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Abstract: 

It was recently discovered that nanocrystals can be generated in glass anodes by 

Li-ion insertion, and thereby the cycling stability of Li-ion batteries was enhanced. 

Here we reveal the origins of both the nanocrystal formation and the enhancement of 

battery performances by exploring phase transitions, redox reactions, and structural 

heterogeneity in glass anodes. We infer that Li
+
 ions interact with the higher energy 

domains of structural network during discharging/charging, and some of the Li ions 

are incorporated into the structural network, and thereby the potential energy is 

lowered through nanocrystal formation. Upon 5000 discharging/charging cycles at a 

high current density of 1 A g
-1

, the nanocrystals in the 40TeO2-60V2O5 glass were 

identified to be γ-Li3VO4. Owing to the metastable nature of the γ-Li3VO4 phase, the 

glass anode becomes electrochemically active and highly ionic conductive. 

Simultaneously, the cycling stability is greatly enhanced by the nanostructured glass 

since the nanocrystals could suppress the propagation of micro-cracks generated by 

volume changes in glass matrix. 
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1. Introduction: 

Lithium-ion batteries (LIBs), as one of the most promising energy storage devices, 

have been applied in many different areas [1-3]. With the ever-growing demand for 

large-scale energy storage devices and hybrid electric vehicles, it is urgent to develop 

superior anode materials, which are the main contributor to the battery capacity [4,5], 

for the next generation of LIBs. To date, most studies of the anode materials have 

been concentrating on carbonaceous materials [6-8], metal and semi-metal [9-11], as 

well as metal oxides [12-16]. In all of these materials, the dominant mechanism for 

Li
+
 storage is demonstrated to be the insertion-type lithiation. That is to say, Li

+
 ions 

are inserted into the well-defined layered crystals of the carbonaceous anodes [6-8] or 

into the interstitial sites of crystalline lattices in metal oxide anodes [2,12,13]. The 

larger specific capacity of the anode commonly requires an accompanying volume 

change to accommodate the lithium ions during discharging/charging process. 

However, the active anode materials suffer from huge volume variations during Li
+
 

insertion/extraction cycles, leading to pulverization and thus rapid capacity fading. 
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For instance, silicon is an attractive anode material for lithium batteries since it has a 

low discharge potential and the highest known theoretical charge capacity (4200 mAh 

g
-1

) [17]. However, its large volume expansion (~400%) during lithiation results in 

fast pulverization of silicon particles and loss of electrical contact between the active 

material and current collector, and consequently results in rapid capacity fading and 

short battery lifetime [17].  

In contrast to the crystalline anode material, the glass anode as an alternative for 

rechargeable LIBs has also received attention due to its unique structures, such as 

absence of grain boundaries, randomly distributed structural units and open network 

structures [18-22]. During lithiation, Li
+
 ions could insert into the structural defects of 

the amorphous metal oxides [23] or the open network structures of the glass anodes 

[18-20]. Moreover, the presence of percolation pathways in the glass materials 

facilitates the diffusion of Li
+
 ions, thus leading to superior rate capability [24, 25]. 

However, the main challenge for employing glass anodes also lies in the rapid 

capacity decay during discharging/charging processes because of the high polarization 

and slow diffusion of Li
+
 ions and electrons in the active materials although with 

higher gravimetric and volumetric capacities [19-21]. This severely impedes the 

practical application of LiBs.  

With the above-mentioned aspects in mind, one of the most promising solutions to 

avoid rapid capacity decay, i.e., to prolong the cycling life, is to combine the 

advantages of nano-crystals with those of glass materials by designing hierarchical 

nanostructures [16,18,26-28]. The glass phase plays beneficial roles in different 

manners. First, the glass phase can effectively buffer the strain/stress induced by 

volume variations of the crystal phases during the discharging/charging cycles [16]. 

On the other hand, the glass phase allows the charging-induced crystal growth within 

nano-scale [18]. As is known, the smaller the crystals in the electrode materials are, 

the larger the crystal-glass boundary area is, and hence, the easier the Li
+
 ions diffuse, 

leading to better electrochemical performances [29,30]. Second, some oxide glasses 

containing transition-metal ions, e.g., V ions, exhibit semiconducting behavior that 
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increases the electrical conductivity of the overall electrodes [24,25]. According to a 

recent study [31], the V2O5 nanowire-reduced graphene oxide (rGO) composite paper 

could be used as cathode materials for lithium-vanadium batteries. Such cathode 

materials exhibited excellent electrochemical performances, which were mainly 

attributed to the integration of the electronic conductivity of rGO with the 

interconnected networks of both the V2O5 nanowires and the solid electrolyte. The 

amorphous carbon coated Li3VO4 has been reported to significantly improve the 

electrochemical performance of the anodes since the grain growth was strongly 

restricted by the amorphous carbon layer [27]. However, the negative effects, such as 

low tap density and large irreversible capacity loss [32], could emerge when using the 

surface-coating nanostructured materials as electrodes.  

Recently, we proposed the disorder/order engineering concept to improve the anode 

performances. Specifically, we first fabricate the semiconducting V2O5-TeO2 (VT) 

glass by melt-quenching, then mixed its powder with carbon black and sodium 

carboxy methyl cellulose to form anode, and finally subjected them to Li ion 

discharging/charging. After a certain number of cycles, the glass phase was partially 

transformed into ordered phases at the nanoscale, i.e., nanocrystals, leading to the 

improved anode performances, in particular, the cycling stability [18]. It should be 

stressed that the formation mechanism of the nanocrystal is fundamentally different 

from that of the classical thermally induced crystallization [33,34]. Here the questions 

arise: what type of crystal emerges during discharging/charging? Why can the crystal 

phase enhance the electrochemical performance of the VT glass anode? What is the 

microscopic mechanism of the discharging/charging induced nucleation? In this study, 

we answered these questions by taking the 60V2O5-40TeO2 (VT60) glass anode as an 

example. The present study gives insight into the relation between crystal formation 

and electrochemical performances of the glass anodes for LiBs, as well as into the 

charging induced crystallization.  

 

2. Experimental section 
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2.1 Preparation of glass 

We chose and prepared the 60V2O5-40TeO2 (VT60) glass as anode material by 

using the conventional melt-quenching method [18]. The relatively low melting 

temperature (>1073 K) and short melting duration (30 min) were beneficial to 

minimizing the evaporation of V2O5 and TeO2. The melt-quenched glass was annealed 

at the glass transition temperature (Tg) for 2 hours, and then cooled naturally down to 

room temperature to remove the thermal stress. 

2.2 Characterization 

X-ray diffraction (XRD) patterns of the studied samples were acquired by an X-ray 

diffractometer (XRD) (Shimadzu LabX XRD-6100, CuKα radiation) from 10º to 70º 

(2θ) with a stepsize of 0.02. To obtain the XRD patterns of the cycled glass anodes, 

the test cells were carefully disassembled in an argon-filled glovebox, and the anodes 

were scraped off. The particle size and morphology of the glass powder before 

assembling cells were examined by a field emission scanning electron microscope 

(FE-SEM, ZEISS GeminiSEM500). To detect the microstructural changes of the 

anodes subjected to long cycles, a high-resolution transmission electron microscope 

(HRTEM, JEM 2100, accelerating voltage: 200 kV) was employed. The enthalpy 

relaxation of the fast-quenched VT60 glass was analyzed using a differential scanning 

calorimeter (DSC) (Netszch Jupiter STA 449F3, Selb, Germany) at the upscan rate of 

10 K/min equal to the prior downscan rate in nitrogen, from which the energetic and 

structural heterogeneity was determined [35]. The valence state of the VT60 glass 

anode was studied by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi) 

using a focused monochromatized Al Ka radiation (h=1486.6eV). 

 

2.3. Electrochemical measurements 

The electrochemical properties of VT60 glass anode were evaluated with 

two-electrode coin cell by an automatic Land battery test system (CT2001A). The 

working anodes were prepared using the same procedure as described in [18]. The 

galvanostatic discharging/charging cycling test of the samples was conducted between 
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0.01 and 3.0 V vs. Li/Li
+
 under a high current density of 1 and 5 A g

-1
, respectively, 

on a Land battery test system. Cyclic voltammetry (CV) measurements were carried 

out by using an electrochemical workstation (CHI 660E) at a scan rate of 0.1 mV s
-1

 

in the voltage range of 0.01-3.0 V (vs Li/Li
+
). Electrochemical impedance 

spectroscopy (EIS) measurements were conducted on the impedance-measuring unit 

(PARSTAT 2263 electrochemical workstation) with AC signal amplitude of 10 mV in 

the frequency range of 100 kHz to 0.01 Hz. All the electrochemical measurements 

were carried out at the room temperature.  

 

3. Results  

The electrochemical performances of the VT60 glass anode in LiBs were evaluated 

by half-cells. Fig. 1a shows the first three cycles of galvanostatic discharging/charging 

curves at a current density of 1 A g
-1

. The initial discharging/charging capacity is 

found to be 629/196 mA h g
-1

, resulting in an irreversible capacity retention of 31%. 

The high capacity loss could be, on one hand, due to the formation of the solid 

electrolyte interface (SEI) film that lowers the ionic conductivity. On the other hand, 

the capacity loss could be caused by the disorder-order transition. From our previous 

findings [18], the Li-containing nano-crystals already appear in the VT60 glass anode 

during the first discharging/charging cycles. This process could consume a certain 

amount of Li ions, which were inserted into the glass network and subsequently 

participated in the resulting nanocrystal structure during the first discharging cycle, 

leading to a lower initial charging capacity. The efficiency is rapidly increased to 92.8% 

and 94.3% over the subsequent second and third cycles, corresponding to a stable 

capacity of about 200 mA h g
−1

.  

Cyclic voltammetry (CV) measurements were also performed and the 

corresponding first three cycles of the CV curves at a scan rate of 0.1 mV s
-1

 in the 

voltage range of 0.01~3 V were shown in Fig. 1b. Only a single couple of peaks can 

be observed, implying the simplified step of Li insertion. The 1st cycle is apparently 

different from the subsequent two cycles with a small peak at around 0.65 V near the 
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main reduction peak at 0.58 V. This could be ascribed to the side reaction on the 

electrode surfaces and to the formation of SEI film. For the subsequent cycles, the 

reduction peak was found to shift to 0.85 V, indicating a phase transformation 

accompanied by the reduction of vanadium ions during Li insertion. In addition, a 

broad oxidation bump at around 1.3 V in all cycles was observed, implying the 

lithium extraction mechanism related to the oxidation of vanadium ions, and the high 

reversibility.  

Fig. 1c exhibits the long-life performance of the glass anode and the Coulombic 

efficiency (CE) of about 100%. The capacity can be maintained at 121 mA h g
-1

 at a 

current density of 1 A g
-1

 after 5000 cycles, with an outstanding capacity retention of 

83.7%. The CE of almost 100% has been obtained, indicating the excellent cycling 

stability of the VT60 glass. At a higher current density of 5 A g
-1

, the capacity of 80 

mA h g
−1

 can be retained after 5000 cycles, corresponding to 53.6% retention of the 

original capacity.  

EIS measurements are carried out to illustrate the electrode kinetics of the VT60 

glass anode before and after 1000 and 5000 discharging/charging cycles, respectively. 

Each EIS spectrum in Fig. 1d exhibits one semicircle in the high frequency region and 

an inclined line in the low frequency region. The diameter of the semicircle is a 

measure of the SEI resistance and the charge-transfer resistance. The inclined line is 

assigned to the Warburg impedance, which is associated with the coefficient of Li
+
 ion 

diffusion into the bulk electrode. As shown in Fig. 1d, and also according to our 

previous findings [18], the resistance of VT60 glass was greatly reduced after 1000 

cycles due to the formation of nanocrystals randomly distributed in the glass matrix. It 

is clearly seen that the diameter of the semicircle of the VT60 glass after 5000 cycles 

was slightly larger than that after 1000 cycles, this could be due to some side reactions 

with the electrolyte, which took place upon super long cycles. Nevertheless, the 

resistance is still much lower than that of the VT60 glass anode before cycles. To 

clarify the reasons for the outstanding cycling performance, both the XRD patterns 

and HRTEM micrographs of the VT60 glass anode after 5000 cycles at 1 A g
-1 

were 
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taken. 

 
Fig. 1. (a) Galvanostatic discharge and charge curves at 1 A g

-1
, (b) Cyclic voltammetry 

curves and (c) Cycling performances of VT60 glass anode at high current densities of 1 and 5 

A g
-1

, respectively. (d) Nyquist plots for VT60 glass anode before and after 1000 and 5000 

cycles. 

 

Fig. 2a shows the SEM image of the VT60 glass sample after ball milling for 4 

hours at the rotation speed of 400 rpm/min, before cell assembling. It can be seen that 

the sample is composed of particles with a broad size distribution from dozens of nm 

to several μm, the average size of which is about 100-200 nm. These particles show 

smooth surface and irregular shapes. Fig. 2b shows the XRD patterns of both the fresh 

VT60 glass (black line) and the VT60 glass anode subjected to 1000 and 5000 

discharging/charging cycles (red and blue lines) at a current density of 1 A g
−1

, 

respectively, as well as the γ-Li3VO4 crystals for comparison. The broad hump in the 

pattern of the fresh VT60 confirms its pure glass nature. According to our previous 

studies, the nanocrystal phase formed after 1000 cycles was identified to be LiVO3, 

which is an unstable crystal phase [18,36]. With increasing discharging/charging 

cycles up to 5000, the characteristic peaks of the γ-Li3VO4 phase (JCPDS Card no.: 

24-0666) gradually appear besides some minor peaks attributed to LiVO3. 
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Furthermore, the intensities of γ-Li3VO4 diffraction peaks are much higher than those 

of LiVO3, implying that γ-Li3VO4 is the predominant crystalline phase in the glass 

anodes after 5000 cycles. In addition, both γ-Li3VO4 and LiVO3 crystals are 

intercalation materials, which can give electrodes superior electrochemical 

performances [2,37]. X-ray photoelectron spectroscopy (XPS) was measured to study 

the valence state variation of vanadium ions for the VT60 glass anode before and after 

5000 cycles at 1 A g
-1

. For the fresh VT60 glass (Fig. 2c), four peaks at 514.9, 521.7, 

516.4 and 523.9 eV can be assigned to the 2p3/2 and 2p1/2 for V
4+

, 2p3/2 and 2p1/2 for 

V
5+

, respectively [38]. The molar ratio of the V
4+

 to V
5+

 ions in fresh VT60 glass was 

determined to be about 0.06. The presence of V
4+

 in the fresh VT60 glass could be 

attributed to the equilibrium redox reaction during glass melting in atmospheric air. It 

is generally established that the higher the melting temperature is, the more favorable 

are the lower valence states of transitional metals. After 5000 discharging/charging 

cycles, it can be seen that two dominant peaks are observed at 517 and 524.2 eV (Fig. 

2d), matching with the 2p3/2 and 2p1/2 spin-orbit levels of V
5+

, respectively, implying 

that nearly all the V
4+

 ions were oxidized to the V
5+

 ions upon 5000 

discharging/charging cycles. 
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Fig. 2. (a) SEM image of the VT60 glass particles after ball milling. (b) The XRD analysis of 

the fresh (ball milled) VT60 glass, the VT60 glass anode after 1000 and 5000 

discharging/charging cycles at a current density of 1 A g
−1

 and the γ phase Li3VO4 crystal. (c) 

and (d) V 2p X-ray photoelectron (XPS) spectrum of VT60 glass before and after 5000 

discharging/charging cycles at 1 A g
−1

. 

  

Fig. 3 shows the high-resolution TEM (HRTEM) images of the VT60 glass anode 

after 5000 cycles at the current density of 1A g
−1

, where it is seen that the 

microstructure of the sample significantly differs from the amorphous structure of the 

fresh glass (i.e., before cycling) [18]. As shown in Figs. 3a and b, a large number of 

structurally ordered domains at nanoscale (represented by dark domains) with a mean 

size of about 10 nm and clear boundaries are randomly distributed in the glass matrix, 

forming the nano-glass ceramic structure. These nanocrystals are isolated from each 

other. Fig. 3c shows the legible ordered lattice fringes with different basal distances. 

The crystal interplanar spacing of 0.2 nm, 0.235 nm and 0.33 nm correspond to the 

(320), (112) and (121) planes of γ-Li3VO4 (JCPDS Card no.: 24-0666), respectively. 

In addition, the amorphous matrix, in which the ordered lattice fringes are embedded, 

can also be clearly observed. This type of nanostructured glass is verified by the XRD 

result (Fig. 2b). Fig. 3d shows the selected area electron diffraction (SAED) pattern 

for the denoted area in Fig. 3c. The circular diffraction spots in SAED pattern 

demonstrate the nanocrystalline phase from VT60 glass anode after 5000 cycles. This 

implies that the electrochemical activation, i.e., the lithiation/delithiation process, can 

lead to the morphology variation by formation of a large number of nanocrystals from 

the glass matrix. The nanostructured glass (i.e., nano glass-ceramics [26]) could 

facilitate the electrochemical reactions between electrode and electrolyte and improve 

the structure stability of the VT60 glass anode, resulting in superior electrochemical 

performances, especially cycling stability.  
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Fig. 3 HRTEM images (a), (b) and (c) of the VT60 glass anodes after 5000 

discharging/charging cycles at the current density of 1 A g
−1

. c1, c2 and c3: the enlarged 

images of the regions denoted in (c), respectively, illustrating the interplanar spacing. (d): 

corresponding SAED pattern of the crystallized area in (c). 

 

4. Discussions 

To investigate the cycling stability of VT60 glass, we conducted the differential 

scanning calorimetry (DSC) upscan on the as-produced glass at 10 K/min to 700 K in 

nitrogen. Fig. 4a shows the DSC curve of VT60 glass with three characteristic 

temperatures: the onset glass transition temperature (Tg), onset crystallization 

temperature (Tc) and melting point (Tm), which are 513 K, 554 and 820 K, 

respectively [39]. The glass stability against crystallization was found to have a 

parallel relation to the glass forming ability [40,41], and the former can be described 

by the Hruby parameter, KH=(Tc−Tg)/(Tm−Tc) [42]. The KH value of VT60 glass was 

determined to be only 0.15, implying a rather low glass stability of the studied glass 

[43]. The low glass stability means the stronger tendency to nucleation and crystal 

formation due to the presence of the pre-ordered domains at nanoscale in the 

supercooled liquid state [35,44]. 
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Fig. 4 (a) DSC curve of VT60 glass during heating. The determination of the three 

characteristic temperatures Tg, Tc and Tm is illustrated. (b)Annealing time (t) dependence of 

the normalized remaining excess enthalpy (ΔHremain/ΔHtotal) in the FQVT60 glass annealed at 

0.8Tg (410 K), where ΔHremain and ΔHtotal are the remaining excess enthalpy and the total 

excess enthalpy, respectively, determined by the Cp curves as shown in the inset. 

 

In terms of the potential energy landscape [45], glass is structurally heterogeneous, 

i.e., the structure can be described by the spatial correlations of potential energies of 

structural units [46], i.e., energetic heterogeneity. The structural heterogeneity has a 

strong impact on the glass properties. The study of structural heterogeneity in both the 

glassy and the supercooled liquid states is critical for understanding of the nature of 

glass [47] and how it affects the glass properties [48,49]. The 

quenching-annealing-DSC approach has been demonstrated to be a powerful tool for 

detecting the structural heterogeneity in the glassy state [50,51]. The width of the 

structural relaxation time distribution expressed by the Kohlrausch stretching 

parameter β can be used as a measure of the extent of the structural heterogeneity 

[51].  

To quantify the structural heterogeneity in the studied VT60 glass anodes, we 

investigated the enthalpy relaxation of the fast quenched (FQ) VT60 glass, which is 

prepared by pouring the glass melt into ice water to trap the high potential energy of 

the supercooled liquid to form a glass state with a higher fictive temperature (Tf) 

compared to a glass cooled at 10 K/min [51]. Fig. 4b shows the time dependence of 

the normalized remaining enthalpy in the FQVT60 glass annealed at 0.8Tg (410 K). 

The enthalpy relaxation curves are fitted by the Kohlrausch-William-Watts (KWW) 

function, i.e., ΔHremain/ΔHtotal = exp[-(t/τ)
β
], where β is determined to be 0.28, 
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indicating a higher degree of structural heterogeneity. From another perspective, the 

variation of the Cp patterns of the annealed samples with annealing time (inset of Fig. 

4b) indicates the dynamically fragile nature of the VT60 composition and a high 

degree of structural heterogeneity [52,53]. This implies that the fast quenched VT60 

glass has a wide distribution of independent micro-domains with different potential 

energies. Since the cooling rate of the fast quenched VT60 glass is higher than that of 

the naturally cooled VT60 glass [54], the structural heterogeneity at a higher Tf can be 

arrested at a lower Tf. In other words, owing to the energetic frustration effect [55,56] 

upon the glass transition during cooling, the structural domains with different 

potential energies are frozen in.  

During the discharging/charging process, Li
+ 

ions gradually insert and diffuse into 

the VT60 glass anode through the electrolyte. Considering the high structural and 

energetic heterogeneity of the VT60 glass, the structural domains with higher 

potential energy are vulnerable to Li
+ 

ions. When these domains with higher energy 

are hit by the Li
+
 ions during insertion, some of these ions will participate in the 

lattice of the high-energy domains in the glass network, and thereby lower their 

potential energy by forming ordered structures at nanoscale. As these domains with 

higher potential energy are randomly distributed in the glass matrix, the formed 

nanocrystalline domains are also randomly distributed as seen in the HRTEM images 

(Figs. 3a and b). Furthermore, the firstly formed ordered structural domains can act as 

the lattice platforms or nucleation sites, to which the Li
+ 

ions can further diffuse 

during the subsequent discharging/charging cycles. This leads to the formation of the 

final nanocrystals upon 5000 charging cycles as we see in Fig. 3.  

In addition, the formed ordered structural domains caused by intercalation of Li
+
 

ions may induce extensive stress in the boundaries between crystals and glass matrix 

due to volume contraction that is known from the diffusionless crystal growth 

mechanism [57]. Fig. 5 shows a schematic representation for the structural evolution 

of VT60 glass anodes upon 5000 discharging/charging cycles. It is seen that, upon 

intercalation of the Li
+
 ions, the disordered network structure is transformed into the 
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mixed network consisting of both ordered and disordered domains. The volume 

contraction of the ordered domains due to crystallization could generate more free 

space (see the channel in the right frame of Fig. 5), particularly in the boundaries 

between nanocrystals and their surrounded glass matrix, for Li
+
 ions to migrate. The 

excessive space would enhance the transfer kinetics of the Li ions, leading to higher 

ionic conductivity of the anodes. Moreover, the increased mobility of all the ionic 

species is beneficial to further local structural rearrangement, and hence, to 

nanocrystal formation.  

 

Fig. 5. A schematic representation for the structural evolution of VT 60 glass anode after 

5000 discharging/charging cycles.  

 

In addition to the γ-type, Li3VO4 also has a low temperature phase, namely β-type, 

which has been extensively studied as an insertion anode for LIBs due to its large 

capacity and safe voltage [2,16,27,30,32,58-61]. For instance, to provide large 

surfaces for Li
+
 flux and short Li

+
 ion diffusion paths, different methods were 

employed to control the particle size of β-Li3VO4 electrodes [29,30]. Since the 

β-Li3VO4 is an electrical insulator, fabricating a composite by coating the particles 

with carbon to increase the electronic conductivity of the anode material is another 

effective way to improve the battery performance [59,60].  

Compared to the β-type, γ-Li3VO4 is a metastable phase and enables lithium ions 
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diffuse more easily, and therefore it is one of the promising phases for fabricating 

superior electrode materials [62,63]. However, γ-Li3VO4 is only stable at high 

temperature and would spontaneously convert into the low temperature β phase 

during cooling. In other words, it is hard to generate the γ-Li3VO4 phase. This is also 

why most of the studies focused on the β-Li3VO4 phase as anode material. 

Remarkably, the γ-Li3VO4 nanocrystals were obtained from the VT60 glass anodes at 

room temperature through disorder/order engineering, i.e., upon multiple 

discharging/charging cycling of the glass phase, as shown in Figs. 2b and 3. The 

potential energy of γ-Li3VO4 is lower than that of its parent glass, but higher than that 

of β-Li3VO4. Accordingly, the γ-form has more open structure than the β-form since 

the former inherits the heterogeneous structure of its supercooled liquid.  

Based on the above analysis, the high-rate capability and excellent long-life 

performance of VT60 glass must be ascribed to the reconstructed architecture, in 

which the γ-Li3VO4 nanocrystals are embedded in the semiconducting glass matrix. 

To be specific, the enhanced ionic conductivity is the first indicator of the 

improvement of the electrochemical performances of Li3VO4 anode [29]. The formed 

γ-Li3VO4 itself has higher ionic conductivity [62,63] than that of the widely studied β 

form. Moreover, the γ-Li3VO4 nanocrystals can greatly shorten the Li
+
 diffusion path, 

resulting in higher ionic conductivity of the anode materials. The enhanced cycling 

stability is the second indicator of the improved electrochemical performances. The 

open network in the glass matrix can buffer the crystal structure variations [18,27] 

induced by repetitive Li
+
 intercalation/de-intercalation to avoid the stress-induced 

microcracks [64]. In addition, the γ-Li3VO4 nanocrystals and the induced excessive 

space or channels (Fig. 5) can play roles in suppressing the propagation of the 

micro-cracks to sustain 5000 discharging/charging cycles and even beyond. 

Consequently, both the ion transfer and the cycling stability of the glass anode are 

greatly enhanced. In contrast to the enhancement of the anode performance by 

disorder-order transition shown in this work, it was recently found that the 

order-disorder transition could also facility the lithium diffusion in the Fe-doped 
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LiMnPO4 cathode Li-ion batteries owing to the higher octahedral distortion of (Mn, 

Fe)O6 caused by introduction of Fe [65]. In addition, the order-disorder transition was 

found to be an effective way in improving sodium storage performance and excellent 

cycling stability of NaFePO4 cathode in sodium ion batteries [66]. 

 

Conclusions 

We have clarified the origin of both the discharging/charging induced nanocrystal 

formation in VT60 glass anode and the resulting enhancement of the Li-ion battery 

performances. The VT60 glass displays superior reversible capacity and outstanding 

long discharging/charging cycling stability. The remarkable electrochemical 

performances have been attributed to: 1) the intrinsic rapid ionic conductivity of 

γ-Li3VO4 nanocrystals; 2) the shortened Li
+
 diffusion pathway due to the formation of 

the nano-crystals; 3) the electronic conductivity brought by the glass phase; and 4) the 

robust structure of the anode.  

We have proposed the microscopic scenario of the charging induced nucleation. 

The Li ions ‘hit’ the higher energy domains of structural network of VT60 glass 

during discharging/charging, and some of those Li ions join the network 

rearrangement, during which the potential energy is lowered through nanocrystal 

formation. Such kind of nanocrystal formation is associated with its low glass stability 

against crystallization and high degree of structural heterogeneity of the VT glasses. 

In other words, the repetitive insertion/extraction of Li
+
 ions weakens the high-energy 

domains of the structural network and thereby increases the probability of those 

domains to be rearranged towards the ordered pattern with lower potential energy, 

leading to formation of the γ-Li3VO4 nanocrystals in the glass matrix.  
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Highlights 

 

 We clarified the Li-insertion induced nucleation in glass anode of Li-ion 

batteries. 

 Ionic conductivity and cycling stability were enhanced by nanocrystal formation. 

 The nanocrystals in 40TeO2-60V2O5 glass were identified to be γ-Li3VO4 

phase. 

 γ-Li3VO4 is a metastable phase benefiting the enhancement of Li-ion 

conductivity. 

 We explained the origin of the remarkable electrochemical performances. 

 




