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Background. Viruses and other infectious agents cause more than 15% of human cancer cases. High-throughput sequencing-
based studies of virus-cancer associations have mainly focused on cancer transcriptome data.

Methods. In this study, we applied a diverse selection of presequencing enrichment methods targeting all major viral groups, 
to characterize the viruses present in 197 samples from 18 sample types of cancerous origin. Using high-throughput sequencing, we 
generated 710 datasets constituting 57 billion sequencing reads.

Results. Detailed in silico investigation of the viral content, including exclusion of viral artefacts, from de novo assembled contigs 
and individual sequencing reads yielded a map of the viruses detected. Our data reveal a virome dominated by papillomaviruses, 
anelloviruses, herpesviruses, and parvoviruses. More than half of the included samples contained 1 or more viruses; however, no link 
between specific viruses and cancer types were found.

Conclusions. Our study sheds light on viral presence in cancers and provides highly relevant virome data for future reference.
Keywords.  cancer; enrichment; high-throughput sequencing; human; virome.

Globally, more than 15% of human cancer cases occurring in 
2008 could be ascribed to infectious agents classified as car-
cinogenic according to the International Agency for Research 
on Cancer (IARC) [1]. This excludes viruses and cancer sites 
for which evidence of carcinogenicity is weaker. The IARC-
classified carcinogenic agents include 6 types of viruses: 
hepatitis B and C virus, high-risk human papillomaviruses 
(HPVs), human herpesvirus (HHV) 4 (Epstein-Barr virus), 

human T-cell lymphotropic virus type, and HHV 8 (Kaposi’s 
sarcoma-associated herpesvirus). Hepatitis B virus-associated 
hepatocellular carcinoma and HPV-associated cervical and anal 
cancer can be prevented through vaccination [2, 3]. Apart from 
both firmly and less firmly established associations, additional 
cancers might be caused by either known or unknown viruses 
and could therefore be preventable.

With the introduction of high-throughput sequencing, de-
scription of the virome of various tissues of both healthy and 
diseased individuals has accelerated [4–13], generating im-
portant knowledge about the viral species hosted by humans. 
Application of high-throughput sequencing led to the dis-
covery of Merkel cell polyomavirus (MCPyV) suspected of 
causing Merkel cell carcinomas [14], and, in later years, large-
scale investigations of viral expression in high-throughput ri-
bonucleic acid (RNA)-sequencing data and of viral sequences 
in whole genomes or exomes based on data from The Cancer 
Genome Atlas have been conducted [15–17]. These studies 
have confirmed established virus-cancer associations and raised 
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questions about hypothesised associations, but thus far they 
have not revealed novel associations.

Infection with carcinogenic viruses is common but only 
rarely leads to cancer. Upon transformation, the virus persists 
intracellularly as an episome or is integrated in the host cell ge-
nome [18]. To target the multiple possible types and stages of 
viral genomes, we applied sensitive presequencing methods for 
enrichment of virions [19], enrichment of circular deoxyribo-
nucleic acid (DNA) genomes [20], and for capturing retroviral 
[21] or vertebrate viral sequences [22]. The methods were ap-
plied, along with high-throughput sequencing of total DNA and 
RNA, to 197 samples from 18 cancer types (including biopsies, 
bone marrow, and urine samples) as well as samples of ascites, 
blood from colon cancer patients, and a few healthy control 
samples. Targeting a breadth of viruses, we present a compre-
hensive characterization of the virome of the included cancer 
samples, thus expanding the reference catalog of the viruses 
found in these cancers.

METHODS

Samples and Datasets

The present study includes 760 datasets generated from 197 
patient samples and 50 nontemplate controls. Some of the 
datasets were included in previous studies (see Supplementary 
Methods). Viral sequence contamination in the included sam-
ples is explored in detail in a separate study [23]. The descrip-
tion of all samples and laboratory and bioinformatic methods 
applied are provided here for the sake of completeness.

Ethics Statement

Human sample collection, handling, and analysis were per-
formed under ethical protocol H-2-2012-FSP2 (Regional 
Committee on Health Research Ethics) and case no. 1304226 
(National Committee on Health Research Ethics). In accord-
ance with National legislation (Sundhedsloven), all human 
samples were processed anonymously.

Patient Samples

All samples are listed in Table 1. Detailed information regarding 
samples and datasets can be found in Supplementary Methods 
and Supplementary Table S1.

Total Deoxyribonucleic Acid Analysis

Total DNA was extracted using the QIAamp DNA Mini kit 
(QIAGEN). The DNA libraries were prepared from 1  μg of 
DNA using either the TruSeq DNA protocol (PE-940-2001) 
(Illumina) or an in-house protocol [24] using NEBNext re-
agents (E6070) (New England BioLabs).

Total Ribonucleic Acid (RNA) and Messenger RNA Analysis

Total RNA was extracted using the High Pure Viral RNA kit 
(Roche), RNeasy Mini Kit (QIAGEN), or QIAamp DNA Mini 
Kit. Messenger RNA (mRNA) was extracted using Dynabeads 

mRNA Direct Purification Kit (Invitrogen). The RNA libraries 
were prepared using ScriptSeq v2 RNA-Seq or ScriptSeq 
Complete Gold Library Preparation Kit (Epicentre). See 
Supplementary Methods for details regarding extraction kits, 
ribosomal RNA depletion, and library preparation kits used.

Circular Deoxyribonucleic Acid Enrichment

Enrichment of small circular DNA molecules was performed on 
total DNA extracts based on phi29 DNA polymerase-mediated 
amplification of exonuclease-treated extracts as previously de-
scribed with minor modifications [20]. Two micrograms of 
DNA was fragmented using the Bioruptor NGS (Diagenode) 
to an average length of 300 base pairs (bp). Libraries were pre-
pared as described for total DNA analysis.

Retrovirus Capture

Two versions of retrovirus capture were applied. Retrovirus 
capture v1 includes 118 retroviral reference sequences [21] 
(Supplementary Table S2). Capture was performed with 1  μg 
of single indexed libraries prepared from total DNA or mRNA 
(see above) according to the SeqCap EZ library SR protocol 
(Roche NimbleGen) (capture dataset numbers between s0001 
and s1112 [Supplementary Table S1]). Retrovirus capture v2 in-
cludes 98 retroviral reference sequences (Supplementary Table 
S2). Capture was performed with 500 μg of double-indexed li-
braries prepared from total DNA according to the MYcroarray 
MYbaits protocol version 2.3.1 with some modifications ac-
cording to protocol version 1.3.8 (separating the beads from 
the eluted captured library and addition of neutralization buffer 
to the supernatant) (capture dataset numbers s1431–s1440 
[Supplementary Table S1]).

Vertebrate Virus Capture Deoxyribonucleic Acid

The vertebrate virus capture probe design includes 2339 
sequences representing viral species found in vertebrates, ex-
cluding fish [22] (Supplementary Table S2). Sequences rep-
resenting (MCPyV), KI polyomavirus, and HHV5 were not 
included in genomes used for probe design. SeqCap EZ hy-
bridization probes were designed and synthesized by Roche 
NimbleGen. Capture was performed on double-indexed li-
braries prepared from total DNA extracted using DNeasy Blood 
and Tissue (QIAGEN) or QIAamp DNA Mini kit. Libraries were 
prepared as described for total DNA analysis. Viral sequences 
were captured from 1 μg of pooled libraries as described in [22] 
with the following modifications: hybridization buffer without 
10% formamide was used, and the amplified captured libraries 
were purified using QIAquick PCR Purification Kit (QIAGEN).

Enrichment of Virion-Associated Deoxyribonucleic Acid and Ribonucleic 

Acid 

Samples used for enrichment were fresh frozen after collec-
tion with no addition of nucleic acid preservers. Enrichment 
was performed as previously described [25]. The DNA libraries 
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were prepared using the Nextera or Nextera XT DNA Sample 
Preparation Kit (Illumina) and RNA libraries were prepared 
using ScriptSeq v2 RNA-Seq Library Preparation Kit (Epicentre), 
and both subsequently purified using the Agencourt AMPure 
XP PCR purification system (Beckman Coulter). In cases of 
insufficient amplification, libraries were reamplified using 
AccuPrime Pfx DNA polymerase (Life Technologies) and P5 
and P7 primers.

Sequencing and Data Analysis

Paired-end sequencing (2  ×  100  bp) was performed on the 
Illumina HiSeq 2000 platform. The sequence analysis is de-
tailed in the Supplementary Methods. In brief, reads were 
trimmed of adapter sequences and overlapping read pairs were 
merged. Human sequences were depleted by mapping to the 
human genome, and low-complexity regions were filtered out. 
De novo assembly was achieved using IDBA [26]. The reads 
and contigs were aligned to the NCBI nucleotide database (nt) 
using BLASTn (megablast) [27] with a cutoff e-value of 10–3. 
The best hit was defined based on highest bit-score. Regions 
in the contigs having no BLASTn hits were aligned against the 
NCBI nonredundant protein database (nr) using BLASTx or 
DIAMOND [28] with a cutoff e-value of 10–3. Individual reads 
for s1431–s1523 were not blasted.

Investigation of Human Viral Hits

To exclude false positives, all BLAST/DIAMOND hits to 
human viruses were evaluated in silico and categorized as con-
firmed viral hits or artefacts (see Supplementary Methods). 
For the contigs, hits were evaluated manually by alignment 
using Geneious software or web-based reblast. For the reads, 
hits were evaluated by mapping to a database of 343 selected 
viral reference genomes. The alignments were visualized using 
Circos [29]. All plots were visually inspected. Hits arising from 
bleedover [30, 31] were removed from both mapping results 
and contigs. For the read mapping, a lower cutoff of 180 (205 
for human immunodeficiency virus [HIV]) bases covered was 
applied.

Co-occurrence Network

Co-occurrence patterns among species occurring in 4 or 
more samples were investigated by performing Spearman’s 
rank correlations and network inference on the read map-
ping data. Human papillomaviruses and anelloviruses un-
classified at species level were evaluated at strain level. Such 
strains, occurring in fewer than 4 samples, were disregarded 
as well, leaving only 2 anellovirus strains unclassified at spe-
cies level (here termed Unclassified Anellovirus 1 and 2). 
Nontemplate controls were also excluded. Correlations were 
performed in vegan [32], and the network was constructed 
using igraph [33]. Networks were visualized using Cytoscape 
(v.3.6.0) [34].

Statistics

Comparison of the proportions of virus-positive samples was 
performed using Fisher’s exact test, with a significance level of 
0.05. For the co-occurrence network, co-occurrences were con-
sidered significant when Spearman’s correlation coefficient was 
>0.20 (P < .05) [35].

Data Availability

Sequencing data depleted of human sequences is deposited 
at the NCBI sequence read archive (BioProject accession no. 
PRJNA416252). According to Danish law, publication of human 
sequences is not permitted without consent, which cannot be 
obtained, because all samples were anonymized. The complete 
coding sequences of HPV strains CGG5-287s1382c000001 and 
CGG5-301s0532c000007 and 6 contigs representing shorter ge-
nome fragments of novel HPV types are uploaded to GenBank 
(accession numbers MG869604–MG869611).

RESULTS

Investigation of Human Viral Hits

We applied multiple viral enrichment methods (Figure 1) to 197 
samples of diverse cancer types (Supplementary Table S1), re-
sulting in 710 datasets (Table 1) and 50 nontemplate (negative) 
controls constituting >57 billion Illumina HiSeq read pairs, with 
the median number of reads per dataset ranging from 30.5 to 
169 million, depending on the method applied (Supplementary 
Table S3). De novo assembly of the nonhuman fraction of the 
reads yielded ~1.5 million contigs. The taxonomy of contigs 
and reads was assigned using a BLAST-based pipeline (Figure 1 
and Supplementary Material). These analyses are hereafter re-
ferred to as BLASTnx (for contigs) or BLASTn (for reads).

Investigation of the viral BLAST hits (Supplementary Table 
S4) revealed artefacts arising mainly due to short, local-only se-
quence similarity to viral genomes. Therefore, all hits to human 
viruses were evaluated in silico (see Supplementary Methods 
and Results). For the contigs, confirmed hits to 61 viruses from 
6 viral families were found, whereas 14 human viruses were dis-
regarded as false positives (Supplementary Table S4). For the 
reads, mapping to 343 manually selected viral genomes, here-
after referred to as read mapping, confirmed viral hits to 146 ref-
erence genomes (Supplementary Table S5; for mapping results, 
see Supplementary Data 1 and coverage plots in Supplementary 
Figure S1). The artefactual viral sequences identified in our data 
are explored further in a separate study [23]. Confirmed viral 
hits (Supplementary Table S6 and Supplementary Data 2) were 
further depleted of bleedover of viral reads occurring during 
sequencing.

The Virome of the Cancerous Samples

Of the 197 samples included, 54 (27%) were virus-positive at 
contig level, whereas 106 (54%) were virus-positive from read 
mapping. For several skin-associated and mucosal cancer types, 
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all samples were found virus-positive (Supplementary Table 
S7), whereas certain sample types revealed no confirmed viral 
sequences. The detected viruses mainly belong to the families 
Papillomaviridae, Polyomaviridae, Herpesviridae, Parvoviridae, 
and Anelloviridae. Throughout the results, the identified viruses 
are grouped at species or genus level for both contig BLASTnx 
and read mapping (Figure 2), and the individual viral strains 
identified are presented fully in the Supplementary Material 
(Supplementary Figures S2 and S3). Between 2 and 7 different 
viral genera were represented in the virus-positive samples (me-
dian of 2) (Supplementary Figure S4), with the highest diversity 
of viral genera generally occurring in skin-associated and mu-
cosal cancers (Supplementary Table S9).

Papillomaviruses
Human papillomaviruses were detected mainly in skin and 
mucosa-associated cancers (64%–73% of samples) (Table 2, 
Figures 2 and 3). De novo assembly recovered the full genome 
of a novel type of Gammapapillomavirus in a single contig in an 
oral cavity cancer sample (HPV strain CGG5-301s0532c000007 
[Supplementary Table S10]), being most similar to HPV146 
(Supplementary Figure S5 and Supplementary Methods). 

Contigs representing shorter genome fragments of novel HPV 
types and full genomes of known types were also detected 
(Supplementary Table S10). High-risk alphapapillomaviruses 
were found in a few samples; HPV16 and HPV18 in contigs 
(full genomes) and HPV18 and HPV42 from read mapping (at 
low coverage). The HPV-positive skin-associated and mucosal 
samples contained sequences mapping to up to 17 different 
HPV types (median, 2 types), with oral cavity cancers showing 
the highest numbers (median, 5 types) (see Discussion). In 
skin-associated cancers, Betapapillomavirus was the most rep-
resented genus (Figures 2 and 3, Supplementary Table S8), 
differing from previous studies of healthy skin [5, 9], whereas 
oral cavity cancers showed high Betapapillomavirus and 
Gammapapillomavirus positivity, also contrasting previous 
findings [9, 36].

Polyomaviruses
Polyomaviruses were detected mainly in skin-associated and cer-
tain mucosal cancers (Table 2, Supplementary Table S8, Figures 
2, Supplementary Figure S2 and S3). In bladder cancer urine, 
BK polyomavirus (BKV) (33%–98% coverage [Supplementary 
Table S6]) and JC polyomavirus (JCV) (99% coverage) were 

DATA ANALYSIS 

Pre-processing
Human depletion

BLASTn reads* 
(nt database) 

BLASTn contigs 
(nt database) 

BLASTx/DIAMOND 
contigs 

(nr database) 

De novo
assembly

Taxonomic 
classification 

Investigation & 
mapping of reads 

(343 viral references)

Confirmed 
viruses 

Sample

Total
DNA/RNA

(no enrichment)

Virion enrichment
DNA/RNA

Circular DNA 
enrichment 

mRNA enrichment 

Retrovirus capture 
DNA/mRNA 

Vertebrate virus 
capture DNA 

Sequencing 

LAB METHODS APPLIED Pre-extraction Post-extraction Post library prep 

Figure 1. Laboratory methods and analysis pipeline. (Top) Schematic illustration of the laboratory methods used. Total deoxyribonucleic acid (DNA) or ribonucleic acid 
(RNA) was sequenced, or samples were exposed to one of the indicated enrichment methods before sequencing. (Bottom) Schematic illustration of the data analysis pipeline; 
de novo assembled contigs and human-depleted reads were analyzed with BLASTn and/or BLASTx/DIAMOND. Human viral hits were investigated in silico, and the reads 
were mapped to a database of selected viral reference genomes. *Applies to the majority of the datasets (see Methods).
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detected, whereas most of the remaining polyomavirus-positive 
samples contained MCPyV. One bladder cancer urine sample 
was found positive for both JCV (>10 million reads, 99% cov-
erage) and BKV (59 reads, 8.4% coverage), the latter finding 
possibly arising due to sequence homology between these 2 vir-
uses (see Supplementary Discussion). Merkel cell polyomavirus 
was only detected when applying virion enrichment DNA, and 
single-nucleotide polymorphisms were found to recur between 
positive datasets, suggesting a possible contamination (see 
Supplementary Discussion).

Herpesviruses
Human herpesvirus 1, HHV2, and HHV5 were detected in a 
few samples each, all at low coverage (up to 0.34%), whereas 
HHV4, HHV6, and HHV7 were more widespread (Figure 2, 
Supplementary Table S8). Human herpesvirus 4 was found 
mainly in certain skin and mucosa-associated cancers, whereas 
HHV6 was found mainly in malignant melanoma, and HHV7 
was found mainly in bladder cancer, oral cavity cancer, and my-
cosis fungoides. Human herpesvirus 6B and HHV7 were of low 
coverage, except a sample of mycosis fungoides and testicular 
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Figure 2. Viruses detected from BLASTnx of contigs and read mapping. (Top) The number of contigs detected across cancer types (horizontal axis), indicated by color (right 
legend). Only confirmed viral hits are included. (Bottom) The fraction of viral reads in parts per million (ppm) detected across cancer types (horizontal axis), indicated by color 
(right legend). Only confirmed viral hits are included. AML, acute myeloid leukemia; B-CLL, B-cell chronic lymphocytic leukaemia; BCP-ALL, B-cell precursor acute lympho-
blastic leukaemia; CML, chronic myeloid leukemia; T-ALL, T-lineage acute lymphoblastic leukaemia. NTC, nontemplate control.
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cancer showing higher HHV6A coverage (99% and 53%). 
Human herpesvirus 4 also showed higher genome coverage in 
certain samples (up to 69%). In all samples showing presence 
of HHV6A (Supplementary Figure S3), reads mapping to both 
HHV6A and HHV6B were detected, likely arising due to se-
quence homology between these 2 species (see Supplementary 
Discussion).

Parvoviruses
Human parvovirus B19 was mainly detected in skin-associated 
cancers (80%–91% of samples by read mapping, 32%–100% 
coverage [Figure 2, Supplementary Tables S6 and S8]). The re-
cently described cutavirus of the genus Protoparvovirus [37] 
was detected from contigs and read mapping in one sample 
of malignant melanoma as presented earlier [38]. In addition, 
adeno-associated virus-2 was detected in a few samples.

Anelloviruses
Anelloviruses were detected in the contigs at highest preva-
lence in certain mucosal cancers and leukemias (Table 2, Figure 
2). Full or near full genomes were detected among the contigs 
(Supplementary Table S11), some of these possibly representing 
novel anellovirus species. Contigs and reads mapping to different 
anelloviruses were often seen (Supplementary Figures S2 and S3); 
however, species- and/or strain-level identification of these might 
be less certain (see Discussion and Supplementary Material).

Rare Occurrences
A few viruses occurred only sporadically. The flavivirus 
human pegivirus (formerly GB virus C) was detected in 2 
samples of B-cell precursor acute lymphoblastic leukaemia 
(BCP-ALL)  and 1 sample each of T-lineage acute lympho-
blastic leukaemia (T-ALL), acute myeloid leukemia (AML), and 
chronic myelogenous leukemia (CML) (2.1%–17% coverage 
[Supplementary Table S6]), whereas HIV-1 was detected in as-
cites from a colon cancer patient (11% coverage [Figure 2 and 
Supplementary Figure S3]).

Co-occurrence of Viruses
The nonrandom patterns of viruses detected in the different 
sample types were explored by investigation of co-occurrence 
of viruses. For this analysis, viruses were grouped at species 
level, and only species identified in at least 4 samples by read 
mapping were included (Figure 4). Viral species clustered 
in 2 main groups; one mainly consisting of anelloviruses 
and one mainly of herpesviruses and papillomaviruses. It 
is interesting to note that taxonomically unrelated viruses 
were found to co-occur; BKV and Pegivirus A  were associ-
ated with the anellovirus cluster, whereas human parvovirus 
and MCPyV were associated with papillomaviruses. The 
anellovirus cluster was associated primarily with leukemias 
and mucosal samples, whereas the herpes and papillomavirus 

Table 2. Virus-Positive Samples From the Read Mapping Analysis

Sample Type Samples (n) Papillomaviridae Polyomaviridae Herpesviridae Parvoviridae Anelloviridae Flaviviridae Retroviridae

Basal cell carcinoma 11 8 3 5 10 1   

Mycosis fungoides 11 7 6 8 9 2   

Melanoma 10 7 3 6 8 1   

Oral cancer 10 7 4 9 2 5   

Oral healthy 1 1  1 1    

Vulvar cancer 3 2   1 3   

Bladder cancer 7 2 1 6 2 3   

Bladder cancer urine 10 2 5 4 1 5   

Colon cancer 16   2     

Breast cancer 20 3 6 3 1 1   

Testicular cancer 20   2 1 2   

AML 9 1 1  1 1 1  

B-CLL 9 1  3  3   

BCP-ALL 8     1 2  

CML 10 1  3 1 7 1  

T-ALL 11  1 1   1  

Colon cancer blood 8     2   

Colon cancer ascites 1     1  1

Ovarian cancer ascites 5 1  1     

Pancreatic cancer ascites 2   1     

Total no. of samples 43 30 55 38 38 5 1

Total no. of sample types 13 9 15 12 15 4 1

Abbreviations: AML, acute myeloid leukemia; B-CLL, B-cell chronic lymphocytic leukaemia; BCP-ALL, B-cell precursor acute lymphoblastic leukaemia; CML, chronic myeloid leukemia; T-ALL, 
T-lineage acute lymphoblastic leukaemia. 

Notes: The number of samples positive for a given viral family is shown for each sample type. Extended counts are shown in Supplementary Table S8. Only confirmed viral hits are included.
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cluster was associated mainly with skin-associated and mu-
cosal sample types.

Viruses With Nonhuman Hosts

Among the viral best BLASTnx hits for the contigs, we iden-
tified hits to viruses from 25 viral families with nonhuman 

hosts, as well as unclassified viruses. The majority of these 
“nonhuman” viruses occurred ubiquitously across sample types 
(Supplementary Figure S6), and detection of these seemed to 
be confined to the application of certain laboratory methods 
(Supplementary Figure S7). These are considered in the 
Supplementary Results and in [23].
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Figure 3. Human papillomaviruses (HPVs) identified in skin and mucosal cancers. Genome coverage (%) for the different HPV types found in samples of skin and mucosal 
cancers, indicated by color (right legend) (the full dataset is shown in Supplementary Figure S3). Only confirmed viral hits are included.
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Evaluation of Methods Applied

Sequencing of total DNA or RNA, capture of retroviral DNA or 
mRNA, and mRNA enrichment showed few or no virus-positive 
samples. The remaining enrichment methods largely detected 
the same viral families, but not with the same frequency (Table 
3, Supplementary Figures S8 and S9). Some of the viral findings 
were confirmed by more than 1 method (Supplementary Figure 
S10). A comparison of the methods applied in terms of number 
of samples positive, ability to retrieve high genome coverage, 
or ability to detect divergent viral sequences is presented in the 
Supplementary Results.

DISCUSSION

In the present study, we conducted a comprehensive virome 
investigation of 197 patient samples from 18 sample types of 
cancerous origin by applying a broad diversity of methods for 
enrichment of viral nucleic acids before sequencing. Targeting 
viruses with DNA and RNA genomes, double-stranded, single-
stranded, and circular genomes, as well as proviruses, and 
encapsidated and uncoated viral nucleic acids using sensitive en-
richment methods (see Supplementary Discussion), we sought 
to fully cover the diversity of viruses present in the cancerous 

material. The resulting 710 distinct metagenomic datasets were 
analyzed using a BLAST-based analysis approach and in-depth 
viral sequence analysis at both the contig and read level. Our 
study provides central points of awareness concerning virome 
data analysis that need to be addressed before interpretation 
of the results. This includes viral artefacts, cross-mapping be-
tween closely related species/strains, and bleedover occurring 
during sequencing, as well as the presence of viral sequences in 
nontemplate controls (see Supplementary Material).

Most of the viruses identified in our study are commonly 
found in humans, and they were almost exclusively DNA vir-
uses (see Supplementary Discussion). Viral sequences were 
detected in a large percentage of the samples investigated, and, 
as expected, skin-associated and mucosal samples showed 
higher proportions of virus-positive samples. Only a few IARC-
classified carcinogenic viruses were detected. These included 
the full genome of HPV16 identified in 1 of 3 vulvar cancer 
samples, confirming previous reports [39]. The full genome of 
HPV18 was detected in 1 of 10 bladder cancer urine samples. 
The evidence for a role of high-risk HPVs in the development 
of bladder cancer is currently inadequate [40, 41], and our study 
does not provide further support of high-risk HPVs playing a 
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significant role. Evidence supports a causal role for HPV16 in a 
subset of oropharyngeal cancers [1], whereas the prevalence of 
HPVs in oral cavity cancer is low [42]. Therefore, the absence 
of high-risk HPVs is not unexpected. Read mapping suggested 
presence of multiple HPV types in most HPV-positive samples. 
However, as was seen for BKV/JCV and HHV6A/6B, it cannot 
be ruled out that the detection of some types occur as a result 
of cross-mapping between closely related types. Viruses con-
sidered possibly carcinogenic and appearing in our samples 
included the polyomaviruses MCPyV, BKV, and JCV. These vir-
uses are commonly carried asymptomatically [43], and there-
fore the findings could represent normal flora.

A potential role for the ubiquitous anelloviruses in cancer 
is debated [44]. Multiple anelloviruses were often detected in 
the same sample, as previously reported in, for example, urine 
[12]; however, no specific anellovirus types recurred consist-
ently within cancer types. At the contig level, different species 
or strains can more readily be evaluated and distinguished 
(Supplementary Table S11); however, due to the read-mapping 
patterns observed for some anelloviruses (see Supplementary 
Material) as well as possible cross-mapping, the diversity is pos-
sibly overestimated.

Parvovirus B19 was consistently detected in skin-associated 
samples. Seroprevalence is high in the general population, and 
the viral DNA can persist in multiple tissues, including skin 
[45, 46], although previous detection rates are lower than what 
was found here. Parvovirus B19 was not found in previously 
published skin and oral virome studies [5, 9], but these dis-
crepancies could reflect differences in sample material and 
processing.

The effect of co-occurrence of viruses within a tissue is a rel-
atively unexplored area. The co-occurrence of viral species and 
nonrandom distribution patterns found here reflect differences 
in viral tissue tropism, but other factors could play a role as well. 
Our study includes various habitats of the human body sampled 
from different individuals, providing a cross-body comparison 
of viral variation. Future studies of viral composition might re-
veal interactions of potential importance in health or disease 
between members of the virome.

With our study, several cancer types have been thoroughly 
investigated for viral nucleic acids. Cancer types investigated 
by us and not included in previous RNA-sequencing studies 
[15–17, 47, 48] include basal cell carcinoma, testicular cancer, 
B-cell chronic lymphocytic leukaemia (B-CLL), BCP-ALL, 
CML, T -ALL, vulvar cancer, and multiple myeloma cell lines. 
A limitation of our study is the low number of healthy control 
samples available, which hinders conclusions regarding viral 
presence in tumor versus normal flora. Although our sample 
size is not large, we consider the probability of uncovering yet 
undetected (known) viruses present in large proportions of 
these cancers low. Human papillomavirus 16 was detected in 1 
of 3 vulvar cancer samples included, suggesting that our sample 
size is large enough to identify cancer-causing viruses of high 
prevalence. Nevertheless, low-frequency associations between 
known viruses and cancers might exist, and establishing cau-
sality in such cases is a complex process [49]. Other relevant 
approaches within cancer virus discovery include investigation 
of truly novel viruses with little or no similarity to known vir-
uses, which are not detectable by the applied analysis methods. 
Moreover, changes in gene expression or DNA methylation may 

Table 3. Datasets Positive for a Given Viral Family for the Laboratory Methods Applied

All Samples  Papillomaviridae Polyomaviridae Herpesviridae Parvoviridae Anelloviridae

Method Datasets (n) Contigs Reads Contigs Reads Contigs Reads Contigs Reads Contigs Reads

Vert. virus capt. DNA 75 3 31 1 3 10 42 19 32 5 15

Circular DNA 114 5 5 4 4 1 3 6 6 13 13

Virion DNA 143 6 21 4 24 1 9  2 4 12

Virion RNA 146 1 13  1  4 1 5 6 15

Retrovirus capt. DNA 33     1 6  1   

Total DNA 107  2   1 6  3  3

Total RNA 72  1    3  2  1

Samples Processed With All 4 Methods          

Vert. virus capt. DNA 58 2 22a   7 30b 15 23c 4 11

Circular DNA 58 4 4   1 2 6 6 6 8

Virion DNA 58 4 14d 3 15  5  1 3 11

Virion RNA 58 1 12    2 1 3 5 11

Abbreviations: capt., capture; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; Vert., vertebrate.

Notes: The number of datasets positive based on contig BLASTnx (leftmost column shown for each viral family) and read mapping (rightmost column shown for each viral family) are shown. 
The top part of the table shows the numbers for all datasets, the bottom part shows the number for datasets from samples processed with all 4 enrichment methods. Only the 5 most 
frequently detected families are shown, and only confirmed viral hits are included. Nontemplate controls are excluded.
aP = 9.5 × 10–5 vs circular DNA enrichment.
bP = 5.1 × 10–7 vs virion enrichment DNA (nonsignificant at contig level, P = .061).
cP = 4.6 × 10–4 vs circular DNA enrichment (nonsignificant at contig level, P = .052).
dP = .019 vs circular DNA enrichment.
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be directly induced by viral infections [50], and searching for 
such viral “footprints” could reveal new associations between 
previous viral infections and cancer.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are 
not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corre-
sponding author.
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