml of DNS reagent was added to stop the reaction and 

the solution was boiled for 5 min. After cooling to RT, reducing sugars were estimated 

using a D-xylose calibration curve, with absorbance of samples and standards measured at 

550 nm. Each reaction and its control were run in quadruplicate. One unit (U) of xylanase 

activity was defined as the amount of enzyme required to release 1 µmol of reducing sugar 

(D-xylose) equivalent per min. 

β-Xylosidase and β-xylobiohydrolase were determined as previously described [26]. The 

supernatant culture sample was appropriately diluted in a reaction mixture (0.3 ml), 

containing 5 mM p-nitrophenyl-β-D-xyloside (pNPX, Sigma, USA) or p-nitrophenyl-β-

xylobioside (pNPX2, Megazyme, Ireland), respectively, in 50 mM potassium phthalate 

buffer pH 5.5. After incubation at 50°C for 30 minutes, 0.15 ml of 1 M Na2CO3 was added to 

stop the reaction. The p-nitrophenol absorbance (pNP) was measured at 405 nm. One unit 

(U) of β-xylosidase activity was defined as the amount of enzyme releasing 1 µmol pNP 

per minute.  

Extracellular protein content was assessed using PierceTM BCA protein assay kit (Thermo 

Scientific, USA) using 1 ml of culture broth supernatant after centrifugation for 10 min at 

13,000 rpm.  

 

Characterization of xylanolytic activities in extracellular crude extracts 
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Extracellular crude extracts obtained from 10-day cultures were used to assess:  

(i) xylanase activity for a pH range from 3.0 to 8.0 at 50°C and for a temperature range 

from 20°C to 72°C at pH 5.5. Xylanase and β-xylosidase activities were determined as 

above. For the activity profile as a function of pH, xylanase activity was determined using 

citrate buffer (pH 3-6) and phosphate buffer (pH6-8). 

(ii) stability of xylanolytic activities at pH 5.5 and 28°C or 50°C for 48 hours in the 

presence and absence of substrate. 

The experiments were performed at least in biological duplicates with at least technical 

duplicates, i.e. at least four determinations. Some of the data points at specific pH, 

temperature and time resulted from single biological experiments, but the data points 

obtained from biological replicates have a variance below 15%.  

 

Comparative analysis of proteins present in extracellular crude extracts by SDS-PAGE 

The culture supernatants from cells grown on xylan and BSG (30 μL samples) were 

analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

(10% polyacrylamide). Electrophoresis was carried out at 110 V at RT and proteins were 

stained with Coomassie brilliant blue R-250. 

 

Application of crude extracellular extracts on xylan hydrolysis  

Crude extracellular extracts were used for the hydrolysis of 4% (w/v) xylan in 50 mM 

potassium phthalate, at pH 5.5, 28°C or 50°C, for 7 days, in the presence of 0.8% sodium 

azide to avoid biological contamination. Extracts were used at xylanase dosages close to 

300 U/g (corresponding approximately to 1/3 dilution), unless otherwise stated. 

Commercial hemicellulase was used for benchmarking at 300 U/g. Samples were taken 

periodically for analysis of enzyme activity and for D-xylose and xylobiose quantification. 

D-Xylose and xylobiose were estimated using a high performance liquid chromatography 
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(HPLC) system (Merck Hitachi, Darmstadt, Germany), equipped with a refractive index 

detector (L-7490, Merck Hitachi, Darmstadt, Germany) and an Aminex HPX-87H column 

(300mm×7.8mm, Bio-Rad), at 50C. Sulfuric acid (5 mM) was used as mobile phase at 0.4 

ml/min. Before injection into the HPLC, samples and standards were boiled for 10 min to 

inactivate extracellular enzymes, then centrifuged at 13000 rpm for 10 min and passed 

through a 0.45-μm filter. 

 

 

 

Statistical analysis 

Statistics were performed by analysis of variance (one-way ANOVA) and p-values of the 

differences between groups were corrected for simultaneous hypothesis testing according 

to Tukey's method. The level of significance was set at p < 0.05. 

 

Results 

 

Assessment of Moesziomyces antarcticus PYCC 5048T and Moesziomyces aphidis PYCC 

5535T as producers of xylanolytic enzymes 

In order to explore the extracellular xylanolytic potential of M. antarcticus PYCC 5048T and 

M. aphidis PYCC 5535T, the two strains were grown in media containing D-xylose, 

beechwood xylan or pretreated BSG (4% w/v carbohydrate content) for 10 days at 28°C. 

The respective crude extracellular extracts were characterized in terms of (endo-1,4-β-) 

xylanase, β-xylobiohydrolase and β-xylosidase activities at 50°C. The xylanase activity of 

extracellular crude extracts from M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T 

were estimated and compared for the different substrates tested (Fig. 1A and 1B). Both 

strains revealed cellulase-free xylanase activity regardless of the substrate tested. In all 
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cases, xylanase activity was detected after 1 day and increased over the following days, at 

least until day 7. The use of BSG as substrate allowed M. aphidis PYCC 5535T to achieve a 

maximum xylanase volumetric activity of 518.2 U/ml at day 10. At day 4, the activity was 

already 492.0 U/ml, which corresponded to a volumetric productivity of 5.1 U/ml/h (Fig. 

1A). These results were far superior to those achieved when beechwood xylan or D-xylose 

were used as substrates (8.4-and 4.7-fold, respectively). Conversely, the xylanase 

volumetric activity found in M. antarcticus PYCC 5048T cultures did not exceed 50 U/ml 

regardless of the substrates tested, with a maximum of 46.6 U/ml obtained in beechwood 

xylan (Fig. 1B). 

Detailed information of (endo-1,4-β-)xylanase, β-xylobiohydrolase, β-xylosidase activities 

and protein content of extracellular crude extracts is shown in Table 1. Interestingly, 

beechwood xylan induced both higher xylanase volumetric activity and total protein in 

cultures of M. aphidis PYCC 5535T than in those of M. antarcticus PYCC 5048T, but xylanase 

specific activities were very similar for both strains (31.1 and 32.4 U/mgprot, respectively). 

However, such correlation was not found when other substrates were used, with both 

volumetric and specific activities being higher for M. aphidis PYCC 5535T than for M. 

antarcticus PYCC 5048T (Table 1). While the xylanase volumetric activity in BSG was 

greater (14.8-fold) in M. aphidis PYCC 5535T cultures than in M. antarcticus PYCC 5048T 

cultures, the determination of specific activity in BSG can be misleading since this 

substrate is rich in protein, masking that produced by the yeasts. 

 

When grown in D-xylose medium, M. antarcticus PYCC 5048T showed much lower xylanase 

volumetric and specific activities (23.9 U/ml and 18.4 U/mgprot, respectively) than M. 

aphidis PYCC 5535T (111.3 U/ml and 123.7 U/mgprot, respectively) (Table1). 

The highest β-xylosidase activities were 0.32 U/ml for M. aphidis PYCC 5535T in BSG and 

0.14 U/ml for M. antarcticus PYCC 5048T in beechwood xylan. Xylose seems to  induce 
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xylanase, but not β-xylosidase, production better in M. aphidis PYCC 5535T when 

compared to xylan induction. The β-xylobiohydrolase volumetric activities estimated 

followed the same trend as those for xylanase, representing 5-30% of those, 20-30% for 

M. antarcticus PYCC 5048T and 5-20% for M. aphidis PYCC 5535T (Table 1). 

 

SDS-PAGE analysis confirmed that beechwood xylan and BSG acted as inducing substrates 

for enzyme production (Figure S1, Supplementary data). Two bands, slightly greater than 

30 kDa, were observed in all the extracellular crude extracts from M. antarcticus PYCC 

5048T and M. aphidis PYCC 5535T. One of these bands is tentatively assigned to endo-β-

1,4-xylanase (GH10), UniProtKB A0A068Q818 and W3VMB4, respectively. The other 

band, around 30 kDa, can tentatively be assigned to β-xylosidase (GH43), UniProtKB 

A0A081CDX0 and W3VSV8, in M. antarcticus and M. aphidis, respectively. Moreover, 

additional bands of approx. 66 and 20 kDa are found in extracts from M. antarcticus PYCC 

5048T, which can tentatively be assigned to other endo-β-1,4-xylanases, respectively from 

GH10 and GH11 families. The 20 kDa protein from M. antarcticus PYCC 5048T is expressed 

in xylan but not in BSG, while all the other proteins appeared to be more induced in BSG. 

The proteins of approx. 30 kDa from M. aphidis PYCC 5535T seem to be strongly induced 

by BSG, which is in concordance with the higher xylanase and β-xylosidase activities 

determined in this substrate.  

 

Characterization of pH and temperature profile of xylanase activity in crude extracellular 

extracts 

Xylanase activity was evaluated at different pH values and temperatures using crude 

extracellular extracts from M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T grown in 

beechwood xylan (Fig. 2). A pH range between 3.0 and 8.0 was used to study the effect of 

pH on xylanase activity (Fig. 2A). The optimum pH for xylanase activity in the two crude 
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extracts was estimated at  4.5, exhibiting more than 85% of maximal activity for pH 

ranging from 4.0 to 5.5.  A temperature range between 20 and 72°C was used to study the 

effect of temperature (Fig. 2B). The optimum temperature was estimated at 50°C for both 

M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T (Fig. 2B), with very similar 

temperature profiles exhibited in both crude extracts. At 72°C, both crude extracts 

retained more than 50% of maximal xylanase activity, while at 20, 28 and 35°C 

approximately 25, 40 and 50% of maximal activity was achieved.  

 

 

Stability of xylanolytic activities in crude extracellular extracts 

The stability of the xylanolytic activities in crude extracellular extracts from M. antarcticus 

PYCC 5048T and M. aphidis PYCC 5535T produced in beechwood xylan were evaluated in 

terms of xylanase and β-xylosidase activities, at 28 and 50°C, at pH 5.5 (Fig. 3A and 3B). 

Both M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T extracts exhibited high 

stability at 28C. After 6 h incubation they exhibited 85% and 76% of initial xylanase 

activity and, after 48 h, the values fell to 84% and 62%, for M. antarcticus PYCC 5048T or 

M. aphidis PYCC 5535T, respectively (Fig 3A). However, at 50°C, xylanase activity dropped 

to about 50% of the initial value after 6 h incubation and to 17% or 13%, after 24 h 

incubation for M. antarcticus PYCC 5048T or M. aphidis PYCC 5535T extracts, respectively. 

After 48 h incubation at 50°C, xylanase activity detected in both extracts was residual (Fig 

3B). However, after 48 h in the presence of substrate, the xylanase activities remained 

over 95% when incubated at 28°C and around 30% of the initial activity at 50°C.  

The stability of β-xylosidase activity in crude extracellular extracts of M. antarcticus PYCC 

5048T and M. aphidis PYCC 5535T was also evaluated at 28 and 50C. After 48 h at 28C, 

they retained more than 90% of their initial activity (Fig. 3A) and at 50°C about 83% and 
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78% activity was retained by M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T  

extracts, respectively (Fig. 3B). 

 

Hydrolysis of xylan with crude extracellular extracts from Moesziomyces spp. 

 

The potential application of crude extracellular xylanolytic extracts from M. antarcticus 

PYCC 5048T and M. aphidis PYCC 5535T was evaluated in the enzymatic hydrolysis of a 40-

g/l beechwood xylan solution at pH 5.5 and 28 or 50°C, the optimal temperatures for yeast 

growth and enzymatic hydrolysis, respectively. The extracts produced by M. antarcticus 

PYCC 5048T and M. aphidis PYCC 5535T grown in beechwood xylan and by M. aphidis PYCC 

5535T grown in BSG were selected for this study. They were diluted approximately 3 

times, resulting in a xylanase dosage of about 300 U/gxylan for beechwood xylan extracts 

(xylanase ANT-I and APH-I), but 4500 U/gxylan for BSG extract (xylanase APH-II). Taking 

into account such high xylanase activity in the extract from M. aphidis PYCC 5535T grown 

in BSG, it was also applied at the same xylanase dosage of about 300 U/gxylan, 

corresponding to a dilution of 1/45 (xylanase APH-IId). These extracts were compared 

with a commercial xylanase at 300 U/gxylan. 

The release of D-xylose and xylobiose was followed as shown in Fig. 4. Xylanases ANT-I 

and APH-I showed different maximum D-xylose yields (and final concentrations) reaching 

0.42 g/gxylan (16.9 g/l) and 0.29 g/gxylan (11.5 g/l) when incubated at 28°C for 168 h (Fig. 

4A). However, for enzymatic hydrolysis at 50°C these two extracts reached maximum D-

xylose yields of 0.43 g/gxylan (17.1 g/l) and 0.41 g/gxylan (16.3 g/l) for  ANT-I and APH-I, 

respectively (Fig. 4B). Around 70% of the maximum D-xylose released was attained after 

24 h at 50°C, whereas it took 48 h to reach the same yield at 28°C (Fig. 4A, B).  APH-I has a 

significantly higher xylanase/β-xylosidase activity ratio (at 50C) than ANT-I (Table 1), 

and xylobiose accumulation was higher for longer period with APH-I at 50°C.  
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Nevertheless, the enzymatic hydrolysis using both ANT-I and APH-I at 28C resulted in 

similar xylobiose accumulation (Fig. 4C, D).   

The D-xylose released with xylanase APH-II was 0.43 g/gxylan (17.3 g/l) and 0.47 g/gxylan 

(18.7 g/l) at 28°C and 50°C, respectively, while with APH-IId only 0.24 g/gxylan (9.7 g/l) and 

0.34 g/gxylan (13.4 g/l) were obtained at 28°C and 50°C, respectively.  

Indeed, APH-II exhibited the best performance towards complete xylan hydrolysis at both 

28 and 50C, with the highest D-xylose release and lowest xylobiose accumulation. In fact, 

no xylobiose was detected after 48 h at 50°C (Fig. 4D) and 77% of the maximal enzymatic 

hydrolysis yield was already observed after 24 h. Enzymatic hydrolysis of xylan using 

APH-IId revealed that D-xylose release was 57% of the maximum after 24 h, 

corresponding to 0.13g/gxylan and 0.19 g/gxylan at 28 and 50°C, respectively. In general, the 

extracts have a similar or better performance than the commercial enzyme used for 

benchmarking. 

 

Discussion 

 

Xylanolytic enzymes have wide industrial applications in the fuel, food, feed and pulp and 

paper sectors. These enzymes play a crucial role in xylan hydrolysis and their efficient 

production from low-cost substrates together with proven effectiveness towards specific 

applications are highly relevant for their commercialization [34].   

 

While efficient cellulose hydrolysis into glucose is possible with current commercial 

cellulolytic cocktails, the conversion of hemicellulose into monosaccharides is more 

challenging due to the heterogeneous nature of this polysaccharide, the composition of 

which varies among lignocellulosic materials [4, 34]. 

 

ACCEPTED M
ANUSCRIP

T



 14 

Several commercial xylanolytic cocktails produced by filamentous fungi are available for 

specific applications [4].  Although filamentous fungi are generally described as the best 

cellulolytic and hemicellulolytic microorganisms, there are yeasts growing efficiently in 

xylan [5, 6, 11], but xylanase volumetric activities are typically 1-2 orders of magnitude 

lower than for filamentous fungi..  The results presented here for volumetric activity are 

similar to, or higher than, those found in the yeast-like fungus Aureobasidium pullulans 

[12] and the well-known enzyme producer Trichoderma reesei RUT-C30, a filamentous 

ascomycetous fungus [27].  

 

Both M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T are already established as 

biosurfactant producers [28, 29], but the use of lignocellulose sugars in the production of 

these chemicals has only recently been reported, including D-glucose [30, 31], D-xylose 

[30], cellulose [32] and xylan [23]. While the use of cellulosic materials by M. antarcticus 

PYCC 5048T and M. aphidis PYCC 5535T requires supplementation with commercial 

cellulolytic enzymes [32], the same yeasts were able to grow in beechwood xylan (and 

produce biosurfactant in the case M. antarcticus PYCC 5048T) [23], showing that these 

strains are able to produce cellulase-free xylanolytic enzymes.  

 

Both strains assessed were able to grow and produce xylanolytic enzymes using all the 

substrates tested, showing robust and versatile enzyme production systems when induced 

by xylose or xylan (note that pretreated BSG contains both xylose and xylan, among other 

carbohydrates). The presence of glucose in pretreated BSG did not impair the production 

of the enzymes, probably because this sugar was consumed first during the initial growth 

phase. The extracellular crude extracts obtained from M. aphidis PYCC 5535T showed 

higher volumetric and specific xylanase activities than those from M. antarcticus PYCC 

5048T when cultivated both in xylose and xylan media. This is in line with the capacity of 
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M. antarcticus PYCC 5048T to produce both xylanolytic enzymes and biosurfactants when 

growing in xylan as a consolidated bioprocessing (CBP), while M. aphidis PYCC 5535T 

dedicates its machinery for enzyme production [23]. BSG had a remarkable induction 

effect in M. aphidis PYCC 5535T, generating high xylanase activity (518.2 U/ml). The much 

higher volumetric activity found in this substrate can be explained by the higher potential 

of M. aphidis PYCC 5535T to produce xylanases combined with the presence of protein in 

BSG (from malting barley) [24], a source of organic nitrogen (amino acids) that can be 

recycled for the biosynthesis of xylanolytic enzymes. In turn, the protein from BSG reduces 

the purity of the xylanases in the extracellular crude extract and the highest xylanase 

specific activity was in turn found in M. aphidis PYCC 5535T crude extracts when cultivated 

in xylose medium (124 U/mgprot). The β–xylosidase activity was higher in those extracts 

from cells grown in xylan or, in the case of M. aphidis PYCC 5535T, when grown in BSG and 

a high β–xylosidase activity is apparently mandatory to complete hydrolysis of xylan (see 

Table 1 and Figure 4D).  

 

The analysis of the crude extracts by SDS-PAGE allowed the correlation with the observed 

xylanolytic profiles. The putative endo-β-1,4-xylanases from family GH10 (UniProtKB 

A0A068Q818 and W3VMB4, respectively from M. antarcticus and M. aphidis), of 

approximately 30 kDa molecular weight and apparently induced in xylan and BSG, are 

orthologs of the characterized endo-β-1,4-xylanase from P. hubeiensis (PhX33, putatively 

UniPortKB R9P747), reported to have a size of 33.4 kDa [33], and from U. maydis 

(UniPortKB Q4P902) [34]. Other strains of M. antarcticus have also shown to have a 33 

kDa endo-β-1,4-xylanase (GH10) as major extracellular protein product when induced by 

xylose [35]. Another band around 30 kDa was tentatively assigned to β-xylosidase from 

family GH43 (UniProtKB A0A081CDX0 and W3VSV8, respectively from M. antarcticus and 

M. aphidis). Those are orthologs of one protein from U. maydis  UniProtKB A0A0D1C3L0) 
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which is very similar to a β-xylosidase from Ustilago sp. SL-2014 (UniProtKB 

A0A0B5A2X5). The additional bands of approx. 66 and 20 kDa found in extracts from M. 

antarcticus PYCC 5048T were tentatively assigned to endo-β-1,4-xylanases, respectively 

from GH10 and GH11 families. This is supported by a similar pattern found in other M. 

antarcticus strains when grown in xylose [39], by one protein of approximately 66 kDa 

with a GH10 conserved domain found in M. antarcticus (UniProtKB A0A081CI12) and by P. 

hubeiensis reported to have a second xylanase (PhX20) of 20 kDa belonging to the GH11 

family [33]. While the 20 kDa protein from M. antarcticus PYCC 5048T is expressed in 

xylan but not in BSG, all the other proteins seem to be more induced in BSG. The proteins 

of approximately 30 kDa, probably one endo-β-1,4-xylanase (GH10) and one β-xylosidase 

(GH43) from M. aphidis PYCC 5535T seem to be strongly induced by BSG, allowing efficient 

xylan hydrolysis. 

 

The potential biotechnological application of the produced enzyme extracts depends on 

their specific features, such as optimal pH and temperature and thermal stability. In the 

present study, xylanase activities exhibited high activity (>80% of maximum) at pH and 

temperature ranges of 4.0-5.5 and 45 and 55°C, which fall in the range of values reported 

for most xylanases and specifically for those isolated from other M. antarcticus strains – 

4.0-6.5 and 40-80°C, respectively [33,36]. The relatively high activity at low temperatures, 

around 40% of maximum at 28°C and around 50% of maximum at 35°C, may allow the 

combination of enzymatic hydrolysis and microbial conversion processes through 

simultaneous saccharification and fermentation (SSF) or consolidated bioprocessing 

(CBP) for the production of fuels and chemicals [23, 32]. According to the different process 

configurations applied in the bioconversion of lignocellulosic materials, the thermal 

stability and the production of xylose solutions was assessed at two temperatures using 

xylan as substrate: 28°C, to assess the performance for SSF and CBP strategies; 50°C, to 
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assess the performance under separate hydrolysis and fermentation (SHF), where optimal 

temperature for enzyme activity can be applied without affecting mesophilic 

microorganisms. Over a 48 hour period, crude extracts retained more than 62% of their 

xylanase activity and 90% of β–xylosidase activity at 28C, but at 50C those activities 

decreased to virtually 0% and 78%, respectively. Xylanases are therefore much more 

sensitive to high temperatures than β–xylosidases. In the presence of substrate (xylan) 

thermal inactivation was reduced as the extract retained 30% of xylanase activity after 48 

hours. Thus, the thermal stability of xylanase might be limiting the efficiency of xylan 

hydrolysis when applying this extract at high temperatures. Nevertheless, the formulation 

for commercial applications can include stabilizers to mitigate this effect. Crude extracts 

from M. antarcticus PYCC 5048T and M. aphidis PYCC 5535T were, in general, more efficient 

than the commercial enzyme in the production of xylose solutions from xylan during the 

first 24-48 hours, reaching after 40/50% hydrolysis yields, in line with the yields achieved 

with commercial enzyme. These yields reflect the limitation of xylanolytic enzymes at two 

levels: (i) inhibition by the products of the xylanolytic enzymes, which is commonly seen 

in non-modified hydrolases; (ii) thermal inactivation of xylanases, as discussed above.  

The application of these xylanolytic extracts in lignocellulose conversion processes can 

thus be optimized by increasing thermal stability of xylanases for SHF processes, by the 

overexpression of β-xylosidase and by reducing product inhibition effects, namely by 

applying SSF and CBP processes or at the molecular level by protein engineering. 

The enzymes and enzyme extracts produced by Moesziomyces spp. have other potential 

applications such as: (i) food processing, including beer filtration processes and baking, 

mainly due to their relatively high activity at low temperature; (ii) the pulp and paper 

industry, for the production of dissolving pulp [37, 38], because these are cellulase-free 

xylanolytic extracts; and (iii) ensiling processes, to selectively release xylose to be used by 
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anaerobic lactic acid bacteria in feed stabilization, where both cellulase-free xylanases and 

xylanolytic activity at low temperature may be advantageous.   

 

Conclusions 

The current study has shown that M. antarcticus PYCC 5048Tand M. aphidis PYCC 5535T 

can produce cellulase-free xylanolytic enzymes efficiently from xylose, xylan and BSG, with 

a remarkably high xylanase volumetric activity obtained from M. aphidis PYCC 5535T when 

induced by BSG – 518 U/mL. The properties and performance of these extracellular crude 

extracts in xylan hydrolysis place them as promising for biotechnological applications 

under SHF, SSF and CBP systems for lignocellulose conversion into bio-based products or 

as technical enzymes for food, feed or pulp processing (in the pulp and paper industry). 
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Figure 1. Time course of xylanase volumetric activity at 50°C of extracellular crude 

extracts obtained from M. antarcticus PYCC 5048T (A) and M. aphidis PYCC 5535T (B) 

cultures incubated for 10 days at 28°C using (as carbon source): 4% (w/v) beechwood 

xylan (circles); 4% (w/v) D-xylose (rectangles); or 11% (w/v) BSG (triangles). Mean 

values are stated and error bars represent standard deviation (n=4).  
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Figure 2. Effect of pH (A) and temperature (B) on xylanase activity in extracellular crude 

extracts obtained from M. antarcticus PYCC 5048T (open symbols) and M. aphidis PYCC 

5535T (filled symbols) grown in 4% (w/v) beechwood xylan for 10 days. Relative activity 

is expressed as percentage of the maximal activity. The pH plot was performed at 50°C, 

while the temperature plot was performed at pH 5.5. 
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Figure 3 - Effect of temperature, 28°C (A) or 50°C (B), on thermal stability of xylanolytic 

enzymes: xylanase (continuous lines) and β-xylosidase (dashed lines) activities in 

extracellular crude extracts obtained from M. antarcticus PYCC 5048T (open symbols) and 

M. aphidis PYCC 5535T (filled symbols) grown in 4% (w/v) beechwood xylan for 10 days. 

Relative activity is expressed as percentage of the maximal activity. 
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Figure 4 – Time course of 4% (w/v) beechwood xylan hydrolysis using extracellular 

crude extracts from: M. antarcticus PYCC 5048Tin xylan, diluted 1:3 (xylanase ANT-I); M. 

aphidis PYCC 5535T in xylan, diluted 1:3 (xylanase APH-I); M. aphidis PYCC 5535T in BSG, 

diluted 1:3 (xylanase APH-II) and diluted 1:45 (xylanase APH-IId); and a commercial 

enzyme. The diluted extracts tested corresponded to xylanase activities of around 300 

U/gxylan (xylanase ANT-I, APH-I, APH-IId and commercial enzyme) and 4500 U/gxylan 

(xylanase APH-II) and 0.6, 1.7, 2.7 and 0.2 U β-xylosidase/gxylan for xylanase ANT-1, APH-I, 

APH-II and APH-IId, respectively, at 50°C. D-Xylose (a and b) and xylobiose (c and d).  
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Table Captions 

 

Table 1. Effect of carbon sources on xylanase, β-xylobiohydrolase and β-xylosidase 

volumetric activities and protein content. Volumetric activities (U/ml) were determined at 

50°C, after 10 days incubation at 28°C in 4% (w/v) beechwood xylan, 4% (w/v) D-xylose  

 

 

Xylanase 

(U/ml) 

β-xylobiohydrolase 

(U/ml) 

β-xylosidase 

(U/ml) 

Total protein 

(mg/ml) 

Xylanase:  

β-xylosidase 

activity ratio 

M. antarcticus PYCC 5048T 

Xylan 46.6±4.4 9.5±2.8 0.14±0.03 1.5±0.3 333 

D-xylose 23.9±0.0 6.8±0.9 0.05±0.02 1.3±0.2 478 

BSG 34.9±8.7 8.5±0.7 0.03±0.00 6.6±0.7 1163 

M. aphidis PYCC 5535T 

Xylan 61.5±7.0 10.3±2.4 0.09±0.01 1.9±0.2 683 

D-xylose 111.3±25.6 13.2±2.5 0.04±0.00 0.9±0.1 2783 
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or 11% (w/v) BSG medium. Mean values are stated ± SD (n=4). 

BSG 518.2±32.2 99.4±0.4 0.32±0.05 8.0±0.3 1619 
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