

Aalborg Universitet

On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa

Padurariu, Simona; Röösli, Christof; Røge, Rasmus; Stensballe, Allan; Vyberg, Mogens; Huber, Alex: Gaihede, Michael

Published in: Hearing Research

DOI (link to publication from Publisher): 10.1016/j.heares.2019.01.023

Creative Commons License CC BY-NC-ND 4.0

Publication date: 2019

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Padurariu, S., Röösli, C., Røge, R., Stensballe, A., Vyberg, M., Huber, A., & Gaihede, M. (2019). On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa. Hearing Research, 378, 176-184. Advance online publication. https://doi.org/10.1016/j.heares.2019.01.023

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Accepted Manuscript

On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa.

Simona Padurariu, Christof Röösli, Rasmus Røge, Allan Stensballe, Mogens Vyberg, Alex Huber, Michael Gaihede

PII: \$0378-5955(18)30233-8

DOI: https://doi.org/10.1016/j.heares.2019.01.023

Reference: HEARES 7690

To appear in: Hearing Research

Received Date: 31 May 2018

Revised Date: 24 January 2019 Accepted Date: 30 January 2019

Please cite this article as: Padurariu, S., Röösli, C., Røge, R., Stensballe, A., Vyberg, M., Huber, A., Gaihede, M., On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa., *Hearing Research*, https://doi.org/10.1016/j.heares.2019.01.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Abstract

Background. Middle ear physiology includes both sound pressure transmission and homeostasis of its static air pressure. Pressure gradients are continuously created by gas exchange over the middle ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data have been scarce and limited to few histological samples from the tympanic cavity (TC) and the antrum. However, a detailed regional description of the morphological differences of the TC and mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to provide such parameters.

Methods. The study included sets of three histological H&E-slides from 15 archived healthy temporal bones. We performed a comparison of the mucosa morphology among the following regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior MACS; (7) central MACS; (8) inferior MACS.

Results. Regions (1) - (3), situated below the inter-attico-tympanic diaphragm, had the largest proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well as the thickest mucosa and the largest diffusion distance. Regions (6) - (8), situated above the diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the largest proportion of flat epithelium and very few cilia. Regions (4) - (5), still supradiaphragmatic, had intermediary values for these parameters, but generally closer to regions (6) - (8). The blood vessel density and the proportion of active mucosa were not significantly different among the regions.

Conclusion. Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific morphology, whereas in regions (4) - (8) it seemed adapted to gas exchange. However, the lack of statistically significant differences in blood vessel density and proportion of active mucosa indicated that all regions could be involved in gas exchange with the highest adaptation in the superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic diaphragm rather than the anatomical division into TC and MACS.

1	On the functional compartmentalization of the normal middle ear.
2	Morpho-histological modelling parameters of its mucosa.
3	
4	Authors
5 6	Simona Padurariu ^{1,2*} , Christof Röösli ³ , Rasmus Røge ⁴ , Allan Stensballe ⁵ , Mogens Vyberg ^{2,4} , Alex Huber ³ , Michael Gaihede ^{1,2} .
7 8	Affiliations
9 LO	¹ Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Aalborg University Hospital, Aalborg, Denmark
l1	² Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
12 13	³ Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zürich, University of Zurich, Zurich, Switzerland
L4	⁴ Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
L5 L6	⁵ Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
L7	*corresponding author: s.padurariu@rn.dk ; Idéklinikken, Sdr. Skovvej 3E, 9000 Aalborg, Denmark
L8 L9	
20	
21	
22	
24	

1. Introduction

25

53

54

In the normal middle ear (ME) a pressure equilibrium with the ambient pressure must be maintained 26 in order to ensure an optimal sound transfer and normal hearing. This equilibrium is influenced by 27 several factors. One factor is the continuous bidirectional diffusion of gases between the ME cavity 28 and the mucosal blood vessels. This gas exchange normally leads to a net absorption of gas from the 29 ME cavity, which is counterbalanced by a gas supply from intermittent Eustachian tube openings 30 (Doyle, 2017; Gaihede et al., 2013; Sadé and Ar, 1997). Another factor is the displacement of the 31 tympanic membrane, which can counterbalance moderate pressure changes from either the ambient 32 atmosphere or from physiological effects with moderate inward and outward movements (Padurariu 33 et al., 2016; Sadé and Luntz, 1989). Finally, more studies have suggested that changes in the 34 volume of ME mucosa also can counterbalance changes in the ME pressure. Thus, small changes in 35 36 mucosal thickness over the large surface area of the mastoid air cell system (MACS) may have a high impact on the ME pressure (Andréasson et al., 1976; Cros et al., 2016; Gaihede et al., 2010; 37 Magnuson, 2003). 38 Histo-morphological differences have been found between the mucosa of the tympanic cavity (TC) 39 and that of the MACS, which have pointed to functional differences between the two compartments 40 that are relevant for the understanding of the ME physiology including its overall pressure 41 regulation. Thus, compared to the TC, the mucosa of the MACS has been observed with a shorter 42 epithelium, which can be flat (Ars et al., 1997; Lim, 1979; Tos, 1984), cuboidal (Ars et al., 1997), 43 or a mixture of both (Hentzer, 1970). The mucosa of the MACS has also been found to have a 44 significantly shorter distance between the blood vessels and the epithelial basal membrane, as well 45 as a higher density of blood vessels compared to the antero-inferior part of the TC. Together with 46 47 the large surface area relative to the volume of the MACS, these features have been suggested to represent an adaptation to an efficient gas exchange compared to the TC (Ars et al., 1997). 48 However, other authors have stated that the MACS only represents a passive buffer merely by 49 virtue of its larger volume compared to the TC (Alper et al., 2011; Sadé and Ar, 1997). 50 The TC mucosa has more types of epithelium, from stratified columnar with cilia to mono-layered 51 cuboidal and flat, but always with taller cells in the antero-inferior part, and shorter cells in the 52

postero-superior part (Ars et al., 1997; Hentzer, 1970; Palva et al., 1985; Sadé & Facs, 1966; Tos,

1984). Besides cilia, the TC mucosa may also contain secretory cells consistent with an immune

- defense and clearance of effusion including cellular debris (Ars et al., 1997; Hentzer, 1984; Sadé
- 56 and Facs, 1966; Shimada and Lim, 1972).
- Based on these histological differences, Ars et al. (1997) proposed a functional
- compartmentalization of the ME cavity at the inter-attico-tympanic diaphragm, which is a plane
- 59 through the TC extending between the level of the tensor tympani tendon and the posterior incudal
- ligament (Ars, 1998; Palva et al., 2001; Proctor, 1964). Thus, it has been suggested that the ME can
- be divided into a postero-superior compartment consisting of the attic, the antrum, and the MACS,
- which seems adapted to gas exchange, and the antero-inferior compartment of the TC, which may
- contribute primarily to clearance function and immune defense (Ars et al., 1997).
- The overall regulation of the ME pressure is of immense importance in clinical otology, where the
- development of under-atmospheric pressure challenges the normal auditory function as well as the
- surgical reconstruction of the ME; however, our basic understanding of these conditions is still
- 67 limited. Mathematical and experimental modelling have been employed to investigate the pressure
- regulation, but they require anatomical and physiological input variables, which have not been
- 69 directly available. For instance, models of gas exchange have often used the traditional ME
- 70 compartments of TC and MACS, while assuming a uniform histo-morphology (Ar et al., 2007;
- 71 Doyle, 2017; Fink et al., 2003; Kania et al., 2004; Kanick et al., 2005; Swarts et al., 2010) and
- approximating the ME diffusion distance to the thickness of the promontory mucosa (Ar et al.,
- 73 2007; Kanick et al., 2005; Yoon et al., 1990). In constructing such models, we need to know more
- about regional variations in the blood vessel density, diffusion distance, mucosa thickness, density
- of the lamina propria, and the surface area of active mucosa (Alper et al., 2017; Doyle, 2017;
- 76 Marcusohn et al., 2010; Swarts et al., 2010).
- Based on the limited understanding of the functional properties of the ME mucosa and the requests
- for detailed histo-morphometric parameters of the mucosa, we set out to investigate its regional
- 79 histological properties in archival histological sections from human temporal bones. Such structural
- properties may be closely related to the ME physiology, and thus, the overall pressure regulation of
- 81 the ME.

2. Materials and methods

83	2.1	Mate	rial
05	<i>-</i>	Mate	mu

82

- The study material consisted of an anonymized archive of autopsy material from the Laboratory for
- 85 Temporal Bone Histology, Department of Otorhinolaryngology, Head and Neck Surgery, Zürich
- 86 University Hospital, Switzerland. It was represented by 15 horizontally sectioned normal temporal
- bones of 4 female and 11 male cadavers, with a median age at death of 44 years (age range 21 to 89;
- 4 right and 11 left ears). The inclusion criteria were good tissue preservation and normal
- pneumatization of the MACS. For each temporal bone a series of between 10 and 40 histological
- slides were available. All these slides included areas from both the TC and the MACS along with
- 91 the inner ear. However, the MACS material was most variable among cases and always restricted to
- 92 sections through the lower level of the TC and above, and thus, the mastoid tip was not available for
- 93 analysis (Figure 1a).
- The slides had been prepared according to routine pathology procedures, which consisted of
- 95 formalin fixation, decalcification in nitric acid (HNO₃), celloidine embedding, serial sectioning at
- 96 20 μm thickness, and finally staining with haematoxylin and eosin (H&E) of every 10th or 20th
- 97 section (Merchant, 2010).

98 2.2 Sampling of mucosa

- The best preserved slides from each of the 15 cases were scanned by a NanoZoomer robotic
- scanning microscope (Hamamatsu, software version 2.5.88) with a source lens of 20 times and a
- further digital zoom of 2 times (resolution 0,227 µm/pixel). Whole slides were digitally archived as
- '.ndpi' files equivalent to a JPEG compression (Figure 1b). All samples were analyzed in
- Nanozoomer Viewer version 2.5.88 (Hamamatsu Photonics K.K.) at 40 times mode. On each slide
- the TC and MACS regions were identified; the length of each varied up to respectively 5 and 15
- mm. In order to standardize the different samples, it was decided to include four sampling regions
- from each TC and MACS. These regions consisted of respectively (1) anterior, (2) inferior, (3)
- posterior, and (4) superior TC, (5) antrum, as well as (6) superior, (7) central and (8) inferior
- MACS. They could be harvested on respectively (1) the most superior available slide through the
- TC containing the incudo-malleolar joint and antrum (including regions 6, 5 and 4); (2) the first
- available slide through the TC under the inter-attico-tympanic diaphragm (including regions 7, 3,

111	and 1), and (3) the most inferior available slide through the TC (including regions 8 and 2) (Figure
112	1a). Thus, a total of 120 regions, 8 from each of 15 temporal bones, were selected.
113	In each of the above mentioned regions, a cross-sectional mucosa sample completely attached to the
114	underlying bone was selected corresponding to a 1920 x 1016 pixels image (435 μm sample length)
115	(Figure 1c). Further, each sample was selected such that the tissue was intact without local
116	inflammatory changes. The clarity of the digital image at the sampling site because of the lens focus
117	at scanning was an additional selection factor narrowing down the sample eligibility within the
118	regions.
119 120	Please insert Figure 1 around here.
121	
122	2.3 Histo-morphometric investigations
123	A preliminary assessment of the mucosa morphology included observations of the type of the
124	superficial epithelium and the presence or absence of cilia (Figure 2, zones 2 and 8 vs. the others).
125	The columnar and the cuboidal types were noted as high epithelium, whereas the flat (squamous)
126	epithelium was noted as low. Moreover, the evaluation referred to the underlying lamina propria,
127	which contain the blood vessels as well as connective tissue fibers and cells (fibrocytes). This
128	included the degree of its organization, classified as either tight or loose; thus, it was tight when the
129	connective tissue fibers and fibrocytes nuclei had a parallel orientation without spacing in between,
130	and when the staining intensity was relatively close to that of the underlying bone (Figure 2, zones
131	4, 5). By contrast, the loose mucosa was characterized by less organized or irregular connective
132	tissue fibers, an aerated appearance of lamina propria and a lighter staining (Figure 2,zones 1-3, 6-
133	8). The occurrence of these three features was expressed as samples counts out of total number per
134	region. As the archival slides often presented differences in staining intensity and sectioning, all the
135	analyses were performed dynamically under different digital magnification lenses in order to
136	minimize interpretation errors.
137	
138	A quantitative analysis was carried out by using digital image analysis. The H&E mucosa sample
139	and the contained blood vessels were manually segmented to overcome the challenges of automatic
140	segmentation due to differences in staining and sectioning. The blood vessels were defined by their

141	endothelial cells and the presence of erythrocytes. Afterwards, the following morphological	
142	measurements were performed (Figure 1c):	
143	1) the mucosa thickness , for which there were made minimum eight measurements per sample,	
144	both through the centers of the blood vessel sections and in between the blood vessel sections	
145	(μm); the two types of measurements were annotated as two different categories and further	
146	compared;	
147	2) the blood vessel density , which was quantified by the density of the blood vessel sections	
148	within the mucosa cross-section; this was determined by the ratio of the summed area of the	
149	blood vessel sections related to the total mucosa cross-sectional area (%);	
150	3) the diffusion distance , which was measured by the shortest distance between the surface	
151	epithelial cells and the center of the major axis of the blood vessel sections (µm);	
152	4) the ratio of active mucosa , representing the proportion of surface mucosa crossed by underlying	ıg
153	blood vessels, was calculated by the sum of the horizontal projections of the blood vessel	
154	sections, normalized to the sample length of 435 μm;	
155	5) the diffusion distance-to-thickness ratio, was calculated to investigate whether there was any	,
156	region with a preferentially superficial expression of the blood vessels relative to their thickness	SS.
157	All the measurements were performed by the same observer (SP).	
158	2.4 Statistical analysis	
159	Measurements were exported from Nanozoomer Viewer as comma-separated-values (.csv) files for	r
160	analysis. The data of the five variables were first checked for normal distribution by Shapiro-Wilk	
161	test. Two variables failed to prove normal distribution (mucosa thickness and diffusion distance);	
162	however, their distributions (negatively skewed) were similar in shape. Variable transformations	
163	such as log-transformation were avoided due to difficulties in data interpretation. The five variable	S
164	were tested for the assumption for homogeneity of variances by Leneve's test and analyzed by one	;-
165	way ANOVA. A series of inter - regional comparisons was performed by post-hoc tests as follows	:
166	Tukey HSD test was applied to the variables meeting the assumption of equality of variance by	
167	Levene's test (blood vessel density and length of active mucosa), whereas Games-Howell test was	
168	used for the remaining variables failing to prove equality of variances.	
169	A paired <i>t</i> -test was also performed to compare the mucosa thickness across sections with underlying	ıg

blood vessel versus sections with no blood vessels.

170

171	Linear correlation analyses by Pearson test were applied to investigate correlations between any
172	variable and age, between thickness subgroups, and between thickness and diffusion distance
173	respectively.
174	Intra-observer reliability was calculated based on repeated measurements of 11 samples included in
175	the study belonging to 5 different cases and including 323 repeated measurements by the same
176	observer and over several months. The analysis was performed by a Chronbach's Alpha intraclass
177	correlation with a two-way mixed model and a consistency definition.
178	All statistical analyses were performed in IBM SPSS Statistics 24.
179	3. Results
180	There was a large variation in the histo-morphological appearance of the mucosa sampled from the
181	different regions of the ME with respect to its thickness and vascularization pattern, type of
182	epithelium and the density of the lamina propria as illustrated in Figure 2.
183	The epithelial layer of the mucosa varied from high i.e. columnar and cuboidal, to flat, as well as
184	from pseudo- or multi-layered to simple. High epithelium was encountered in $11-12$ out of 15
185	samples in each of the TC regions 1 and 2, in 3 – 6 out of 15 in the TC regions 3 and 4 and in
186	MACS region 5, as well as in $1-3$ samples out of 15 in each of the MACS regions 6, 7 and 8
187	(Figure 3a). In all the other samples, the epithelium was simple flat.
188	Cilia were encountered in all regions except 7; there were 4 to 5 samples out of 15 in each of TC
189	regions 1 and 2, 2 to 3 samples out of 15 in TC regions 3 and 4, and up to 1 sample out of 15 per
190	MACS region (Figure 3a). Goblet cells were only seen occasionally.
191	The lamina propria of the mucosa was loose in 8 samples out of 15 in each of the TC regions 1 - 3,
192	in 4 to 5 samples out of 15 in each of TC region 4 and MACS regions 5 and 6, and only in 2 to 3
193	samples out of 15 in the remaining MACS regions (Figure 3a).
194	
195	Please insert Figure 2 around here.
196	The means and standard deviations of the raw anatomical measurements are listed in Table 1.
197	Mucosa thickness of all samples varied generally between 5 and 212 μm (detailed values in Table
198	1 and Figure 3b) having decreasing values from region 1 in TC through regions 6 – 8 in MACS,

199	though with the lowest peak in region 6. Regions below the inter-attico-tympanic diaphragm i.e.
200	regions 1, 2 and 3 presented a significantly thicker mucosa compared to all the other regions ($p \le$
201	0.033 in all paired comparisons), except region 3, which had values very close to regions 4 and 5.
202	However, regions 3 – 5 still had significantly thicker mucosa compared to MACS regions 6 – 8 ($p \le$
203	0.035), which had values close to each other.
204	
205	Please insert <u>Table 1</u> around here.
206	
207	The thickness varied also for individual samples with the presence or absence of blood vessels. The
208	means of the mucosa thickness over blood vessel sections was higher than the means of the mucosa
209	thickness measured in the places not crossing over blood vessel sections with an average difference
210	of 4 μ m (SD 10) (paired <i>t</i> -test, N = 107, $p < 0.001$). There was though a strong correlation between
211	the two types of thickness measurements (Pearson $\rho = 0.94$, $p < 0.001$).
212	
213	The blood vessel density generally ranged between 2 and 44 %, but failed to show any statistically
214	significant difference by paired comparisons by regions ($p > 0.05$) (Table 1 and Figure 3c).
215	
216	
217	Please insert <u>Figure 3</u> around here.
218	
219	The diffusion distance showed a large variability on the range from 1 to 188 μm. The regions
220	below the inter-attico-tympanic diaphragm presented significantly longer diffusion distances (with p
221	\leq 0.013) than the above-regions, except that region 3 did not differ from regions 4, 5 and 8. In fact,
222	MACS regions 5 – 8 had very close value to the TC region 4. Moreover, there was a significant
223	correlation between the diffusion distance and the thickness of the mucosa layer (Pearson's ρ =
224	0.789, p < 0.001) (Table 1 and Figure 3d).
225	
226	The proportion of the active mucosa ranged between 56 to 100 % without any statistically
227	significant differences between regions.
228	
229	The thickness-relative diffusion distance varied between 8 and 97 % across all regions, and there
230	was a tendency of region 6 to express blood vessels closer to the mucosa top compared to the other

- regions, although the differences were significant only between region 6 and respectively regions 2
- 232 and 8 ($p \le 0.038$).
- 233 The intra-observer reliability of measurements was of 0.992 for single measures and of 0.996 for
- average measures (p < 0.001).
- 235 Correlation analysis between ages and any of the measured parameters yielded no statistically
- significant results (p > 0.05 for any parameter).

4. Discussion

237

- 238 The current study compared morphometric parameters of the ME mucosa in eight different regions
- of the ME, and found few statistically significant differences between the regions above and below
- the inter-attico-tympanic diaphragm related to the mucosa thickness and the diffusion distance.
- 241 Thus, our more extensive sampling of the MACS region provided results consistent with those of
- Ars et al. (1997). However, the means of the diffusion distance with values between 12 and 48 µm
- in any of the 8 sampled regions including the epithelium were generally lower than the averages of
- 244 40 μm and 71 μm for respectively postero-superior and antero-inferior compartments excluding the
- epithelium reported by Ars et al (1997). This difference may primarily reside in the fact that mucosa
- investigated in the present study was anchored to the bone that prevented it from curling and
- becoming thicker. Another possible factor may be a different degree of tissue shrinkage due to
- longer time of histological processing of the full mount archive materials used in the present study.
- In a histo-morphological study on 100-µm length promontory mucosa from normal ME's, Yoon et
- al. (1990) found an average thickness of 37.5 µm excluding the epithelial layer. This is in good
- agreement with the mean of 55 (SD 34) µm including the epithelial layer for region 2, which may
- be the closest sampled regions in the present study. Moreover, they reported an average blood
- vessel density of 12.8 %, which was also in quite good agreement with the mean of 15 % for the
- same region in the current study.
- Overall, the current results showing that the mucosa of regions above the inter-attico-tympanic
- diaphragm, having typically a one-layered flat epithelium and normally lacking cilia, seems to
- 257 correspond to the neural crest origin described by Thompson & Tucker (2013) in the mammalian
- attic. Together with a shorter diffusion distance, this part of the ME seems specialized in facilitating
- 259 the gas exchange. By contrast, the parts below the inter-attico-tympanic diaphragm, described as of

260	endodermal origin, is characterized by a better clearance and defense functionality (Thompson and
261	Tucker, 2013; Tucker et al., 2018).
262	4.1 Trans-mucosal gas exchange
263	The MACS regions presented a remarkably thinner mucosa and shorter diffusion distance compared
264	with the remaining regions. The ratio between the two parameters also indicated that the blood
265	vessel sections were situated most superficially in region 6. Together with the mostly flat
266	epithelium and a relatively loose lamina propria, this region looked like the ideal site for gas
267	exchange.
268	There was no evident correlation between the diffusion distance and the blood vessel density. The
269	latter suggested the highest blood supply in the central MACS (region 7), where the lamina propria
270	was predominantly dense. Moreover, it was noticed that the looser appearance of the lamina propria
271	associated negatively with the blood vessel density (Pearson's ρ = -0.71; p = 0.05), so that the
272	looser the appearance of the lamina propria, the lower the density of the blood vessels.
273	Generally, the regions situated under the inter-attico-tympanic diaphragm (regions 1, 2, and 3)
274	presented a looser lamina propria, as well as a thicker mucosa, and a higher ciliated epithelium,
275	compared with the regions above the diaphragm, in agreement with the previous studies (Ars et al.,
276	1997; Hentzer, 1984; Sadé and Facs, 1966; Shimada and Lim, 1972). Moreover, despite the thicker
277	mucosa and deeper blood supply in the sub-diaphragmatic compartment, the ratio between the
278	diffusion distance and the respective mucosa thickness as well as the proportion of active mucosa
279	and the cross-sectional density of the blood vessels are comparable among all the ME regions.
280	Thus, the sub-diaphragmatic compartment altogether appears also to be adapted to an efficient
281	trans-mucosal gas exchange. However, the muco-ciliary function in this region also involves
282	secretion of mucus; this forms a mucous blanket on the top of the epithelium, which may constrain
283	the gas exchange by acting as a relative barrier for the gas molecules.
284	Overall, the mucosa had a moderate vascularization. However, it was interspersed with segments of
285	more intense vascularization, where the blood vessels were more congested, the mucosa was
286	thicker, and the epithelium was higher with cilia. This has been noticed in both the TC and the
287	MACS, and it suggested either a localized defense reaction and/or sequelae of earlier episodes of
288	inflammation.

4.2 Mucosal congestion

289

The same structural properties of the mucosa that may enhance the physiological gas exchange –
vascularization, connective tissue that might change between loose and dense, together with a large
mucosal surface area of the MACS - may also point to another role of the mastoid mucosa in the
overall ME pressure regulation. Thus, it has been suggested that physiological changes in the
mucosal volume or thickness may influence or counter-balance changes in ME pressure effected by
changes in its congestion (Gaihede et al., 2010; Magnuson, 2003). This is almost similar to the
mechanism found in the nasal mucosa that controls the airflow through the nose by changes in the
mucosal congestion, which is efficiently managed by specialized venules or sinusoids
(Widdicombe, 1997). Such specialized venules have not been demonstrated in the ME, but
increasing its vascular congestion may still be likely to increase the mucosal thickness, and
ultimately the ME pressure (Figure 4). It follows that this mechanism would work in either
direction, so that increasing or decreasing the mucosal congestion would result in increasing or
decreasing the ME pressure.

Please insert Figure 4 around here.

It has been estimated that for normal sized ME's, a change in mucosal thickness of only 6 µm is enough to induce a pressure change of 1 kPa (Magnuson, 2003). In our samples, we found a mean difference of 4 µm (SD 10) between paired mucosa measurements (N = 107 pairs) in the presence versus absence of blood vessel sections. Since venules often are found collapsed in tissue samples, the difference between the presence and absence of venules may more likely represent the difference, whether the venules are blood-filled and visible, or collapsed and invisible. Thus, the difference in mucosal thickness of 4 µm found here may simply reflect changes in congestion, which are in the same order of magnitude (6 µm) as suggested for physiological pressure changes by Magnuson (2003). In diseased ME mucosa, which is relatively thicker, an apparently new blood vessel formation has been observed (Ar et al., 2007; Matanda et al., 2006). In addition, the lamina propria seems to become less organized with a looser appearance when the blood vessels become more prominent or congested. Figure 4 illustrates such a situation with rich blood filled venules and an expanded mucosa, where the looser appearance of the lamina propria may result from the expansion of the connective tissue. Thus, these changes may result from a response to counter-balance under-

atmospheric pressure related to inflammatory conditions, and it may also be attributed merely to the

321	fact that venules largely collapsed in normal tissue preparations become expanded. This becomes
322	evident at immunostaining of the mucosal blood vessels with CD31 staining, where a very high
323	density of mucosa blood vessels are visible including many collapsed vessels (Figure 5).
324	
325	Please insert Figure 5 around here.
326	
327	4.3. Cilia and metaplasia
328	The cilia distribution in the present samples generally agreed with earlier systematic studies, since
329	they were noticed to be most numerous in the inferior and anterior TC, and less frequent in superior
330	and posterior TC (Sadé and Facs, 1966; Shimada & Lim, 1972). However, in one case numerous
331	cilia were found in the antrum and MACS (Figure 6), which is in agreement with few of the
332	previous studies (Hentzer, 1970; Shimada & Lim, 1972). The presence of numerous cilia in the
333	lateral MACS in one of the best-preserved cases suggested that metaplasia might have occurred as
334	result of earlier ME pathology (Shimada & Lim, 1972).
335	
333	
336	Please insert <u>Figure 6</u> around here.
337	The currently used material underwent prolonged fixation and decalcification, which could
338	disintegrate cilia, thus, their frequency might be underestimated (Sadé & Facs, 1966). However,
339	cilia were also occasionally found in peri-antral MACS of more subjects of the present material
340	outside the samples used in our analysis. This may also suggest that antrum and the peri-antral
341	MACS can be a transition site between the clearance and gas exchange functions. Altogether, cilia
342	distribution and clearance may be dynamic and include the MACS probably in response to local
343	inflammatory factors (Sadé & Facs, 1966).
344	4.4 Strengths and limitations of the study
345	There are unique advantages of using this archival material such as the larger availability of whole
346	samples and serial sections; moreover the mucosa is much better protected against shrinkage and
347	curling due to its firm attachment onto the bone compared to separate mucosa pieces harvested
348	during the surgery. However, due to the anonymity of the material, we had no information about

10	anaifia ME discusses and the indoment of normality was subjective and only based on a normal
349	specific ME disorders, and the judgement of normality was subjective and only based on a normal
350	appearance of the mucosa and the MACS pneumatization.
351	One specific aspect of archive materials is that they are usually only available in H&E staining and
352	embedded often in celloidine. While the latter offers a very good morphological preservation, the
353	H&E staining gives a good overview on the tissue composition. However, it makes the blood vessel
354	identification more challenging, especially if they are collapsed and emptied of blood. A special
355	marker for endothelial cells would highlight them and this would be an advantage for an automatic
356	segmentation of the digital images (Figure 5), whereas a safe quantitative analysis of the H&E
357	samples requires a time-consuming analysis slide-by-slide by a pathologist.
358	Another limitation is that the inferior-most sections of the mastoid are missing in this analysis,
359	providing an incomplete image. This may become the object of further studies, where the whole
360	mastoid will be harvested and prepared histologically.
361	The study is also limited by the manual method, which was not favorable to a quantitative
362	measurement of the parameters in all the mucosa available, but rather to a sample-based design. A
363	systematic study on the effect of changing samples was not performed. However, it could
364	occasionally be noticed that by replacing a sample within a region did not affect the levels of
365	significance. This might be assumed to the relatively low rate of statistically significant differences
366	of the measured parameters among the regions.
367	A known issue of morphological analyses is the possible bias induced by preparation-related
368	shrinkage. The current study was performed in a comparative manner, so an eventual shrinkage bias
369	should be relatively the same in all the sample groups. However, if the results should be used in a
370	mathematical model, correction would be necessary considering that the underlying bone might
371	shrink about 6 %, and the mucosa may also follow this phenomenon (Buytaert et al., 2014).
372	The present study has been limited by the planimetric design of the sampling, which may
373	correspond to screenshots through the mastoid mucosa. In vivo, mucosa is subject to dynamic
374	behavior regulated by chemical mediators with effects on blood flow and blood vessel permeability,
375	which may allow for large adaptive variations. Moreover, the longitudinal blood vessel sections and
376	the diffusion distances cannot be considered absolute values, but rather relative values dependent on
377	the angle of sectioning at its time. The blood vessel sections may represent a cut through the most
378	central section or just through the endothelial wall. Thus, when the blood vessels are just identified

379	by their endothelial cells, they may represent only the wall of a blood-filled vessel or a collapsed
380	blood vessel. A clear judgment was not possible due to the large cutting steps to the next available
381	section, which was often 200 μm or more, clearly larger than the capillary or venule cross-diameter.
382	Future studies with systematic application of immuno-histochemical staining would offer a more
383	detailed investigation of the mucosa samples including the vascular density by CD31 as specific
384	marker of the endothelial cells (Figure 5); however, this demands paraffin-embedded tissue
385	specimens. We have attempted this in a series of cases, but a longer decalcification process also
386	lead to problems with the quality of the subsequent staining of the tissue samples. Improved
387	techniques are needed, where for instance smooth muscle fibers within the lamina propria of the
388	blood vessels as well as neural fiber components may be detected by immuno-staining. This may
389	further elucidate the functional properties of the mucosa with regard to the possibility of a neural
390	control of changes in its perfusion and congestion. Such findings may point to an overall active role
391	of the mucosa in the ME physiology and pressure regulation, and should be aimed for in future
392	studies.
393	Conclusion
394	The histomorphometric variables provided useful measures for detailed ME modeling including the
395	mucosa thickness, the diffusion distance, and the active mucosal surface area. Since the assessment
396	of the mucosal perfusion is impossible to obtain with current techniques, the density of the blood
397	vascals may serve as an indirect measure of the mucosal blood supply
	vessels may serve as an indirect measure of the mucosal blood supply.
398	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances
398 399	
	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances
399	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose
399 400	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange.
399400401	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange. However, the relatively uniform blood vessel density and proportion of active mucosa suggest that
399400401402	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange. However, the relatively uniform blood vessel density and proportion of active mucosa suggest that all ME regions may be involved in gas exchange. Moreover, a potential role in pressure regulation
399 400 401 402 403	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange. However, the relatively uniform blood vessel density and proportion of active mucosa suggest that all ME regions may be involved in gas exchange. Moreover, a potential role in pressure regulation by changes in mucosa congestion is also suggested based on a significant difference in mucosa
399 400 401 402 403 404	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange. However, the relatively uniform blood vessel density and proportion of active mucosa suggest that all ME regions may be involved in gas exchange. Moreover, a potential role in pressure regulation by changes in mucosa congestion is also suggested based on a significant difference in mucosa thickness depending on the presence or absence of underlying blood vessels. Thus, the size of the
399 400 401 402 403 404 405	Regions of antero-inferior TC presented significantly thicker mucosa and longer diffusion distances from blood vessels to surface than the than the regions of the remaining TC and MACS, whose shorter diffusion distances and much larger mucosa surface area should facilitate gas exchange. However, the relatively uniform blood vessel density and proportion of active mucosa suggest that all ME regions may be involved in gas exchange. Moreover, a potential role in pressure regulation by changes in mucosa congestion is also suggested based on a significant difference in mucosa thickness depending on the presence or absence of underlying blood vessels. Thus, the size of the MACS surface area contributes to its efficacy in gas exchange and pressure regulation via changes

409	density, and blockage of the inter-attico-tympanic diaphragm including dysfunction of the
410	Eustachian tube, the two compartments may become totally isolated gas pockets, which may reach
411	neither a balance with each other, nor with the ambient pressure, and thus, throwing the ME in the
412	vicious circle of underpressure.
413	Acknowledgements:
44.4	The Obel Femily Foundation has mayided financial symmett for this work. Duefessor Syand
414	The Obel Family Foundation has provided financial support for this work. Professor Svend

Birkelund, Department of Health Science and Technology, Aalborg University, has offered facilities of light microscopy for slide selection. Furthermore, Professor Torben Moos, Department of Health Science and Technology, Aalborg University, facilitated immune-staining with CD31 in his laboratory. Raluca Maltesen, post-doc, Aalborg University Hospital, provided a valuable help with the revision of the statistical analyses.

420

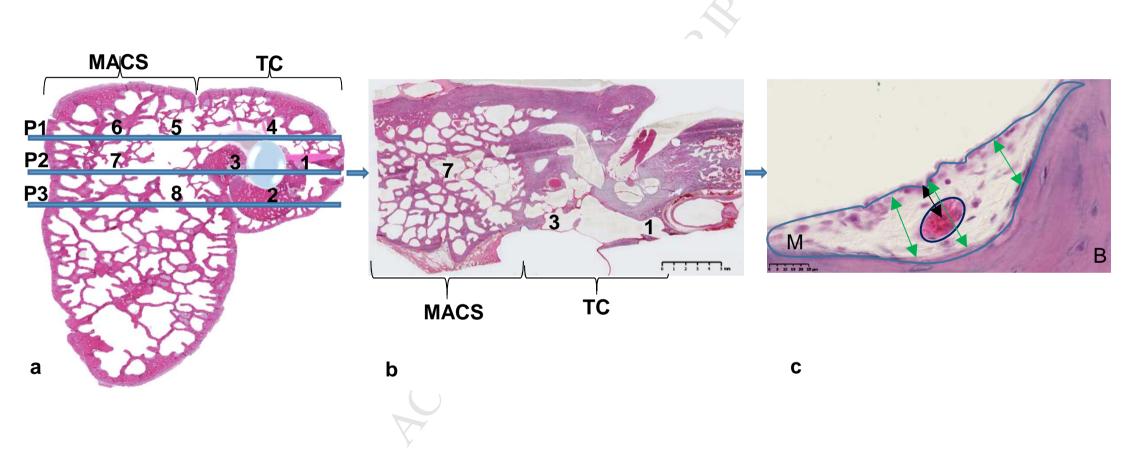
421 Reference list

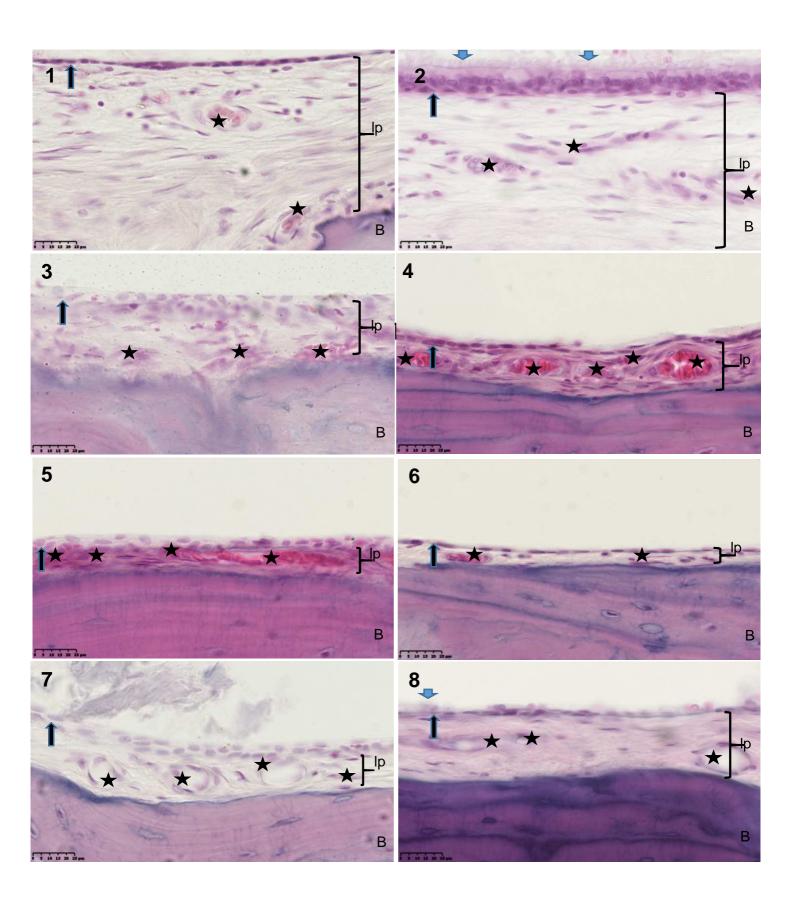
- Alper, C.M., Kitsko, D.J., Swarts, J.D., Martin, B., Yuksel, S., Cullen Doyle, B.M., Villardo,
- R.J.M., Doyle, W.J., 2011. Role of the mastoid in middle ear pressure regulation. Laryngoscope
- 424 121, 404–408. doi:10.1002/lary.21275
- 425 Alper, C.M., Luntz, M., Takahashi, H., Ghadiali, S.N., Swarts, J.D., Teixeira, M.S., Csákányi, Z.,
- Yehudai, N., Kania, R., Poe, D.S., 2017. Panel 2: Anatomy (Eustachian Tube, Middle Ear, and
- 427 Mastoid—Anatomy, Physiology, Pathophysiology, and Pathogenesis). Otolaryngol. Neck Surg.
- 428 156, S22–S40. doi:10.1177/0194599816647959
- Andréasson, L., Ingelstedt, S., Ivarsson, A., Jonson, B., Tjernström, Ö., 1976. Pressure-dependent
- variation in volume of mucosal lining of the middle ear. Acta Otolaryngol 81, 442–9.
- 431 Ar, A., Herman, P., Lecain, E., Wassef, M., Huy, P.T.B., Kania, R.E., 2007. Middle ear gas loss in
- inflammatory conditions: The role of mucosa thickness and blood flow. Respir. Physiol. Neurobiol.
- 433 155, 167–176. doi:10.1016/j.resp.2006.04.011
- Ars, B., Wuyts, F., Van de Heyning, P., Miled, I., Bogers, J., Van Marck, E., 1997.
- 435 Histomorphometric study of the normal middle ear mucosa. Preliminary results supporting the gas-
- exchange function in the postero-superior part of the middle ear cleft. Acta Otolaryngol. 117, 704–
- 437 7.
- 438 Ars, B., 1998. Middle Ear Cleft: Three Structural Sets, Two Functional Sets.
- 439 Otorhynolaryngological Nov. 8, 273–276.
- Buytaert, J., Goyens, J., De Greef, D., Aerts, P., Dirckx, J., 2014. Volume shrinkage of bone, brain
- and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy
- 442 (LSFM). Microsc. Microanal. 20, 1208–1217. doi:10.1017/S1431927614001329
- 443 Cros, O., Knutsson, H., Andersson, M., Pawels, E., Borga, M., Gaihede, M., 2016. Determination of
- the mastoid surface area and volume based on micro-CT scanning of human temporal bones.
- Geometrical parameters depend on scanning resolutions. Hear. Res. 340, 127–134.
- 446 doi:10.1016/j.heares.2015.12.005
- Doyle, W.J., 2017. A formal description of middle ear pressure-regulation. Hear. Res. 354, 73–85.
- 448 doi:10.1016/j.heares.2017.08.005

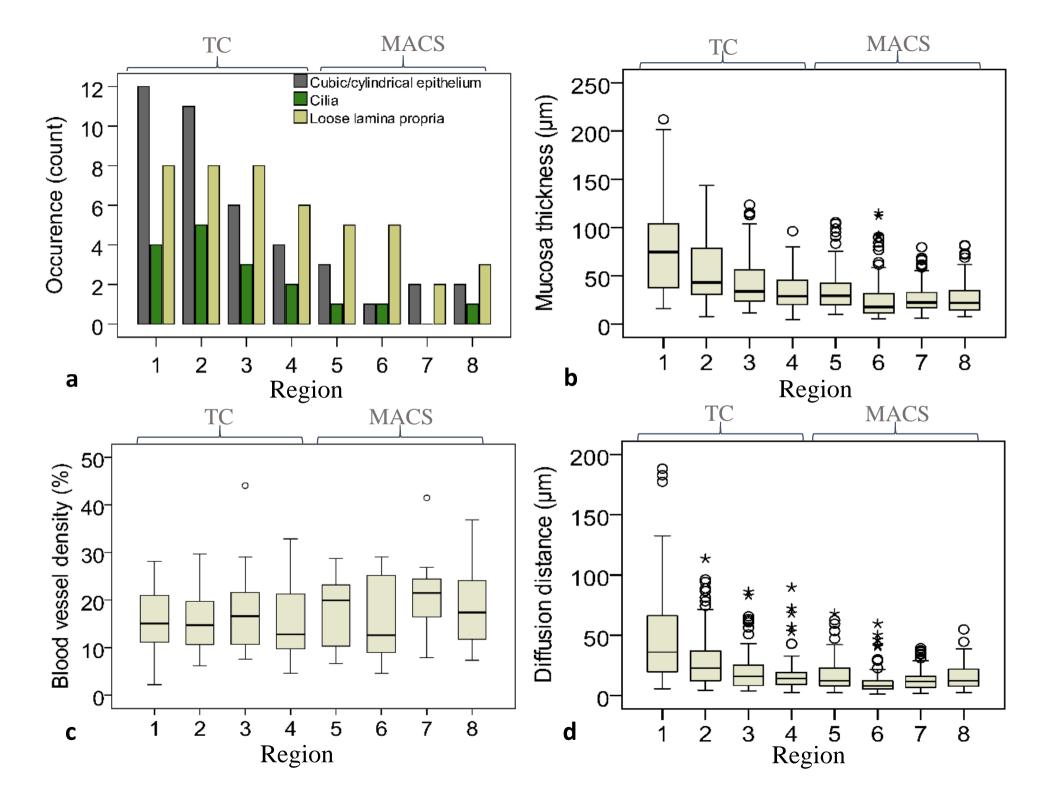
- Fink, N., Ar, A., Sadé, J., Barnea, O., 2003. Mathematical analysis of atelectasis formation in
- middle ears with sealed ventilation tubes. Acta Physiol. Scand. 177, 493–505. doi:10.1046/j.1365-
- 451 201X.2003.01096.x
- Gaihede, M., Dirckx, J.J.J., Jacobsen, H., Aernouts, J., Søvsø, M., Tveterås, K., 2010. Middle ear
- pressure regulation--complementary active actions of the mastoid and the Eustachian tube. Otol.
- 454 Neurotol. 31, 603–11. doi:10.1097/MAO.0b013e3181dd13e2
- Gaihede, M., Padurariu, S., Jacobsen, H., De Greef, D., Dirckx, J.J.J., 2013. Eustachian tube
- 456 pressure equilibration. Temporal analysis of pressure changes based on direct physiological
- recordings with an intact tympanic membrane. Hear. Res. 301, 53–59.
- 458 doi:10.1016/j.heares.2013.01.003
- Hentzer, E., 1970. Histologic studies of the normal mucosa in the middle ear, mastoid cavities and
- Eustachian tube. Ann. Otol. Rhinol. Laryngol. 79, 825–33.
- Hentzer, E., 1984. Ultrastructure of the middle ear mucosa. Acta Otolaryngol. Suppl. 414, 19–27.
- doi:10.3109/00016488109138487
- Kania, R., Portier, F., Lecain, E., Marcusohn, Y., Ar, A., Herman, P., Tran Ba Huy, P., 2004.
- Experimental model for investigating trans-mucosal gas exchanges in the middle ear of the rat. Acta
- 465 Otolaryngol. 124, 408–410 3p. doi:10.1080/00016480310000683
- Kanick, S.C., Doyle, W.J., Ghadiali, S.N., Federspiel, W.J., 2005. On morphometric measurement
- of oxygen diffusing capacity in middle ear gas exchange. J. Appl. Physiol. 98, 114–119.
- 468 doi:10.1152/japplphysiol.00203.2004
- Lim, D.J., 1979. Normal and pathological mucosa of the middle ear and Eustachian tube. Cinical
- 470 Otolaryngol. 4, 213–34.
- 471 Magnuson, B., 2003. Functions of the mastoid cell system: auto-regulation of temperature and gas
- 472 pressure. J. Laryngol. Otol. 117, 99–103. doi:10.1258/002221503762624512
- 473 Marcusohn, Y., Ar, A., Dirckx, J.J.J., 2010. Perfusion and diffusion limitations in middle ear gas
- exchange: The exchange of CO2 as a test case. Hear. Res. 265, 11–14.
- 475 doi:10.1016/j.heares.2010.03.078

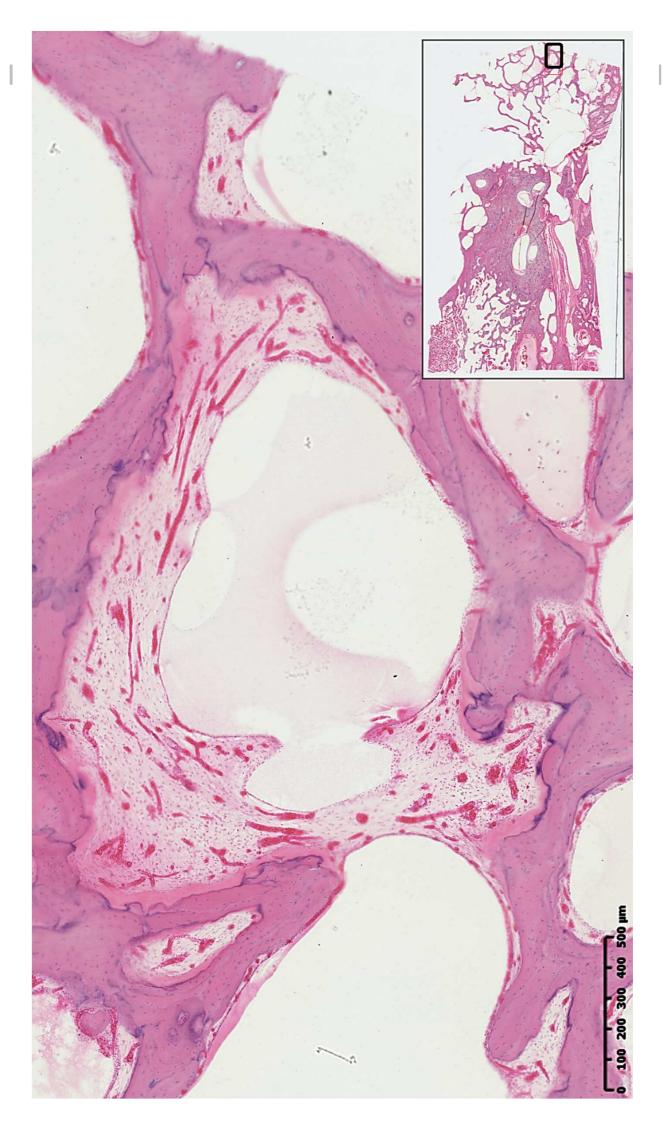
- 476 Matanda, R., Van de Heyning, P., Bogers, J., Ars, B., 2006. Behaviour of middle ear cleft mucosa
- during inflammation: histo- morphometric study. Acta Otolaryngol. 126, 905–9.
- 478 doi:10.1080/00016480600606616
- Merchant, S.N., 2010. Methods of removal, preparation, and study, in: Merchant, S.N., Nadol, J.B.
- 480 (Eds.), Schuknecht's Pathology of the Ear. People's Medical Publishing House-USA, pp. 3–51.
- Padurariu, S., de Greef, D., Jacobsen, H., Nlandu Kamavuako, E., Dirckx, J.J., Gaihede, M., 2016.
- Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure
- fluctuations during elevator motion. Hear. Res. 340. doi:10.1016/j.heares.2015.12.004
- Palva, T., Lehto, V., Virtanen, I., Makinen, J., 1985. Junctions of Squamous Epithelium with
- 485 Middle Ear Mucosa 297–304.
- Palva, T., Ramsay, H., Northrop, C., 2001. Color atlas of the anatomy and pathology of the
- 487 epitympanum. Karger AG, Basel (Switzerland).
- Proctor, B., 1964. The development of the middle ear space and their surgical significance. J.
- 489 Laryngol. Otol. 78, 631–48.
- 490 Sadé, J., Facs, A., 1966. Middle ear mucosa. Acta Otolaryngol 84, 137–43.
- Sadé, J., Ar, A., 1997. Middle ear and auditory tube: Middle ear clearance, gas exchange, and
- 492 pressure regulation. Otolaryngol. Neck Surg. 116, 499–524. doi:10.1016/S0194-59989770302-4
- Sadé, J., Luntz, M., 1989. Gaseous pathways in atelectatic ears. Ann Otol Rhinol Laryngol 98, 355–
- 494 8. doi:10.1177/000348948909800508
- Shimada, T., Lim, D.J., 1972. Distribution of ciliated cells in the human middle ear. Ann Otol 81,
- 496 203–11.
- Swarts, J.D., Cullen Doyle, B.M., Alper, C.M., Doyle, W.J., 2010. Surface area-volume
- 498 relationships for the mastoid air cell system and tympanum in adult humans: Implications for
- 499 mastoid function. Acta Otolaryngol. 130, 1230–1236. doi:10.3109/00016489.2010.480982
- Thompson, H., Tucker, A., 2013. Dual origin of the epithelium of the mammalian middle ear.
- 501 Science (80-.). 339, 1453–1456.
- Tos, M., 1984. Anatomy and histology of the middle ear. Clin Rev Allergy 2, 267–284.

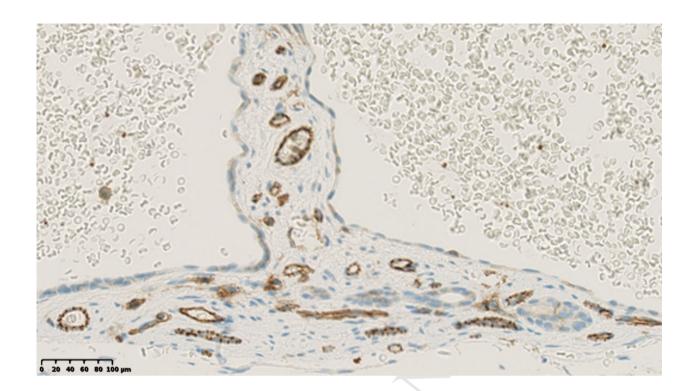
503 504 505	Tucker, A.S., Dyer, C.J., Romero, J.M.F., Teshima, T.H.N., Fuchs, J.C., 2018. Mapping the distribution of stem / progenitor cells across the mouse middle ear during homeostasis and inflammation. STEM CELLS Regen. 145, 1–9. doi:10.1242/dev.154393
506 507	Widdicombe, J., 1997. Microvascular anatomy of the nose. Allergy Eur. J. Allergy Clin. Immunol. 52, 7–11. doi:10.1111/j.1398-9995.1997.tb04877.x
508 509	Yoon, T.H., Schachern, P.A., Paparella, M.M., Lindgren, B.R., 1990. Morphometric studies of the continuum of otitis media.
510	

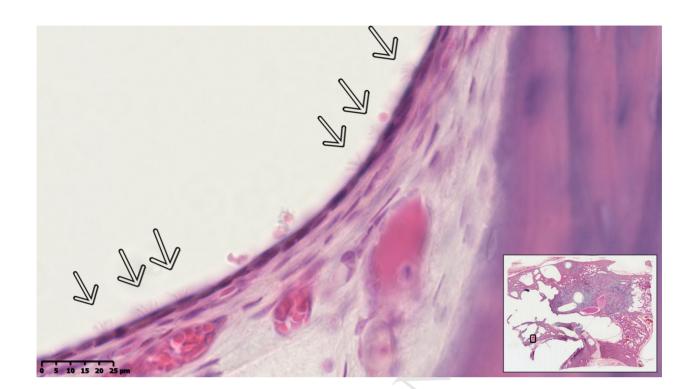

Figure captions:


511


- Figure 1. (a) Sagittal representation of the middle ear, where the sampling planes and regions are
- represented. TC = tympanic cavity; MACS = mastoid air cells system. The sampled regions are: (1)
- anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior
- 515 MACS; (7) central MACS; (8) inferior MACS; (b) Example of a horizontal slide including three
- regions of mucosal sampling (slide 2; digital lens 0.36; scale bar = 5 mm). (c) Example of histo-
- morphometric measurements in a mucosa (M) sample, oriented upwards, whereas the bone (B) is at
- the bottom of the image. The green lines are thickness measurements, the black line represents the
- diffusion distance, and the dark blue ellipse represents a blood vessel section. Sample region 5;
- H&E, magnification lens 40x; scale bare = $25 \mu m$.
- Figure 2. Samples of mucosa from respectively each of the eight regions defined in Figure 1. All
- samples belong to the same ear (case 5, H&E) and at the same magnification (digital lens 80x).
- Mucosa is oriented with the air interface upwards, and attached to the underneath bone (B). Notice
- much thicker mucosa in zones 1 and 2 compared to the others regions. Mucosa elements referred in
- 525 the study are emphasized as follows: the epithelium of each sample is marked with black arrows,
- the lamina propria (lp) is marked with braces, the blood vessels are marked with stars, and cilia µm
- are marked with blue arrows. In the illustrated case, the epithelium of regions 1, 4, 6, and 8 was
- considered low, whereas in the other regions it was considered high; mucosa of regions 4, 5 and 8
- was considered tight, whereas in the other regions it was considered loose. Scale bars = 25.
- Figure 3. Summary of main morphological and morphometric analyses of the mucosa in 8 regions
- of 15 normal ME's. Panel (a) represents the proportion of samples per region presenting each
- mentioned feature. The three boxplot panels represent the middle 50% of the morphological
- measurements. The horizontal lines within are the medians, and the whiskers represent the 95%
- confidence intervals. The small circles represent the outliers within 1.5 interquartile range, whereas
- the stars indicate the outliers beyond this limit.
- Figure 4. Mastoid air cell with expanded/looser mucosa and many distended venules. The sampling
- site is marked within a black box on the slide map to the right (case 6, magnification lens 5x; scale
- 538 bar = $500 \mu m$).
- Figure 5. MACS mucosa stained with CD31 marking endothelial cells of blood vessels in brown.
- Notice the contour of several blood vessels with the lumen almost collapsed. These blood vessels
- may be concealed in H&E stained preparations (magnification lens 20x; scale bar = $100 \mu m$).
- Figure 6. Cilia within lateral MACS represented with arrows (Case 8, magnification lens 80x). The
- sampling site is marked within a black box on the overview map to the right. Scale bare = $25 \mu m$.


Tabel 1. Distributions of raw morphometric parameters in eight sampled regions of the middle ear mucosa (N = 15). Results are expressed as rounded mean (standard deviation). The last column presents the level of significance for oneway ANOVA test for differences among regions with respect to each parameter


	Middle ear region								ANOVA
	1	2	3	4	5	6	7	8	<i>p</i> -value
Mucosa thickness	84 (55)	55 (34)	44 (28)	35 (29)	36 (21)	26 (23)	27 (15)	27 (16)	< 0.001
(µm)									
Blood vessel density	15 (8)	15 (7)	18 (10)	16 (9)	18 (8)	16 (9)	21 (8)	18 (8)	0.518
(%)									
Diffusion distance	48 (40)	29 (23)	20 (17)	17 (15)	18 (13)	12 (12)	14 (8)	15 (10)	< 0.001
(µm)									
Active mucosa (%)	66 (26)	59 (19)	61 (23)	55 (19)	61 (24)	49 (25)	58 (19)	53 (22)	0.481
Diffusion distance/	50 (23)	51 (20)	44 (20)	48 (18)	48 (20)	43 (16)	49 (14)	51 (16)	0.036
thickness (%)									



Highlights

- Mucosa morphology differs between antero-inferior and postero-superior middle ear
- Mucosa morphology is divided by the inter-attico-tympanic diaphragm
- The postero-superior mucosa is thinner with shorter diffusion distances for gases
- The blood vessel density is approximately uniform across the middle ear regions
- Mucosa structure of the main middle ear regions seems efficient for gas diffusion