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Ferhat Yarkin, Student Member, IEEE, and Shuping Dang , Member, IEEE

Abstract—The problem of designing bit-to-pattern mappings
and power allocation schemes for orthogonal frequency-division
multiplexing (OFDM) systems that employ subcarrier index modu-
lation (IM) is considered. We assume that the binary source conveys
a stream of independent, uniformly distributed bits to the pattern
mapper, which introduces a constraint on the pattern transmis-
sion probability distribution that can be quantified using a binary
tree formalism. Under this constraint, we undertake the task of
maximizing the achievable rate subject to the availability of chan-
nel knowledge at the transmitter. The optimization variables are
the pattern probability distribution (i.e., the bit-to-pattern map-
ping) and the transmit powers allocated to active subcarriers. To
solve the problem, we first consider the relaxed problem where
pattern probabilities are allowed to take any values in the interval
[0, 1] subject to a sum probability constraint. We develop (approx-
imately) optimal solutions to the relaxed problem by using new
bounds and asymptotic results, and then use a novel heuristic al-
gorithm to project the relaxed solution onto a point in the feasible
set of the constrained problem. Numerical analysis shows that this
approach is capable of achieving the maximum mutual informa-
tion for the relaxed problem in low- and high-SNR regimes and
offers noticeable benefits in terms of achievable rate relative to a
conventional OFDM-IM benchmark.

Index Terms—OFDM, index modulation, binary tree, mutual
information, achievable rate.

I. INTRODUCTION

A S A subclass of permutation modulation [1], index mod-
ulation (IM) has recently attracted significant interest [2],

[3] due to its feature of “achieving more by doing less”. The
central idea of IM lies in the observation that, in addition to
encoding information in a signal, one can encode information
in the order in which a signal is conveyed in a given domain.
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The idea of encoding information using permutations or com-
binations has been applied in several contexts. For example, by
using different transmit antennas and channel uniqueness, per-
mutation modulation has been employed in the spatial domain
in the form of so-called spatial modulation [4], [5]. Similar ideas
have been applied to the medium/channel domain by manipu-
lating the radiation patterns of antennas [6], [7]. Permutation
modulation has also been used in the subcarrier index domain
in multicarrier systems, such as orthogonal frequency-division
multiplexing (OFDM). This approach is commonly referred to
as subcarrier-IM or simply IM [8], [9]. Finally, the use of per-
mutation methods in conjunction with different modes in orbital
angular momentum transmissions has been studied [10], [11].

To facilitate the use of combinatorial patterns for encoding, a
codebook for the mapping between patterns and the source mes-
sages (bit sequences) must be specified. Many existing works
that study permutation modulation in digital communication
systems assume that the number of possible patterns is a power
of two [4], [12], [13]. However, such an assumption limits the ap-
plicability of permutation modulation, e.g., conventional spatial
modulation (with a single active antenna in each transmission
period) is only applicable when the number of antennas at the
transmitter is a power of two.

Another typical approach that has been studied is to assume
that only a subset of all possible patterns contains valid pat-
terns, and the size of the subset is a power of two [9], [14]–[16].
However, this approach is not able to utilize the full potential of
permutation modulation in terms of data rate, because a certain
number of possible permutations that could have been used to
carry information are neglected [17]. The study detailed in [18]
considers the possibility of using all permutation patterns with
uniform probability, but no treatment of how to realize the uni-
form probability distribution in digital communication systems
is given in that work.

To address these issues related to the mapping of source bit
sequences to permutation patterns, a few recent contributions
have focused on the adaptation of binary Huffman coding [19]
for permutation/index codebook design [11], [17], [20]–[23].
Here, a bijective mapping between information bit sequences
and the permutation/index patterns is constructed with the aid
of a full binary tree; patterns are associated with leaves in the
tree, and corresponding bit sequences are defined according to
a labeling rule (used in the Huffman algorithm) pertaining to
the respective paths from each leaf to the root. Importantly,
in contrast to conventional application scenarios for source
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compression where the source symbol distribution is known
a priori, the probability distribution of the patterns observed
during transmission in permutation modulation systems is de-
pendent upon the binary source [17]. In this sense, the Huffman
mapping is applied in permutation modulation schemes in a re-
versed manner. We adopt the term binary-tree encoding rather
than Huffman coding for the bit-to-pattern mapping operation
for the remainder of this paper in order to highlight this subtle,
but important difference.

Binary-tree encoding for permutation modulation schemes
enables one to choose the probability distribution of the permu-
tation patterns to achieve certain design criteria, e.g., achievable
rate maximization [11], [17], [21], [23] or symbol-error rate
(SER) minimization [21], [23], [24]. However, existing works
along this direction fall short in a number of ways. For example,
the support of the (random) patterns, when constrained by full
binary tree structures, is discrete. As a result, optimization prob-
lems for maximizing achievable rates or minimizing SERs are
of mixed-integer forms, and an exhaustive search over all admis-
sible probability distributions may be required to find the global
optimum. However, the number of admissible distributions has
not been characterized in the literature, and thus the complexity
of exhaustive searching is not well understood. A common way
to reduce optimization complexity that has been treated in the
literature is to relax the full-binary-tree constraint on the pat-
tern probability distribution [11], [21]. However, the problem of
how to project the relaxed probability distribution to a feasible
distribution that satisfies the full-binary-tree constraint remains
open. An alternative strategy that has received attention recently
has been to focus on high and low signal-to-noise ratio (SNR)
regimes. For the limited case of single-active-antenna spatial
modulation, analytic forms of the asymptotically optimal prob-
ability distributions for the permutation patterns were reported
in [21]. A generalization that activates multiple resources per
channel use, which is the scenario of interest for multicarrier
communication systems such as OFDM-IM [9], is desirable.

In this work, we study the subclass of permutation modulation
where K out of N resources are active during each channel use.
We concentrate our investigation on OFDM-IM systems [9],
because OFDM-IM is a primary user of the permutation mod-
ulation subclass that we study, and any results obtained for
full binary trees would be directly applicable to other permu-
tation modulation schemes. Our main goal is to optimize the
bit-to-pattern mapping operation and transmit power allocation
strategy for achievable rate maximization when channel state in-
formation is available at the transmitter. We make the following
contributions.

1) We give a complete and rigorous formulation of the bit-
to-pattern mapping problem using the formalism of full
binary trees, which covers all admissible pattern proba-
bility distributions given a uniform binary source. To this
end, we report a new method to generate a reduced set of
these trees and establish bounds on the number of trees in
this set, which have not been reported in the mathematics
or engineering literature to the best of our knowledge.

2) We formulate a relaxation of the achievable rate opti-
mization problem with pattern probabilities and transmit

powers as the optimization variables and give a number of
analytic bounds and high/low-SNR asymptotic results that
can be used to (approximately) solve the problem. While a
similar study is carried out in [21], our results are distinct,
because (i) they correspond to a different system (i.e.,
OFDM vs. MIMO, which assumes a different model of
the channel input-output relationship) and (ii) our scheme
allows for K > 1 active resources, while in [21] a single
antenna is selected for each channel use.

3) We propose an efficient, heuristic algorithm that projects
a relaxed pattern probability distribution onto the fea-
sible set of distributions that obey the full binary tree
constraints, and demonstrate that this method yields an
achievable rate that is superior to a conventional OFDM-
IM benchmark.

The rest of the paper is organized as follows. In Section II,
the basic OFDM-IM model is described, with emphasis being
placed on the binary-tree encoding operation. Section III ex-
plores the fundamental properties of binary trees; in this section
details of the new tree construction algorithm are provided along
with proof of completeness and bounds on the number of trees
of a given size are reported. In Section IV, a relaxation of the
achievable rate optimization problem is explained, and several
analytic bounds and asymptotic results related to this problem
are given. The fully constrained optimization problem is treated
in Section V, where the aforementioned heuristic projection al-
gorithm is outlined. A numerical analysis of all results reported
in the paper are included in Section VI, and conclusions are
drawn in Section VII.

II. SYSTEM MODEL

A. Binary-Tree Encoding

Consider a binary sequence {Bn}n∈N , which is conveyed
from a maximum entropy source to an OFDM-IM encoder.
The maximum entropy property of the source implies the se-
quence elements Bn ∈ {0, 1} are independent, uniformly dis-
tributed random variables. The encoder partitions1 the sequence
{Bn} into two subsequences {Bnk

} and {Bn�
}, where k, � ∈ N

and k �= �. One subsequence (say, {Bnk
}) is mapped to a se-

quence of M -ary complex-valued constellation symbols. For
example, if 16-QAM is employed, M = 16, and each group of
m = log2 M = 4 bits in {Bnk

} is mapped to a QAM symbol.
The other subsequence is used to assign the M -ary symbols to
subcarriers in preparation for transmission. In the IM system
considered in this paper, we assume each OFDM symbol vector
is comprised of G groups of N subcarriers, and K ≤ N sub-
carriers in each group are active, while the remaining N − K
subcarriers are nulled.2 In keeping with convention, we use the
term subcarrier activation pattern (SAP) to denote a pattern of
K active subcarriers (out of N ).

We are interested in system designs that maximize the achiev-
able rate of OFDM-IM; hence, we consider bit-to-SAP mapping

1The exact detail of how this partitioning is accomplished is beyond the scope
of this paper.

2We will focus on the case where the inequality is strict, since K = N
corresponds to a conventional OFDM system.
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Fig. 1. A possible bit-to-SAP mapping when N = 4 and K = 2. Each edge
is labeled with zero or one. Each SAP is associated with a unique leaf. For each
leaf, the set below is the bit sequence mapped to that leaf.

strategies that cover the full set of available SAPs. Since there
are

(
N
K

)
SAPs, it is generally not possible to construct a fixed-

length bit-to-SAP mapping scheme that satisfies this condition.3

For example, with N = 4 and K = 2, six SAPs are available.
By using a fixed-length mapping scheme, it would be possible
to map two bits to one of four SAPs, leaving two SAPs unused.

To overcome this issue, we employ a variable-length scheme
based on full binary trees. A tree is a full binary tree if every
node other than the leaf nodes has exactly two children. Ev-
ery full binary tree comprised of v internal nodes has v + 1
leaves. Considering the total set of v-node full binary trees,4 the
maximum depth of a tree in the set ranges from �log2 v� + 1
to v.

It is well known that one can map symbols from a source al-
phabet to uniquely and instantaneously decodable bit sequences
using full binary trees. Indeed, this method is employed in the
celebrated Huffman source coding algorithm. For the IM sys-
tem considered herein, we apply a reverse mapping approach,
which entails the use of a chosen binary tree to map source bit
sequences to SAPs. Each edge of the tree is labeled with a zero
or a one, and the tree is constructed such that it has

(
N
K

)
leaves.

Each SAP in the set of
(
N
K

)
admissible patterns is associated

with a leaf. The bit-to-SAP mappings are determined by tracing
the unique path from the root node to each leaf, recording the
bit labels for each edge in order along the way. Fig. 1 provides
an illustration of this procedure for the example of N = 4 and
K = 2.

Similar to Huffman source coding, the use of full binary trees
to develop a bit-to-SAP mapping rule ensures each mapping
is unique and instantaneously encodable. Uniqueness results
from the binary tree structure. Instantaneous encodability simply
means that the encoder can map bit sequences to SAPs using
the minimum amount of information. To illustrate this point,

3In the context of OFDM-IM, a fixed-length coding scheme implies that the
lengths of bit streams mapped to each respective SAP are the same. In contrast to
the concept of the fixed-length coding scheme, a variable-length coding scheme
encodes bit streams with different lengths by mapping these to different SAPs
according to certain criteria. More rigorous and general definitions of both terms
can be found in [25].

4For the rest of the paper, unless explicitly stated otherwise, a v-node full
binary tree is one with v internal nodes.

we can again turn to Fig. 1. Suppose the SAP bit sequence is
{0, 0, 1, 1, 0, 1, 1}. Reading left to right and referring to Fig. 1,
we see that the encoder only needs to read the first three bits
to map them to the SAP associated with the second leaf. The
encoder would then read {1, 0}, which also yields a valid SAP
(the fifth leaf), and so on. In this example, it is clear that the
encoder does not need to interpret long sequences of bits in
order to decide upon the correct mapping relating to the first
few bits.

It is also important to note that every possible two and three-
bit sequence is accounted for in the mapping shown in Fig. 1.
This property extends to mappings based on other values of N
and K. For a maximum entropy bit source, each subsequence
consisting of q bits will appear with probability 1/2q . Thus, we
immediately deduce that an SAP associated with a leaf node
at level q below the root will be transmitted with probability
1/2q . This feature of binary-tree encoding imposes a constraint
on the system, which much of the literature published on this
topic to date has largely ignored. In this work, we will exploit
the structure imposed by this constraint to develop efficient
optimization procedures for OFDM-IM systems.

B. OFDM Model

Once bit-to-symbol mappings (both constellation and SAP)
have been completed, each length-GN OFDM symbol vector is
processed with a GN -point inverse discrete Fourier transform
(DFT) and a cyclic prefix of adequate length (to mitigate the
effects of channel dispersion) is appended to each time-domain
symbol array prior to filtering, up-conversion, and transmission.
At the receiver, the received signal is down-converted, filtered,
and sampled. The cyclic prefix is then removed from each re-
ceived baseband symbol vector before processing with a DFT.
It is well-known that this sequence of procedures converts the
dispersive channel into a parallel channel, and the signal on each
subcarrier is (ideally) free of interference from other subcarriers.

We now formalize the OFDM model. Define C :=
(
N
K

)
. We

can uniquely associate each SAP with an index in the set
U := {1, . . . , C}. For each i ∈ U , denote by Si ⊆ {1, . . . , N}
the set of indices of the K subcarriers that are active under pat-
tern i, where equality holds when K = N (which corresponds
to a conventional OFDM system). The index symbol U is ran-
domly distributed over U with probabilities pi := P (U = i),
i ∈ U . The channel input-output relationship for subcarrier
l ∈ {1, . . . , N} conditioned on the SAP can be written as

Yl | U = i equals

⎧
⎨

⎩

√
gle

jθl Xl + Zl, if l ∈ Si ,

Zl , if l /∈ Si ,
(1)

where
√

gle
jθl is the complex channel coefficient for subcarrier

l (with j =
√
−1); the input symbols {Xl} are zero mean and

independent over the subcarriers with ρli being the transmit
power on subcarrier l for index i; the noise is independent over
the subcarriers with Zl ∼ CN (0, σ2). Throughout this paper, we
will assume the channel gains {gl} are known at the transmitter.
We will return to this model in the context of mutual information
optimization in Sections IV and V.
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III. FULL BINARY TREES

One of the goals of this work is to develop a method of com-
puting the bit-to-SAP mapping that maximizes the achievable
rate of an OFDM-IM system. This is equivalent to determining
the full binary tree that defines the optimal mapping. To achieve
this aim, we will need a method of considering all full binary
trees of a given size as well as all SAP-to-leaf assignments.
At first glance, this is a complicated problem. The number of
v-node trees is given by the Catalan number

cv =
1

v + 1

(
2v

v

)
∼ 4v

v3/2
√

π

and the number of SAP-to-leaf assignments is (v + 1)!. How-
ever, it is possible to significantly simplify the problem by mak-
ing use of symmetry. The important aspect of the mapping is
not in the exact tree that is chosen, but rather in the level of the
leaf node that a given SAP is assigned to. As noted in Section II,
an SAP assigned to a leaf at level q has probability 1/2q of
being transmitted. We can transpose leaf nodes at a given level
in any way we wish and still achieve the same SAP probability
distribution. This reasoning leads us to consider a smaller set of
trees, which we call the reduced set of v-node full binary trees
Tv . Each tree in this set actually corresponds to an automor-
phism group of the complete set. Moreover, consider a given
tree t ∈ Tv and denote the number of leaves at level q by nq .
Due to the symmetry stated above, the number of ways of as-
signing v + 1 objects (i.e., SAPs, where v + 1 = C) to the leaf
nodes such that we attain a unique probability distribution is

(
v + 1

n1 , n2 , . . . , nv

)
=

(v + 1)!
n1 !n2 ! · · ·nv !

(2)

which can be considerably smaller than the total (v + 1)! per-
mutations. We now give preliminary results on the construc-
tion and enumeration of the set Tv , which will be useful in
determining systematic optimization procedures and analyzing
computational complexity.

A. Construction

In order to choose the best tree for encoding, we require a
method of constructing all trees in Tv . The approach we propose
is outlined in Algorithm 1, which is valid for v ≥ 2. The initial
set T1 = {τ} consists of the single full binary tree τ with one
root and two leaves (at level one). This protograph is recur-
sively appended to trees to obtain the set Tv . The algorithm is
presented in a somewhat informal way here for clarity; we for-
malize it slightly in Appendix A in order to prove the following
proposition.

Proposition 1: Algorithm 1 returns all elements in Tv .
Proof: See Appendix A. �
As an example of the output of Algorithm 1, Fig. 2 shows the

sets generated for v = 1, 2, 3. Note that the tree shown for the
set T1 is the protograph τ . The number of protographs contained
in a graph of Tv is v.

Fig. 2. Illustration of the sets T1 , T2 , and T3 generated by Algorithm 1.

B. Enumeration

As noted above, the number of ordered full binary trees with
v internal nodes is given by the Catalan number cv . The reduced
set of v-node full binary trees contains significantly fewer ele-
ments. For example, Fig. 2 shows that two trees are contained
in T3 ; yet, by considering all orderings of these two trees, we
can enumerate five ordered trees (c3 = 5).

Let Tv denote the number of trees in the set Tv . From
Algorithm 1, we can infer the relations

Tv ≤ 2Tv−1 ≤ · · · ≤ 2v−1T1 = 2v−1 (3)

since each step in the for loop at most doubles the number
of elements in Tk . This bound captures the slower exponential
growth in the number of trees in the reduced set compared to the
set of ordered trees. Numerical results have shown that the bound
overestimates the rate of increase in v. Published results on full
binary trees have attempted to obtain generating functions for
the number of trees in unordered, unlabelled sets (see, e.g., [26]
and references therein). However, it appears that results on the
reduced sets that we are interested in remain undiscovered.

It is possible to obtain a tighter bound on Tv by analyzing
Algorithm 1. The bound is given as a recurrence relation in the
following proposition.

Proposition 2: The number of trees in Tv is upper bounded
by

Tv ≤ 2Tv−1 − δv −
�log2 (v−1)�∑

q=2

Tv−2q (4)

where δv = 1 if v is a power of two and δv = 0 otherwise, and
the summation is empty when v < 5.
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Fig. 3. Enumeration of and bounds on the number of full binary trees as a
function of the number of internal nodes. The enumerated result corresponds to
Algorithm 1. The loose bound is 2v−1 (cf. (3)). The tight bound corresponds
to the result given in Proposition 2, where the recursion is performed over
the bounds on Tv rather than the exact enumerated values. The “Unordered,
unlabelled” plot corresponds to the enumeration given in [26]. The number of
ordered full binary trees (the Catalan number) is plotted as a reference.

Proof: See Appendix B. �
The accuracy of each of the two bounds given above is illus-

trated for sets of up to twenty internal nodes in Fig. 3. From the
figure, we see that the loose bound slightly overestimates the
growth rate of Tv . The recursion is exact up to v = 9, but slowly
diverges for larger v, although it clearly remains fairly tight up
to v = 20. Practically, we will be interested in reasonably small
v; hence, the recursion is a useful tool for analyzing the IM
systems studied in this paper.

IV. MUTUAL INFORMATION OPTIMIZATION: RELAXATION

We now provide details of new results and methods related
to the optimization of the mutual information in OFDM-IM
systems. As noted in Section II, the SAP probabilities are con-
strained by the binary tree chosen for encoding. Before we
treat these constraints, we will consider the relaxed problem,
for which it is assumed that SAPs can be transmitted with any
probability. This will give an upper bound on the achievable
rate for the constrained system, and we will use the approaches
developed herein to treat that case in Section V.

Consider a single set of N subcarriers that adhere to the model
described in Section II. We collect the N received symbols in
the vector Y := (Y1 , . . . , YN ). Furthermore, we collect the K
transmitted symbols in the vector X := (X1 , . . . , XN ), noting
that Xl is nonzero only when subcarrier l is active, as given
by the encoded SAP. Define the SAP probability vector p =
(pi) and the power vector ρ = (ρli). We are interested in the
probabilities in p and transmit powers in ρ that maximize the
mutual information

I(X;Y ) = h(Y ) − h(Y | X)

= h(Y ) − h(Z). (5)

Conditioned on U = i, we assume Xl ∼ CN (0, ρli) when
l ∈ Si . Choosing Xl to be Gaussian is not proven to achieve
capacity, but the assumption provides a tractable expression. In
this case, the complex random vector Y has probability density
function (pdf)

fY (y) =
∑

i∈U
pifY |U (y | U = i) (6)

where

fY |U (y | U = i) =
∏

l∈Si

fCN(yl ; glρli + σ2)
∏

m /∈Si

fCN(ym ;σ2)

(7)
with fCN : C → [0,∞) being the complex Gaussian pdf
fCN(t; ν) = e−|t|2 /ν /(πν) with mean zero and variance ν.

Writing I(X;Y ) = I(p,ρ, σ2), the optimization problem is
formulated as

maximize
p,ρ

I(p,ρ, σ2)

subject to
∑

i∈U
pi = 1

∑

l∈Si

ρli ≤ P, ∀i ∈ U

pi ≥ 0, ∀i ∈ U
ρli ≥ 0, ∀l ∈ Si , i ∈ U . (8)

Note that the relaxation alluded to earlier manifests in the simple
constraint

∑
i∈U pi = 1. If we were to consider only probability

vectors p that adhere to the binary-tree encoding methodology,
this constraint would be defined differently (see Section V). We
now detail several strategies for solving, either approximately
or exactly, the optimization problem stated in (8).

A. Concavity and Numerical Optimization

The following result that can be used to solve (8) numerically.
Lemma 1: For fixed ρ, the problem

maximize
p

I(p,ρ, σ2)

subject to
∑

i∈U
pi = 1

pi ≥ 0, ∀i ∈ U . (9)

is concave.
Proof: See Appendix C. �
For the special case where gl is constant for all l and a bal-

anced power distribution is chosen (i.e., ρli = ρ for all l and i),
Lemma 1 leads to the following.

Proposition 3: When the channel gains and transmit pow-
ers are constant across frequency, the optimal SAP probability
distribution is uniform.

Proof: See Appendix D. �
More generally, Lemma 1 suggests that it may be economic

to solve (8) by employing a block coordinate descent (BCD)
approach [27], in which one would alternately maximize the
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mutual information in either p or ρ while keeping the other vec-
tor fixed at the previously obtained optimum value. The method
requires the constraints of the problem to be convex, which is
clearly satisfied. Furthermore, the maximization over each of
the vectors p and ρ, keeping the other constant, must be unique.
Lemma 1 implies this condition is met in part, but it is not clear
whether the condition may be violated for the maximization
of I(p,ρ, σ2) over ρ for a fixed p in some parameterizations
of {gl} and σ2 . Nevertheless, the smoothness of the objective
function provides some assurance that a BCD approach will
converge to a local extremum.

One may encounter numerical problems when using the
BCD technique to solve (8) since, in general, the evaluation
of I(p,ρ, σ2) requires high-dimensional numerical integration
or time-consuming Monte Carlo methods. In practice, we have
found that the BCD method can only be employed to optimize
systems with three or four subcarriers per group; larger systems
require different approaches. In this regard, one may think of ap-
plying random search algorithms, such as genetic and simulated
annealing algorithms, which are computationally simple, quick,
and robust for complex systems and are capable of providing
efficient solutions for many ill-structured global optimization
problems [28].

B. A Lower Bound

It is possible to obtain an approximate solution to (8) by
considering a lower bound on the mutual information rather
than the mutual information, itself. The following proposition
provides one such bound.

Proposition 4: For transmit powers ρ and SAP probabilities
p, I(p,ρ, σ2) satisfies the lower bound

I(p,ρ, σ2) ≥ − ln

⎛

⎝
∑

i∈U

∑

j∈U

pipj

det(Ξi + Ξj )

⎞

⎠ − N ln
(
eσ2)

(10)
where Ξi is a diagonal matrix with the lth element of the diag-
onal ξli satisfying

ξli =

⎧
⎨

⎩

glρli + σ2 , if l ∈ Si ,

σ2 , otherwise.
(11)

Proof: See Appendix E. �
The bound given above is a result of Jensen’s inequality and is,

thus, not particularly tight. In fact, a slightly different application
of the inequality yields a marginally tighter bound [29, Th. 2].
However, the utility in Proposition 4 is not in the accuracy
of the bound, but rather in the ease with which this bound
can be optimized over the SAP probabilities. These optimal
probabilities are captured in the following proposition.

Proposition 5: Let A = (aij ) with aij = 1/det(Ξi + Ξj ).
Suppose A is nonsingular, and let B = A−1 , with bij denoting
the element in the ith row and jth column of B. The SAP
probabilities that maximize the lower bound given in (10) are

given by

pi =

(∑
j∈U bij

)+

∑
i∈U

(∑
j∈U bij

)+ , ∀i ∈ U (12)

where (x)+ = max{x, 0}.
Proof: See Appendix F. �
Note that the probabilities given in (12) are dependent upon

the subcarrier powers. The BCD approach can be employed in
a fairly straightforward manner to compute the power values by
alternately computing (12) for fixed powers, then fixing these
probabilities in (10) and computing the maximizing power val-
ues. Alternatively, one can, in theory, substitute (12) into (10)
and compute the optimal powers directly. However, the nonlin-
ear form of (12) can cause problems using this approach.

A condition that must be satisfied in order to invoke
Proposition 5 is that A must be nonsingular. It is possible that
this condition is not met, for example when only a single sub-
carrier in the set of K active subcarriers is allocated power. Such
cases can typically be dealt with by using other results reported
in this section (e.g., the asymptotic results detailed below). In
general, we have found that Proposition 5 is applicable to a wide
range of system configurations.

C. Closed-Form Asymptotics

It is naturally preferable to solve (8) analytically. To make
progress in this direction, we apply the following strategy: first,
we find the probabilities p�(ρ) that maximize the mutual in-
formation for any given values of the transmit powers, i.e., the
optimal probabilities are functions of the powers; then, the mu-
tual information I(p�(ρ),ρ, σ2) that corresponds to the optimal
probabilities found previously is maximized over the powers
in ρ.

1) Probability Optimization: To obtain a closed-form ex-
pression for the optimal SAP probability distribution as a func-
tion of the powers, we first resort to a high-SNR analysis, which
gives rise to the following result.

Proposition 6: For fixed powers ρ, let I�(ρ, σ2) =
maxp I(p,ρ, σ2) and define the probability values

qi = qi(σ2) =

∏
l∈Si

(glρli + σ2)
∑

j∈U
∏

m∈Sj
(gm ρmj + σ2)

. (13)

Then, I(q,ρ, σ2) is a lower bound of I�(ρ, σ2) that is tight in
the high SNR regime, i.e., as σ2 → 0.

Proof: See Appendix G. �
In addition to a simple, closed-form expression for the opti-

mal SAP probability distribution at high SNR, this result also
provides an upper bound on the achievable rate, as stated in the
following corollary.

Corollary 1: The function μ(σ2) := ln[
∑

i∈U
∏

l∈Si
( gl ρl i

σ 2

+ 1)] is an upper bound on the maximal mutual information
I�(ρ, σ2), which is tight as σ2 → 0.

Proof: See Appendix H. �
We now turn our attention to the low-SNR case, for which

we obtain the following beautifully intuitive result, which is a
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somewhat discrete version of the well known waterfilling prin-
ciple at low SNR.

Proposition 7: For fixed powers ρ, let i� =
arg maxi

∑
l∈Si

ln
(

gl ρl i

σ 2 + 1
)
, i.e., i� corresponds to the

group of K strongest subcarriers. Then, the index probabilities

ri =

⎧
⎨

⎩

1, if i = i� ,

0, otherwise,
(14)

maximize the mutual information at low SNR, which satisfies
the asymptotic equivalence I�(ρ, σ2) ∼

∑
l∈Si �

ln
(

al i �

σ 2 + 1
)
,

as σ2 → ∞.
Proof: See Appendix I. �
2) Power Optimization: Propositions 6 and 7 and

Corollary 1 yield closed-form expressions for the mutual in-
formation, which depend upon the powers ρ. As a result, these
expressions can be used to develop optimal power allocation
rules in the high and low-SNR regimes. It turns out that the
optimal rules follow our conventional understanding of power
allocation in OFDM systems, as formalized in the following
proposition.

Proposition 8: For high SNR (as σ2 → 0), allocating powers
for the subcarriers of each SAP according to the waterfilling
strategy is optimal under power constraints for each pattern.
For low SNR (as σ2 → ∞), allocating powers according to the
waterfilling strategy is optimal.

Proof: See Appendix J. �
The waterfilling result for the low-SNR case is somewhat un-

surprising given that Proposition 7 indicates the mutual informa-
tion expression is the same as that for OFDM with only K active
subcarriers. On the other hand, the optimality of waterfilling at
high SNR is not immediately obvious from Corollary 1. The wa-
terfilling strategy gives equal powers when σ2 → 0. However,
this allocation scheme is near-optimal at high, but finite SNR (in
which case the resulting powers are not equal), because the wa-
terfilling strategy results from optimizing the upper bound given
by Corollary 1, which is very close to the maximal mutual in-
formation at high SNR (and asymptotically tight). These results
lead us to a simple mutual information optimization strategy for
p and ρ at high and low SNR: one should perform waterfilling
power allocation for each subcarrier pattern and then compute
the corresponding probabilities according to Proposition 6 or 7
and select the result that maximizes the objective.

V. ACHIEVABLE RATE OPTIMIZATION: CONSTRAINED

We now consider a more practical rate optimization problem
that is effectively the same as (8) but with a nonlinear constraint
on the probabilities {pi}. As discussed in Sections II and III,
SAP probabilities depend on two things: (1) the full binary tree
that corresponds to the bit-to-SAP mapping operation, and (2)
the ordering of the SAP-to-leaf assignment.

Let Pv denote the set of feasible probability vectors of length
C that can be constructed by considering all non-redundant
SAP-to-leaf assignments for all binary trees in Tv including
null assignments. For example, for C = 4, P2 is constructed
by considering all mappings of three (out of four) SAPs to two

leaves on the second level and one leaf on the first level of
the single tree in T2 (cf. Fig. 2). There are 3!/2! = 3 mappings
of three SAPs to the leaves, and

(4
3

)
= 4 ways of choosing

the active SAPs. The inclusion of null assignments in this way
ensures we consider the case of not using some SAPs that may
correspond to poor channel conditions. Under this definition of
Pv , the number of elements (probability vectors) in Pv is

Pv =
(

C

v + 1

) ∑

t∈Tv

(v + 1)!
nt1 ! · · ·ntv !

(15)

where ntq denotes the number of leaves at level q in tree t. We
further define the union P = ∪C−1

v=0 Pv , where P0 consists of the
C vectors with one element equal to one and the rest equal to
zero.

The constrained optimization problem can now be formulated
as

maximize
p,ρ

I(p,ρ, σ2)

subject to
∑

i∈U
pi = 1

p ∈ P
∑

l∈Si

ρli ≤ P, ∀i ∈ U

ρli ≥ 0, ∀l ∈ Si , i ∈ U . (16)

We propose two methods of solving this problem here: an enu-
merative approach, and a projection from the relaxation.

A. Enumerative Approach

This approach is based on the enumeration of all possible
probability distributions of the SAPs, i.e., all p ∈ P . The allo-
cated powers ρ are optimized for each probability distribution
p. The pair (p,ρ) that yields the highest mutual information is
the solution to the problem stated in (16).

For a given probability distribution p, the power allocation
problem may not be solved analytically. In this case, one can
invoke the asymptotic results stated in Proposition 8 to obtain the
power values. First, the waterfilling power allocation solution
would be calculated for each SAP. Then, the distribution p ∈ P
that maximizes the mutual information would be chosen.

B. Projection From the Relaxation

A much more computationally efficient method of treat-
ing (16) can be developed by first considering the relaxation
studied in the previous section. First, we relax the constraint
p ∈ P to find a solution to (8). Any of the approaches used
in Section IV can be applied. We let p′ denote the probability
distribution computed in this step. We then project p′ onto the
feasible vector p� ∈ P and take this to be the partial solution
to (16). The power allocation vector ρ� is then computed to
maximize the mutual information.

The projection of the relaxed solution p′ onto a point in the
set P can be accomplished efficiently by using the Huffman
coding algorithm [19]. To this end, we interpret the elements of
p′ as source symbol probabilities, then generate a full binary tree
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Fig. 4. Illustration of Algorithm 2 for a system with N = 4 and K = 1, where
p′ = (0.51, 0.26, 0.18, 0.05). The algorithm constructs four full binary trees
according to the input distributions (0.51, 0.26, 0.18, 0.05), (0.54, 0.27, 0.19),
(0.66, 0.34), and (1), respectively. The output probability distributions of the
algorithm are as follows: (0.5, 0.25, 0.25,0) for the Euclidean distance metric,
(0.5, 0.25, 0.125, 0.125) for the KL divergence metric, and (0.5, 0.25, 0.25, 0)
for the total variation distance metric.

according to the Huffman algorithm. As discussed in Section II,
SAPs associated with a leaf node in the tree at level q will be
transmitted with probability 1/2q . Hence, the probabilities in p′

are replaced with the corresponding probabilities derived from
the tree structure to yield a candidate for p� .

It is important to note that this basic approach will only yield
trees (and associated probability distributions) with C leaves,
i.e., the algorithm maps p′ to PC only. To ensure we consider
mappings to all points in P , we require a slightly modified ap-
proach. The full details of the complete projection algorithm
are given in Algorithm 2, and an example depicting how the
algorithm works is shown in Fig. 4. The function sort(·) in
Algorithm 2 arranges the set of C arguments in decreasing or-
der; unsort(·) performs the inverse mapping (again, acting on
C elements). The function Huffman(·) takes a set of “source
probabilities” and returns the corresponding set of depths, or
path lengths from the root to a given leaf. Finally, the function
dist(p1 ,p2) computes the distance between the discrete proba-
bility distributions p1 and p2 . In the next section, we consider
three distance measures: Euclidean distance, for which

dist(p1 ,p2) := ‖p1 − p2‖2 (17)

Kullback–Leibler (KL) divergence, for which

dist(p1 ,p2) :=
∑

i∈U
p1i ln

p1i

p2i
(18)

and total variation distance, for which

dist(p1 ,p2) := max
i∈U

{|p1i − p2i |}. (19)

Algorithm 2 is heuristic. It is not guaranteed to produce the
solution to (16). However, results have shown it performs very
well in practical scenarios (see Section VI).

VI. NUMERICAL RESULTS

In this section, we present a numerical analysis of the methods
described above. We begin with a discussion of the mutual
information. We then give a brief analysis of the error rate
of the systems described herein. In what follows, we define
SNR := P/(Nσ2), which can be interpreted as the average

Fig. 5. Mutual information vs. SNR for equal channel gains and uniform
power allocation.

transmit SNR per subcarrier. All mutual information results
are given in units of nats, and all curves were obtained via
Monte Carlo sampling when closed-form expressions were not
available. For all systems, we set N = 4 and K = 2. It should be
noted, however, that we also performed extensive simulations
for (N,K) = (6, 4) and (N,K) = (8, 6), and observed very
similar trends to the case where N = 4 and K = 2.

A. Mutual Information

We begin with a simple case. Consider a system operating in
AWGN with equal channel gains (i.e., gl = 1 for all l). Propo-
sition 3 states that the optimal SAP probability distribution in
this system is uniform. Adopting this result, Fig. 5 shows the
mutual information for an OFDM-IM system that uses all six
SAPs (each with probability 1/6) compared to one that limits
the number of utilized SAPs to four where uniform power allo-
cation is applied. The small improvement offered by the former
approach simply arises as a result of the additional SAPs that
are used.5 However, we note that a uniform SAP distribution is
infeasible given a uniform binary source.6

5One would expect an improvement when finite constellations are used for
signalling, rather than Gaussian signals. However, this study is beyond the scope
of this paper.

6This fact has typically been ignored in the literature to date.
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Fig. 6. Mutual information vs. SNR for η = 0.2 and η = 0.7, where gl = ηl−1 for l = 1, . . . , N . Waterfilling power allocation is used for all results except
for the benchmark, which uses uniform power allocation. The curve labelled “Projected p′ (Euclidean)” gives an achievable rate when all SAPs are allowed to be
utilized and power allocation is employed.

To better understand the advantages that can be brought by
utilizing all SAPs along with the binary-tree encoding strategy,
we now analyze the case where the channel gains are defined
by gl = ηl−1 , ∀˜l ∈ {1, . . . , N} for some η ∈ (0, 1). We as-
sume full channel knowledge is available at the transmitter, so
that SAP probabilities and power allocation can be optimized.
Fig. 6a shows the mutual information for η = 0.2, and Fig. 6b
gives results for η = 0.7. In both figures, the different curves
represent different SAP probability assignment strategies and
bounds. The first four curves in Fig. 6a and the first three curves
in Fig. 6b exhibit the mutual information computed by using
the respective analytic results. The fifth and the forth curves
(“Projected p′ (Euclidean)”) in Fig. 6a and Fig. 6b, respec-
tively, illustrate the mutual information attained by employing
Algorithm 2.7 In this case, p′ is computed by using the analytic
form given in Proposition 6. Note that this curve represents an
achievable rate for OFDM-IM systems that utilize all SAPs. The
curves “Method in [21] (β = 1)” and “Method in [21] (β = 3)”
in Fig. 6b represent the mutual information computed by using
the method employed in [21]. In such a method, SAP probabil-
ities pi are chosen from a feasible domain up to a binary-tree
depth β, i.e., pi ∈

{
0, 1, 2−1 , . . . , 2−β

}
, and the probabilities

drawn from such a domain are substituted into a Monte Carlo
estimator of the mutual information one-by-one; the probabil-
ity set that provides the maximum mutual information is chosen
for the transmission. For all curves other than the “Benchmark”,
“Lower bound (Prop. 6), UPA”, “Method in [21] (β = 1)”, and
“Method in [21] (β = 3)”, waterfilling power allocation is em-
ployed, since this approach is optimal at high and low SNR in
the relaxed setting (cf. Proposition 8). Here, the curves “Lower
bound (Prop. 6), UPA”, “Method in [21] (β = 1)”, and “Method
in [21] (β = 3)” employ uniform power allocation. The bench-
mark curve relates to a standard OFDM-IM system where the
four SAPs, chosen according to the lexicographic principle

7Curves corresponding to other distance functions are not shown because
they yield results that are nearly identical to the Euclidean case.

discussed in [16], are transmitted with equal probability and
uniform power allocation8.

In Fig. 6 a, we see that the (relaxed) lower bound of
Proposition 6 and the low-SNR result of Proposition 7 are sim-
ilar, and that convergence to the upper bound of Corollary 1 oc-
curs at high SNR. Moreover, the fully constrained result (where
p ∈ P) denoted by the “× ” markers is very close to the analytic
curves corresponding to the relaxed optimization. The bench-
mark curve is noticeably lower than all results that offer SAP
probability optimization and power allocation. This was also
seen in simulations for (N,K) = (6, 4) and (N,K) = (8, 6)
systems (not shown). The lower bound of Proposition 6 with-
out waterwilling power allocation (“Lower bound (Prop. 6),
UPA”) is also notably lower than all the results at especially
low-to-medium SNR values; however, it is still more beneficial
than the benchmark at medium-to-high SNR values. Turning
our attention to Fig. 6 b, we see that the advantages offered by
optimization diminish for less variable channel conditions. The
optimized scenario (“Projected p′ (Euclidean)”) still offers an
advantage that saturates the upper bound from mid-to-high SNR
values, but it is marginal. It is important to note that this approach
outperforms the method used in [21] when β = 1 and provides
an almost identical mutual information to this benchmark when
β = 3. The approach also exhibits a much lower complexity,
since the method used in [21] exhaustively searches all binary
tree probabilities up to a binary tree depth of β; clearly, the
complexity of this method increases markedly with β.

For this simple system (N = 4 and K = 2), the results shown
in Fig. 6 point to a need to understand how frequency selectivity
affects performance. To this end, Fig. 7 illustrates the mutual
information as a function of η. The first, fourth, and fifth curves

8Note that the curves that employ waterfilling power allocation and SAP
probability optimization include the case where only four SAPs may be chosen,
which would correspond to the benchmark curve but where waterfilling is em-
ployed. Such a selection, if deemed to be optimal, would naturally arise through
the SAP probability optimization procedure. As a result, the true benchmark
only utilizes uniform power allocation here.
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Fig. 7. Mutual information vs. η, where gl = ηl−1 for l = 1, . . . , N . The
curve labelled “Projected p′ (Euclidean)” gives an achievable rate when all
SAPs are allowed to be utilized and power allocation is employed.

relate to those with the same labels shown in Fig. 6. The second
curve shows the mutual information attained by using the prob-
abilities given in Proposition 5. The third curve (“Projected p′

(Euclidean)”) illustrates the mutual information attained by em-
ploying Algorithm 2, where p′ is computed using Proposition 5.
Again, waterfilling is used for all systems except the bench-
mark, where uniform power allocation is used. The advantages
offered by optimization in highly frequency selective channels
are apparent in this example.9 It is observed that one data point
is missing for the SNR = 10 dB curves related to Proposi-
tion 5. This omission results from the fact that the matrix A in
Proposition 5 is singular for the corresponding paramterization.
Hence, for this point, one would choose a different method of
obtaining p′ in the initialization step of Algorithm 2. To con-
clude this discussion, it is important to note that Algorithm 2
roughly achieves the same mutual information promised by the
analytic lower bound. The upper bound is only tight at high
SNR; hence, it is not particularly tight for most η values in this
figure.

B. Block Error Rate

Apart from achievable rate, error performance is another key
performance metric of a communication system. It should be ap-
parent that a scheme that is designed to maximize the achievable
rate does not necessarily optimize the error performance. Nev-
ertheless, it is important to consider the effects that the designs
detailed in Sections IV and V have on the error rate. Note that,
because the lengths of the bit sequences encoded as SAPs and
modulated signals are variable, the measurement of bit errors
would be difficult to assess in a standardized manner. There-
fore, to maintain brevity and clarity, we choose to evaluate the

9Again, similar results were observed for (N, K ) = (6, 4) and (N, K ) =
(8, 6) systems.

block-error rate (BLER) instead of bit-error rate for the [30]–
[32]. Here, a block is a group of N subcarriers.

For simplicity and optimality, we adopt the maximum like-
lihood (ML) detection scheme at the receiver to estimate the
received signal vector Y consisting of received modulated sym-
bols and nulls on N independent subcarriers.10 We assume that
channel knowledge is available at both transmitter and the re-
ceiver. The estimated signal vector X̂ satisfies

X̂ = arg min
Ẋ

{
Y − GẊ

}
(20)

where Ẋ is a candidate transmit vector (obtained by
following the model described in Section II) and G =
diag{√g1e

jθ1 , . . . ,
√

gN ejθN } is the diagonal channel coef-
ficient matrix. We write the BLER conditioned on the trans-
mitted signal vector X as PBLER(X|G) = P (X �= X̂|G).
Averaging over X gives our measure of interest: P̄BLER(G) =
E[PBLER (X|G)], which is now only dependent on the chan-
nel state captured in G. This measure is useful for evaluating
performance in a slow-fading environment. It also allows us to
observe how channel variations affect error performance.

Following the simulation setting for the mutual information
analysis, we configured the channel gains to be gl = ηl−1 and
let {θl} be uniformly distributed over [0, 2π), ∀l ∈ {1, . . . , N}.
We also normalized σ2 = 1 for the noise power and let N = 4
and K = 2 as an example. We do not apply rate adaptation in
this study; consequently, we employ a uniform power allocation
scheme in all simulations related to error performance. This al-
lows us to focus on the effect that binary-tree optimization (i.e.,
bit-to-SAP optimization) has on performance. We numerically
examined the BLER for OFDM-IM with the SAP probability
distribution optimized under two conditions. The first condi-
tion only requires the number of leaves in the binary tree that
defines bit-to-SAP mapping to be equal to or smaller than the
number of SAPs. The second condition restricts the encoder to
only consider full binary trees with C leaves, which reduces the
achievable rate at low SNR. Also, the classic OFDM-IM scheme
studied in [9] was adopted as a benchmark. We adopt the lexi-
cographic codebook design for the classic OFDM-IM system to
select four out of six SAPs for comparison purposes [16]. The
numerical results are presented in Fig. 8, which were obtained
by collecting 103 block-error events for each SNR point (subject
to random additive white Gaussian noise).

In Fig. 8, it is apparent that the rate-optimized OFDM-IM
systems designed according to the first condition outperform
those designed under the second condition. This behavior cor-
relates with the fact that the first condition is less restrictive
than the second. Perhaps more interestingly, we note that the
rate-optimized system does not always outperform the classical
OFDM-IM scheme. When signals are subject to deep fading,
the rate-optimized system designed according to the first con-
dition may only utilize a single SAP consisting of the best K
subcarriers, and the system is reduced to OFDM with K ac-
tive subcarriers. This system is capable of performing better

10Independence can be assumed by considering the case where a subcarrier-
level block interleaver is employed [33].
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Fig. 8. BLER vs. average SNR per subcarrier.

than those that encode information in the index domain as well
as signal space, since block errors arising from incorrect SAP
decoding do not occur.

VII. CONCLUSION

In this paper, we provided a thorough treatment of the rate-
optimization problem for OFDM-IM systems with channel
knowledge at the transmitter. We cast the problem as one of
mapping bit sequences to activation patterns, which enabled us
to utilize a binary tree formalism for algorithm development and
analysis. To this end, we presented new results on full binary
trees, both in terms of algorithmic construction and enumera-
tion. We also reported a number of new analytic bounds and
asymptotic results related to the relaxed mutual information op-
timization problem where SAP probabilities can take any values
in the interval [0,1] subject to a sum probability constraint. We
then used the results pertaining to the relaxed problem to de-
velop a heuristic algorithm for obtaining a feasible solution
to the constrained problem. Numerical results indicate that this
solution is nearly optimum (relative to the relaxed upper bound),

particularly in the low and high SNR regimes, and the optimized
approach is capable of offering a rate advantage over the con-
ventional OFDM-IM benchmark of [9].

A number of open problems remain. First, it is not clear
whether an analytic form for the optimal power values exists for
all SNR values; only low and high SNR results were reported
here. In fact, it is not readily apparent that the mutual informa-
tion is concave in the power vector ρ; hence, a general analytic
form may not be forthcoming. As an alternative, it would be
preferable to develop an efficient numerical approach to solving
the relaxed optimization problem. The use of BCD was briefly
discussed here, but further work is needed to determine whether
this method would be a viable solution in practice. It is also
not known whether the heuristic projection algorithm (Algo-
rithm 2) is, in fact, optimal in some sense. Furthermore, the
present work could be placed in a practical context by evalu-
ating the coded BLER of OFDM-IM. In this case, one would
need to choose appropriate coding schemes for the synchroniza-
tion channel [34] that arises through the use of variable-length
coding [17]. This is a rich area of research, which requires sig-
nificant attention to make progress. Finally, and more generally,
only rate-optimization for uniform sources was considered; it
would be fruitful to study the BLER-minimization problem as
well as nonuniform sources and non-Gaussian signalling (i.e.,
finite signal constellations).

APPENDIX A
PROOF OF PROPOSITION 1

Define the mapping w� : Tv−1 → Tv for any integers v > 1
and � ≥ 0, such that w� appends the protograph τ to the left-
most available node at height �, relative to the deepest leaf, of a
tree in Tv−1 . Hence, for a tree t′ ∈ Tv−1 with maximum depth d,
w� connects two edges to the left-most leaf node in level d − �
of t′. These edges are, in turn, each connected to a leaf node
at depth d − � + 1. Note that w0 always maps a tree to a new
tree with one additional internal node and one additional leaf,
whereas w� , for � > 0, will return the empty set if no height-�
leaves exist in the tree on which w� acts. Algorithm 1 applies
w0 and w1 to each tree in Tk with every step of the for loop. The
following lemma guarantees that w0 and w1 generate unique
trees.

Lemma 2: When applied to elements of Tv−1 , the mappings
w0 and w1 yield nonisomophic trees.

Proof: The mapping w0 is one-to-one. Hence, the image
w0(Tv−1) consists of Tv−1 trees. None of these trees are iso-
morphic, since no trees in Tv−1 are isomorphic. Similarly, where
admissible, the mapping w1 is one-to-one. In the inadmissible
case where w1 returns the empty set, the mapping is many-to-
one; but this can be ignored, since no tree is generated. Thus,
the image w1(Tv−1) consists of at most Tv−1 trees. Again, none
of these trees are isomorphic, since no trees in Tv−1 are isomor-
phic. Furthermore, we deduce that w0(Tv−1) ∩ w1(Tv−1) = {},
since every t ∈ w0(Tv−1) has two leaves at the deepest level and
every t′ ∈ w1(Tv−1) has more than two leaves at the deepest
level. �

We now conclude the proof with the following lemma.
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Lemma 3: For v ≥ 2,

Tv = w0(Tv−1) ∪ w1(Tv−1) (21)

is a complete reduced set of v-node full binary trees.
Proof: Let T1 = {τ}. It is easy to verify (cf. Fig. 2) that T2 =

w0(T1) ∪ w1(T1) and T3 = w0(T2) ∪ w1(T2) are complete sets.
Moreover, Lemma 2 ensures Tv contains no isomorphic trees
for v > 1. Hence, to prove that Tv is a complete reduced set of
full binary trees for v ≥ 4, we must show that

w�(Tv−1) ⊆ w0(Tv−1) ∪ w1(Tv−1) (22)

for 2 ≤ � ≤ v − 1 and v ≥ 4.
Assume the lemma is true for all v = 2, . . . , k − 1. Choose

t′ ∈ Tk−1 . Consider the mapping w�(t′). We treat several possi-
bilities. If the operation maps to the empty set, the set relation
is satisfied since by definition (no tree is generated). On the
other hand, if w�(t′) is nonempty and the deepest level of w�(t′)
contains exactly two leaves (and hence the same can be said
for t′ since � ≥ 2), then we must show that there exists a tree
t ∈ Tk−1 such that w�(t′) = w0(t). Note that, in this case, w0
has an inverse, and the composition w−1

0 ◦ w� commutes. Thus,
we write

t = w−1
0 ◦ w�(t′) = w� ◦ w−1

0 (t′) = w�(t′′) (23)

where, in the second and third equalities, it is understood that
w� operates on the level at height � relative to the deepest leaf
in t′. But, by the inductive hypothesis and Lemma 2, we have
that t′′ = w−1

0 (t′) ∈ Tk−2 . It follows that

t = w�(t′′) ∈ w0(Tk−2) ∪ w1(Tk−2) = Tk−1 (24)

as required.
Now suppose w�(t′) is nonempty and the deepest level of

w�(t′) contains more than two leaves. In this case, we must
show that there exists a tree t ∈ Tk−1 such that w�(t′) = w1(t).
We take a similar approach, recognizing that w1 has an inverse,
and the composition w−1

1 ◦ w� commutes. It follows that

t = w−1
1 ◦ w�(t′) = w� ◦ w−1

1 (t′) = w�(t′′) (25)

and, by induction, t′′ = w−1
1 (t′) ∈ Tk−2 . Finally, we have that

t = w�(t′′) ∈ w0(Tk−2) ∪ w1(Tk−2) = Tk−1 (26)

as required. �

APPENDIX B
PROOF OF PROPOSITION 2

The proposition can be seen to hold (with equality) for
v = 2, 3, 4 by explicit construction of Tv . For v > 4, consider
the mappings {w�} given in Appendix A. As noted in the
proof of Lemma 2 in that appendix, w0 is one-to-one. Thus,
|w0(Tv−1)| = Tv−1 . Moreover, from Lemma 2 and the defini-
tion of Tv given in Lemma 3, we know that

Tv = |w0(Tv−1) ∪ w1(Tv−1)| = Tv−1 + |w1(Tv−1)|. (27)

The set Tv−1 can be partitioned into two subsets: one set that
contains trees that are mapped to v-node trees in Tv under w1
and one set does not admit a mapping under w1 . We call trees

in the first subset T o
v−1 open trees and trees in the second subset

T c
v−1 closed trees. Since T o

v−1 = Tv−1 − T c
v−1 , we have

Tv = Tv−1 + |T o
v−1 | = 2Tv−1 − |T c

v−1 |. (28)

To lower bound |T c
v−1 |, we apply the following reasoning.

A (v − 1)-node closed tree is formed by appending a closed
subtree of size, say, r internal nodes to a subtree of size v −
1 − r. Each set Tr with r = 2q − 1 for some positive integer
q has exactly one dense closed tree, i.e., a tree where every
level is fully connected to the pervious and next levels, and the
deepest level has 2q leaves. For every q ∈ 2, . . . , �log2(v − 1)�,
we can enumerate v − 1 − r = v − 2q closed trees. This is a
lower bound, since other combinations of r-node closed subtrees
and (v − 1 − r)-node trees exist. Finally, we note that if v − 1
is one less than a power of two, Tv−1 contains a dense subtree,
which gives rise to the δv parameter stated in the proposition.

APPENDIX C
PROOF OF LEMMA 1

Referring to (9), the equality constraint is affine and the in-
equality constraints are convex. From (5), we can write

I(X;Y ) = −
∫

fY (y) ln fY (y)
N∏

l=1

dyl dy∗
l − n ln(πeσ2).

(29)
Hence, we must prove that h(Y ) is concave in p. Let us interpret
fY (cf. (6)) as a function of p for a fixed y. Then the mapping
fY : [0, 1]N → [0,∞) is linear in this context. Furthermore,
h(Y ) =

∫
u(fY (y)) dy, where u(x) = −x ln x is concave. It

is well known that a composition of a concave function and a
linear function is concave, and that concavity is preserved un-
der nonnegative weighted integration [35, sec. 3.2]. The weight
function here is simply one, so it follows that h(Y ) is concave
in p.

APPENDIX D
PROOF OF PROPOSITION 3

Starting from Lemma 1, we form the KKT conditions

− p ≤ 0, 1T p − 1 = 0, λ0 ≥ 0,

diag(λ0)p = 0, ∇L(p,λ0 , ν) = 0 (30)

where λ0 ∈ RC and ν ∈ R are the Lagrange multipliers. The
gradient of the Lagrangian is

∇L = ∇h(Y ) + λ0 + ν1 (31)

and the gradient of h(Y ) with respect to p can be written as

∇h(Y ) = −
∫

ln(a(y)T p)a(y) + a(y) dy (32)

where a(y) := (fY |U (y | U = i))i=1,...,C . Hence, the optimal
vector p must satisfy

∫
ln(a(y)T p)a(y) dy = λ0 + (ν − 1)1. (33)

where we have used the fact that
∫

a(y) dy = 1. Furthermore,
since the problem is concave, any p, λ0 , and ν that satisfy (33)
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and the rest of the conditions in (30) are primal and dual opti-
mal, and thus yield the maximum mutual information. Choose
pi = 1/C for all i. In this case, the inequality constraints are
inactive, which implies λ0 = 0. As a result, (33) is satisfied
(along with the rest of the KKT conditions), and thus uniform
SAP probabilities is optimal.

APPENDIX E
PROOF OF PROPOSITION 4

Using Jensen’s inequality and considering the concavity of
the logarithm, h(Y ) can be lower bounded as

h(Y ) = −E [ln fY (y)] ≥ − ln E [fY (y)] . (34)

The expectation can be evaluated to give

E [fY (y)] =
∑

i∈U

∑

j∈U

pipj

πN det(Ξi + Ξj )
(35)

where Ξi is a diagonal matrix with the lth element of the di-
agonal ξli satisfying (11). Substituting (35) into (34), factoring
out 1/πN , and using (5), we arrive at the bound stated in the
proposition.

APPENDIX F
PROOF OF PROPOSITION 5

Let aij = 1/det(Ξi + Ξj ). Proposition 4 can be written as

I(p,ρ, σ2) ≥ − ln

⎛

⎝
∑

i∈U

∑

j∈U
aij pipj

⎞

⎠ − N ln
(
eσ2)

= − ln(pT Ap) − N ln
(
eσ2) (36)

where A = (aij ). Thus, maximizing the bound with respect
to the activation probabilities (subject to constraints) can be
achieved by solving the following optimization problem:

minimize
p

pT Ap

subject to
∑

i∈U
pi = 1 and pi ≥ 0, ∀i ∈ U . (37)

When A is nonsingular, this classical quadratic program yields
the solution

p� = (νA−11)+ (38)

where ν is chosen to satisfy the equality constraint
∑

i∈U pi =
1. Letting bij denote the ijth element of A−1 , we have that
p�

i = ν(
∑

j∈U bij )+ and ν = 1/
∑

i∈U (
∑

j∈U bij )+ . The result
stated in the proposition follows readily.

APPENDIX G
PROOF OF PROPOSITION 6

In the following we denote ali = glρli , for all l. From (29),
together with (6) and (7), we have

I(p,ρ, σ2)

= −N ln(πeσ2)

−
∑

i∈U
pi

∫ N∏

l=1

dyl dy∗
l

∏

l∈Si

fCN(yl ; ali + σ2)
∏

l /∈Si

fCN(yl ;σ2)

× ln

⎡

⎣
∑

j∈U
pj

∏

m∈Sj

fCN(ym ; amj + σ2)
∏

m /∈Sj

fCN(ym ;σ2)

⎤

⎦

(39)

In the integral corresponding to the ith term above, we make
the following change of variables: yl →

√
ali + σ2yl and y∗

l →√
ali + σ2y∗

l , l ∈ Si , and yl → σyl and y∗
l → σy∗

l , l /∈ Si , and
obtain

I(p,ρ, σ2)

= −N ln(πeσ2) −
∑

i∈U
pi

∫ N∏

l=1

dyl dy∗
l

e−|yl |2

π

× ln

⎡

⎣
∑

j∈U

pj

(πσ2)n−k
∏

m∈Sj
π(amj +σ2)

∏

m∈Sj \Si

e
− σ 2 |y m |2

a m j + σ 2

×
∏

m∈Si \Sj

e−
(a m i + σ 2 )

σ 2 |ym |2 ∏

m∈(Sj ∩Si )∪(Sc
j ∩Sc

i )

e−|ym |2

⎤

⎦

(40)

In the argument of the log in (40), we factor out
1

(πσ 2 )N

∏N
m=1 exp

(
−|ym |2

)
, such that, upon taking the log and

integrating, eq. (40) becomes

I(p,ρ, σ2)

= −
∑

i∈U
pi

∫ N∏

l=1

dyl dy∗
l

e−|yl |2

π

× ln

⎡

⎣ pi∏
m∈Si

(1 + ami/σ2)
+

∑

j∈U\{i}

pj∏
m∈Sj

(1 + amj/σ2)

×
∏

m∈Sj \Si

e
a m j |y m |2

a m j + σ 2
∏

m∈Si \Sj

e−
a m i
σ 2 |ym |2

⎤

⎦ (41)

Now, we define the probability values

qi =

∏
m∈Si

(amj + σ2)
∑

j∈U
∏

l∈Sj
(alj + σ2)

(42)
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and obtain

I(p,ρ, σ2)= ln

[
∑

i∈U

∏

l∈Si

(ali

σ2 + 1
)
]

−
∫ N∏

l=1

dyl dy∗
l

e−|yl |2

π

×
∑

i∈U
pi ln

⎡

⎣pi

qi
+

∑

j∈U\{i}

pj

qj

∏

m∈Sj \Si

e
a m j |y m |2

a m j + σ 2

×
∏

m∈Si \Sj

e−
a m i
σ 2 |ym |2

⎤

⎦ (43)

We observe that the limit of the ith term of the sum in (43) as
σ2 → 0 is pi ln pi

qi
(with the convention 0 · ln 0 = 0).11 Thus,

the mutual information obeys the asymptotic equivalence

I(p,ρ, σ2) ∼ ln

[
∑

i∈U

∏

l∈Si

(ali

σ2 + 1
)
]

−
∑

i∈U
pi ln

pi

qi
. (44)

Note that
∑

i∈U pi ln pi

qi
is the Kullback-Leibler divergence be-

tween p and q, which is always positive and equals zero if and
only if the two distributions are identical. Thus, at high SNR
(σ2 → 0), the probabilities that maximize the mutual informa-
tion are pi = qi , i ∈ U .

APPENDIX H
PROOF OF COROLLARY 1

For an arbitrary probability distribution p, define U+ = {i ∈
U | pi > 0}. Based on (43), we write

μ(σ2) − I(p,ρ, σ2)

= −
∑

i∈U+

pi ln
qi

pi
+

∫ N∏

l=1

dyl dy∗
l

e−|yl |2

π

×
∑

i∈U+

pi ln

⎡

⎣1 +
∑

j∈U\{i}

pj qi

qj pi

∏

m∈Sj \Si

e
a m j |y m |2

a m j + σ 2

×
∏

m∈Si \Sj

e−
a m i
σ 2 |ym |2

⎤

⎦ (45)

Firstly, using Jensen’s inequality, we have −
∑

i∈U+
pi ln qi

pi
≥

− ln
∑

i∈U+
pi

qi

pi
= − ln

∑
i∈U+

qi ≥ 0. Secondly, the log
in the integrand in (45) is positive, as ln(1 + t) > 0
for t > 0); therefore, the integral is also positive.
Thus, μ(σ2) > I(p,ρ, σ2), for any p and σ2 . Con-
sequently, μ(σ2) > maxp I(p,ρ, σ2) = I�(ρ, σ2). Fi-
nally, limσ 2 →0 [μ(σ2) − I�(ρ, σ2)] = limσ 2 →0 [μ(σ2) −
I(q,ρ, σ2)] = 0, as argued in Proposition 6.

11By the dominated convergence theorem, the order of the limit and the
integral can be exchanged.

APPENDIX I
PROOF OF PROPOSITION 7

Starting from (41), we observe that, as σ2 → ∞, the mutual
information obeys the asymptotic equivalence

I(p,ρ, σ2) ∼ −
∑

i∈U
pi ln

⎡

⎣
∑

j∈U

pj∏
m∈Sj

( am j

σ 2 + 1
)

⎤

⎦

= − ln

[
∑

i∈U

pi∏
l∈Si

(
al i

σ 2 + 1
)

]

≤ − ln

[ ∑
i∈U pi∏

l∈Si �

(
al i �

σ 2 + 1
)

]

= ln

⎡

⎣
∏

l∈Si �

(ali�

σ2 + 1
)
⎤

⎦ =
∑

l∈Si �

ln
(ali�

σ2 + 1
)

The inequality is achieved when pi = ri , i ∈ U .

APPENDIX J
PROOF OF PROPOSITION 8

Consider the high-SNR regime. According to Proposition 6
and Corollary 1, the optimal mutual information for given pow-
ers satisfies the asymptotic equivalence

I�(ρ, σ2) ∼ ln

[
∑

i∈U

∏

l∈Si

(glρli

σ2 + 1
)
]

, as σ2 → 0. (46)

We now maximize the mutual information over the powers at
high SNR by formulating the optimization problem

maximize
ρ

ln

[
∑

i∈U
exp

∑

l∈Si

ln
(glρli

σ2 + 1
)
]

∑

l∈Si

ρli ≤ P and ρli ≥ 0, ∀i ∈ U , l ∈ Si . (47)

Given that the objective function is increasing in every variable,
the constraints are satisfied with equality. Moreover, the problem
actually decouples in

(
N
K

)
separate problems. We cast the ith

problem as

maximize
ρ

∑

l∈Si

ln
(glρli

σ2 + 1
)

∑

l∈Si

ρli ≤ P and ρli ≥ 0. (48)

For each i ∈ U , the optimal powers are found via the waterfilling
strategy.

For the low-SNR regime, from Proposition 7, we opti-
mize I�(ρ, σ2) ∼

∑
l∈Si �

ln
(

al i �

σ 2 + 1
)

under the constraint∑
l∈S�

i
ρli� = P . Waterfilling power allocation is optimum.
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