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    Abstract— An economic load dispatch model developed for 

both wind turbines and thermal generators is presented in this 

paper. In the model, the wind power is considered as a constraint 

due to random nature of wind speed. This optimization problem 

is solved to obtain optimal power outputs of thermal generators, 

while taking into account of given constraints. All these optimal 

outputs and available wind power must satisfy the load 

generation balance of the power system. The closed form solution 

of this model is not possible due to the inequality constraints and 

this problem is solved by introducing a penalty function or 

barrier function in the model to take account of inequality 

constraints. The feasible ranges of optimum solutions are 

obtained by using the developed models based on penalty 

function and interior point methods. 

 

Index Terms— Economic Load Dispatch, interior point 

method, penalty function method, weibull distribution, wind 

power 

 

I. INTRODUCTION 

Modern society highly relies on its energy supply, in 

particular the supply of electricity. Electricity consumption is 

strongly correlated with economic growth: economic growth 

increases the use of electric utilities which become the cause of 
increase in electricity demand. In the past three decades, 

economic growth has been an important factor in tripling the 

electricity consumption worldwide. 

Demand for the utilization of renewable energy 

technologies such as biomass, geothermal, wind power, solar 

photovoltaics, tidal and wave power are increasing day by day. 

In the past decade, attention towards utilization of wind energy 

has increased more than any other renewable resources [1]. The 

main challenge in wind energy is efficient integration of its 

generated electricity into grids. Since the wind speed has  

stochastic nature, the output of wind turbines cannot be 
controlled as conventional generation technologies can be. 

Currently, conventional generation plays a vital role in 

maintaining the power balance between generation and 

demand. Wind power challenges power system balancing in 

two ways. On the one hand, wind power introduces additional 

variations and uncertainty. On the other hand, provided the 

wind is available for longer periods of time, the presence of 

wind power reduces the amount of  conventional generation 

capacity scheduled and available for balancing purposes.  

Due to randomness of wind power, the economic load 

dispatch model can be solved by the approches like stocahstic 

programming [2-3]. The present work focuses on solving 

economic load disptach model with random wind power 

constraint using penalty function and interior porint methods. 

 

II. AN ELD MODEL WITH WIND POWER 

The economic load dispatch problem is basically a 

mathematical optimization problem in electrical power 

systems. This optimization problem is solved to obtain optimal 

power outputs of thermal generators,  while taking into account 

of given constraints. All these optimal outputs and available 

wind power must satisfy the load generation balance of the 

power system. The model can also include certain other 

constraints. These constraints are minimum and maximum 

limits of generator power outputs.  In this paper, the quadratic 

cost function is selected which can be obtained by applying 
least square estimation method on measured data of thermal 

generators [4].  The ELD model is represented as: 

 

                                      
 

 

   

 

                                                                       

              

 

   

 

                                                                

where 

    ,    ,                Cost coefficients for the ith thermal generator.  

W                        Wind power of a wind farm.  

      ,               Minimum and maximum limit on ith thermal 

                            generator power output.  
 

                         Load demand.  

                       System power losses. 
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III. WIND SPEED CHARACTERIZATION 

Wind speed is one of the most critical characteristics in 
wind power generation. In fact, wind speed varies in both time 

and space, determined by many factors such as geographic and 

weather conditions. Because wind speed is a random 

parameter, the instantaneous wind speed   changes with time, 

due to which it is averaged over a short time interval. Statisitcal 

methods are applied on these average figures for analysis of 

wind speed. 

The wind speed,  , variations can be best described by 

Weibull distribution during a short period of time [5]. The 

probability density function (pdf) of wind speed random 

variable    is 

                 
 

 
 
 

 
 
   

      
 

 
 
 

                                 

 

where c is the scale factor used as a measure for wind speed   

and k is the shape factor which describes the shape of 

distribution. These two parameters can be estimated by using 

statistical methods on available wind speed data. 

 

The cumulative distribution function for a Weibull random 

variable,  , to find probability of wind speed is expressed as 

 

                                  
 

 
 
 

                                         

 

The Weibull distribution can degenerate into two special 

distributions, namely exponential distribution for which shape 
factor, k is 1 and the Rayleigh distribution for which shape 

factor, k is 2. Since observed wind data exhibits frequency 

distributions which are often well described by a Rayleigh 

distribution, this single parameter distribution is sometimes 

used by wind turbine manufacturers for calculation of normal 

operation factors for their machines.  

On a global scale, the k factor varies significantly 

depending upon local weather conditions and the landscape. A 

low k factor, less than 1.8, is typical for wind climates with a 

high content of thermal winds. A high k factor, greater than 

2.5, is representative for very constant wind climates, for 
example trade winds. Both Weibull c and k parameters are 

dependent on the height and are increasing up to 100 m above 

ground. Above 100 m the k parameter decreases. 

Weibull distribution shape and scale factors can be 

estimated for the available wind speed data by using the 

methods given in [5]. The range of shape factor k is 1 to 3 

while range of scale factor c is 5 to 20. Fig. 1 shows the wind 

speed probability density function with shape factor of 2 and 

scale factor of 5, 8 and 10. 

 

The average and variance of wind speed are 

 

                                             
 

 
                                      

                               
 

 
         

 

 
  
 

              

 

 
Fig. 1.  Wind speed pdf for k =2 

 

IV. WIND POWER PROBABILITY DISTRIBUTION 

A general model for a wind turbine has been proposed in 

[6] to show the relation between wind power and wind speed. 

 

      

 
 

 
                                               
                                                  
          
     

                             

                       

 

Equation (5) shows that the wind power probability is mixed 

probability function due to the presence of both discrete and 

continuous events. The probability of event W = 0 is 

 

                                      

                            
  
 
 
 

   

                                                           
  
 
 
 

                               

 

 

The wind power probability for  W =     is 
 

                        

                        
  
 
 
 

  

                                                             
  
 
 
 

                            

 

 

For continuous part, the wind power Weibull probability 

density function is 
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where               
 

The average of wind power is 

 

      
          
     

  

  

                       

                                    
  

  

   

 

 
   

        
   

 

 
  
  
 
 
 

    
 

 
  
  
 
 
 

   

 

                              
  
 
 
 

                                                      

 

 

TABLE I.  WIND PARAMTERS   

 
   (m/s)     (m/s)    (m/s) 

5 17 25 

 

 

The cumulative wind power distribution function is 

represented by (10). Fig 2. Shows the cdf of wind power. 

 

 
Fig. 2.  Cumulative distribution of wind power 

 

V. ELD MODEL WITH PENALTY AND BARRIER FUNCTIONS 

Penalty functions have been a part of the constrained 

optimization for decades. There are two main types of penalty 

functions. They are exterior penalty functions and barrier 

functions. 

The penalty function formulation introduces an increase in 

objective function value for infeasible points, the "penalty" 

added to the minimization problem. So, given a particular 

solution point, if an inequality constraint is satisfied, the 

resulting penalty to the objective value is zero. On the other 

hand, if the inequality constraint is violated, then a positive 

component multiplied by penalty parameter is added to the 

objective function [7]. The constrained problem has now been 
reduced to an unconstrained objective function.  

 

A. Solution of ELD model with Penalty Function Method 

In ELD Model, the random WP is used as a constraint 

instead of average WP due to its probabilistic infeasibility. 

Therefore, the optimal power output of thermal generators 

depends on random WP. 

The ELD_EPF model with wind power as stochastic 

constraint is 

                                                     
 

 

   

           

                                                            

 

   

                 

 

                                                                       
 
where W, random variable, represents the total wind power. 

The system Power losses,      , are neglected in ELD model.  

 

The penalty functions developed to handle inequality 

constraints are 

 

                                   
                                                     

 

                                   
                                                     

 

where 

 

                                                                                  
 

                                                                                 
 
 

and       is a Heaviside function defined as 

 

       
                      

                      
                                        

 

 

Now, the objective function can be augmented as 
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where     and     are penalty parameters. These parameters 

can be adjusted for solving ELD model using following classic 

penalty function optimization algorithm [7].  

 

i) Choose a fixed sequence of            . 
ii) For each            , find optimum solution of   . 
iii) Terminate when        and        are sufficiently small. 

 

TABLE II.  THERMAL GENERATORS PARAMTERS   

 
Generator 

index i 
                          

1 10 200 100 0.02 0.5 

2 10 150 120 0.03 0.7 

3 20 180 40 0.05 1.2 

4 10 100 60 0.06 1.5 

5 20 180 40 0.05 1.2 

6 10 150 100 0.03 0.7 

 

TABLE III.  OPTIMAL SOLUTIONS OF ELD_EPF MODEL (           

 
 Minimum (pu) Average (pu) Maximum (pu) 

        0.3908 0.3994 0.4030 

        0.5340 0.5412 0.5442 

        1.2 1.2 1.2 

        1.4846 1.4990 1.5 

        1.2 1.2 1.2 

        0.6408 0.6494 0.6530 

 

TABLE IV.  OPTIMAL SOLUTIONS OF ELD_EPF MODEL (          

 
 Minimum (pu) Average (pu) Maximum (pu) 

        0.3693 0.3921 0.4030 

        0.5161 0.5351 0.5442 

        1.1732 1.2 1.2 

        1.4488 1.4868 1.5 

        1.1732 1.2 1.2 

        0.6193 0.6420 0.6530 

 

 

 

 

TABLE V.  OPTIMAL SOLUTIONS OF ELD_EPF MODEL (          

 
 Minimum (pu) Average (pu) Maximum (pu) 

        0.3482 0.3823 0.4030 

        0.4985 0.5269 0.5442 

        1.1206 1.2 1.2 

        1.4137 1.4704 1.5 

        1.1206 1.2 1.2 

        0.5982 0.6322 0.6530 

 

 

B. Solution of ELD model with Interior Point Method 

The barrier functions are used to ensure that a feasible 

solution never becomes infeasible. In interior point method 
(barrier function method), a logarithmic function of slack 

variables multiplied by barrier paramter is augmented into the 

objective function and these slack variables are introduced 

into inequality constraints to convert them into equality 

constaints. Using this approach, the constrained ELD model 

with inequality constaints can be converted into a model with 

eqality constraints. The augmented ELD model (ELD_IPM) 

can be written as 

                                           
  

 

   

  

                                                  

 

   

                             

                                                          

 

   

                  

                                                                                      

                                                                                     
 

where     and     are slack variables and they have positive 

vaules while     and     are barrier paramters. 

The ELD_IPM model can be solved numerically in matlab 

using interior point algorithm for nonlinear optimization, 

developed in [8]. This algorithm is implemented on Matlab to 
solve ELD_IPM model. 

 

TABLE VI.  OPTIMAL SOLUTIONS OF ELD_IPM MODEL (           

 
 Minimum (pu) Average (pu) Maximum (pu) 

        0.3907 0.3994 0.4030 

        0.5340 0.5412 0.5441 

        1.2 1.2 1.2 

        1.4846 1.4990 1.5 

        1.2 1.2 1.2 

        0.6408 0.6494 0.6529 

 

 

 

 

 

TABLE VII.  OPTIMAL SOLUTIONS OF ELD_IPM MODEL (          

 
 Minimum (pu) Average (pu) Maximum (pu) 

        0.3693 0.3920 0.4030 

        0.5161 0.5350 0.5441 

        1.1732 1.2 1.2 
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        1.4488 1.4867 1.5 

        1.1732 1.2 1.2 

        0.6193 0.6420 0.6529 

 

TABLE VIII.  OPTIMAL SOLUTIONS OF ELD_IPM MODEL (          

 Minimum (pu) Average (pu) Maximum (pu) 

        0.3482 0.3822 0.4030 

        0.4985 0.5268 0.5441 

        1.1206 1.2 1.2 

        1.4137 1.4704 1.5 

        1.1206 1.2 1.2 

        0.5982 0.6322 0.6529 

 

VI. CASE STUDY 

In this paper,  both  ELD models (ELD_EPF and ELD_IPM 

models) are applied on a power system consisiitng of six 

thermal generators and one wind farm. The wind parameters 

are listed in Table I while thermal parameters of the system are 

shown in Table II and these parameters are taken from [3]. 

The wielbull parameters to estimate wind speed are c = 2 and k 

= 8. The load demand is  5.5 MW. The base MVA of system is 

taken to be as 100 MVA. All power variables units are 
represented by p.u. system. The results of ELD_EPF and 

ELD_IPM models are listed in Tables III to VIII for different 

rated wind power       0.05, 0.2, 0.4 pu. By comparing 

Tables III to V of ELD_EPF model Tables VI to VIII of 

ELD_IPM model, both of these models have similar results. 

Fig. 3, 4 and 5 show the relation of maximum, minimum and 

average of optimal solution with wind power. The maximum 

optimal power outputs of thermal genrators represent the case 

when there is no wind power availability.. The results show 

that the maximum optimal solution does not depend on 

    while minimum and average values of optimal soultion 

decrease with increase in       
 

 

 
Fig. 3.  Variation in maximum optimal solution with wind power 

 

 
Fig. 4.  Variation in average optimal solution with wind power 

 

VII. CONCLUSION 

In this paper, The random wind power is considered as a 

constraint in developing an economic load dispatch model for 

both wind turbines and thermal generators. A penalty function 

or barrier function is introduced in the model to take account 

of inequality constraints and to develop unconstrained 

problem by augmenting the objective function. Inequality 
constraint is defined as the restriction on the output power of 

thermal generators. The feasible ranges of optimum solutions 

are derived by penalty function and interior point methods. 

 

 
Fig. 5.  Variation in minimum optimal solution with wind power 
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