

Aalborg Universitet

Viscosity and Heat Capacity of Glass-Forming Melts

A Plenary Talk Yue, Yuanzheng

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA): Yue, Y. (2019). Viscosity and Heat Capacity of Glass-Forming Melts: A Plenary Talk. Abstract from China Glass Annual Meeting, Jinan, China.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Viscosity and Heat Capacity of Glass-Forming Melts

Yuanzheng Yue

Department of Chemistry and Bioscience, Aalborg University, Denmark State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, China

In this lecture, I will explain how to derive the VFT and MYEGA models that describe the viscosity (η)-temperature (T) correlation of glass-forming melts. Then I will introduce a simple approach for determining the η -T relation, which is based on the combination of the heat capacity and fictive temperature measurements with the MYEGA model. I will point out the importance of this approach in glass technology. Furthermore, I will revisit the Yue-Brückner model, which reflects the non-Newtonian flow behavior of oxide glass melts.