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Abstract 

Aims: Lamin A/C mutations are generally believed to be associated with a severe prognosis. It 

was the aim to investigate the disease expression in three affected families carrying different 

LMNA missense mutations. Furthermore, the potential molecular disease mechanisms of the 

mutations were investigated in fibroblasts obtained from mutation carriers. 

Methods and Results: A LMNA-p.Arg216Cys missense mutation was identified in a large 

family with 36 mutation carriers. The disease expression was unusual with a late onset and a 

favourable prognosis. Two smaller families with a severe disease expression were shown to carry 

a LMNA-p.Arg471Cys and LMNA-p.Arg471His mutation, respectively. LMNA gene and protein 

expression was investigated in eight different mutation carriers by Western blotting, 

immunohistochemistry, quantitative reverse transcriptase PCR, and protein mass spectrometry. 

The results showed that all mutation carriers incorporated mutated lamin protein into the nuclear 

envelope. Interestingly, the ratio of mutated- to wild type- protein was only 30:70 in LMNA-

p.Arg216Cys carriers with a favourable prognosis while LMNA-p.Arg471Cys and LMNA-

p.Arg471His carriers with a more severe outcome expressed significantly more of the mutated 

protein by a ratio of 50:50.  

Conclusion: The clinical findings indicated that some LMNA mutations may be associated with 

a favourable prognosis and a low risk of sudden death. Protein expression studies suggested that 

a severe outcome was associated with the expression of high amounts of mutated protein. These 

findings may prove to be helpful in counselling and risk assessment of LMNA families.  
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Introduction 

Mutations in the gene for lamin A and lamin C (LMNA) are associated with the 

development of cardiac conduction disease (CCD), atrial and ventricular arrhythmias, muscular 

dystrophy, and dilated cardiomyopathy (DCM).1, 2 Recently, a European multicentre study of 269 

LMNA-mutation carriers suggested that the presence of two or more risk-factors including an 

episode of non-sustained ventricular tachycardia (VT), a left ventricular ejection fraction (LVEF) 

< 45%, male sex, and non-missense mutations were associated with a high risk of malignant 

ventricular arrhythmias (VA) and sudden cardiac death (SCD). 3, 4 These observations were 

recently confirmed in a study of 122 LMNA-mutation carriers in the US.5 However, novel data 

suggest that some LMNA mutations may be associated with a more benign outcome.6 

Lamin A and lamin C proteins constitute the main structural proteins of the inner nuclear 

envelope. Both isoforms are transcribed from the LMNA gene through alternative splicing of 

messenger RNA (mRNA).7 They are expressed in almost all differentiated tissues including the 

myocardium and fibroblasts. In addition to their structural and supportive function of the 

nucleus, these proteins are believed to influence regulation of gene expression through an 

interaction with transcription factors, DNA, and chromatin.7 It has been suggested that 

haploinsuffiency is the disease mechanism in patients carrying truncating LMNA mutations, 

while LMNA missense mutations have been proposed to act through a dominant negative 

pathway.8-10 A recent study of a missense mutation suggested that mutant lamin protein may 

accumulate and form intra-nuclear aggregates and thereby exhibit a dominant negative effect.11 

In the current study, we report the disease expression associated with a LMNA-p.Arg216Cys 

variant in a large family with 36 mutation carriers. The phenotype was remarkable since most of 

Slettet: -

Slettet: -
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the affected mutation carriers had a late onset of disease manifestations and a favourable 

prognosis. Furthermore, we describe two additional LMNA families with a total of 17 mutation 

carriers, which were characterised by an early onset and a severe disease expression of DCM. To 

elucidate if the highly variable disease expression observed in the three families was associated 

with different molecular disease mechanisms we performed gene and protein expression studies 

in fibroblasts obtained from LMNA mutation carriers.   
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Methods 

Subjects and clinical investigations 

The study included three unrelated index patients who carried a disease associated LMNA 

mutation and their relatives who accepted an offer of clinical investigation including 12-lead 

ECG-recording, two-dimensional Doppler echocardiography, and 48-hour Holter-monitoring. 

DCM in index-patients was defined as LV end-diastolic volumes or -diameters >2 standard 

deviations (SD) from normal and LVEF < 0.45.12 VA were defined as sustained VT lasting >30 

s, non-sustained VT as >3 ventricular ectopics with a frequency of > 120 beats/minute, or as 

ventricular fibrillation. Relatives were diagnosed in accordance with recent recommendations.13 

Coronary artery disease was excluded by coronary angiography in patients older than 40 years. 

The study was carried out in accordance with the Declaration of Helsinki. The local ethics 

committee approved the study and informed consent was obtained from all participants (protocol 

no. VEK S-20140073). 

 

Genetic diagnosis 

Index-patients underwent genetic testing in 84 cardiac specific genes as previously 

reported and relatives at risk were offered predictive testing for the specific variant identified in 

the index patient.14 Genetic investigations of deceased individuals were made with DNA 

extracted from formalin-fixed paraffin embedded tissue.  

Cell cultures 
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Fibroblast cell lines were established from skin biopsies of eight individuals with LMNA 

mutations and three healthy controls as previously described.9 

 

Quantitative reverse transcriptase PCR (qRT-PCR)  

cDNA was synthesized from RNA extracted from cultured fibroblasts as previously 

described.9 For qRT-PCR analysis, custom designed Taqman gene expression assays covering 

both LMNA(Hs00153462_m1) and TUBA4A (Hs01081795_g1) transcripts were used. Step One 

Plus (Life technologies) was used to analyse the samples as triple determinations. LMNA gene 

expression levels were normalised to α-tubulin levels.  

 

Western blotting (WB)  

The cytoskeletal protein fractions were extracted from patient and control fibroblasts 

visualised by WB as previously described.9 Primary antibodies used were: anti-lamin A/C (N-

terminal epitope, Sigma-Aldrich, #HPA006660) and anti-α-tubulin (Sigma-Aldrich, #T6074), 

followed by incubation with secondary antibodies (goat-anti-mouse- or goat-anti-rabbit-HRP, 

DAKO) in one hour. ECL-Plus (Thermo Scientific) was used for protein detection. ImageQuant 

LAS 4000 (GE Healthcare) was used for visualisation.  

 

Targeted mass spectrometry analysis of lamin proteins  
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Targeted mass spectrometry analysis of lamin proteins was performed as previously 

described.15 Twenty-five µg of the extracted proteins from the isolated cytoskeletal fraction from 

each sample was separated by SDS-PAGE. The gel pieces containing the proteins of interest, 

lamin A and lamin C, migrating between 100 and 40 kDa in-gel were digested by trypsin. A mix 

of heavy labelled peptides covering the mutation sites and other parts of lamin A and lamin C 

(Supplementary Table S2) was added to each peptide sample, followed by selected reaction 

monitoring (SRM) using nano-liquid chromatography coupled with tandem mass spectrometry 

(TSQ Vantage, Thermo Scientific, see Supplement S2 for details).15 Skyline software was used 

to assure correct peptide identifications and to calculate the ratios between the light 

(endogenous) and the heavy (internal standard) peptides.16 The peptide mass data were validated 

according to retention time and fragmentation pattern. For quantitation, the ratio of the area 

under the curve of endogenous peptide to heavy labelled peptide was calculated.  

 

Histology and Immunohistochemistry of cardiac tissue and fibroblasts  

Myocardial tissue was available from one carrier for each LMNA mutation. Samples from 

non-LMNA DCM patients served as controls (n=4). Four µm thick formalin-fixed paraffin-

embedded sections of myocardial tissue were plated on glass coverslips and were stained with 

either hematoxylin and eosin, or with mouse anti-lamin A/C antibody (#4C11, Cell Signalling 

technology) followed by incubation with anti-IgG mouse Alexa-Fluor-488-conjugated antibody 

(Invitrogen). The slides were imaged using a confocal laser scanning microscope (Leica TCS 

SP8). Immunocytochemistry staining of cultured fibroblasts was performed with similar 

antibodies as previously described.9 
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Statistics 

Normally distributed data are expressed as means ± SD or otherwise as medians with 

interquartile ranges. Statistical analyses were performed using Student’s t-test with significance 

level of 0.05. 
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Results 

Clinical investigations and genetic diagnosis 

For a complete overview of clinical features in mutation carriers, see Table S1 in the Data 

Supplement.  

 

Family A 

The proband of family A, (IV-9), presented at the age of 59 with sustained VT (Fig. 2A, 

Table S1). Following cardioversion ECG monitoring showed sinus node dysfunction and 

advanced second degree AVB. Echocardiography showed a dilated LV with a LVEF of 40%. An 

ICD was implanted and he has subsequently received appropriate ICD-therapy multiple times 

due to sustained VT. Genetic investigations identified a novel LMNA-p.Arg216Cys/c.464C>T 

variant which was considered to be disease associated since it segregated with the condition in 

the family and was absent in more than 60.000 ExAC exomes.17  

Clinical cascade screening identified 12 affected individuals (mean age 68 years, range: 

59-87) who all carried the mutation (Fig. 1+2A and Table 1+S1). All had CCD with advanced 

AVB of which six had been diagnosed before this investigation. Family investigations identified 

five patients with total AVB of which one, (III-8), declined the offer of pacemaker implantation 

two years before he died at the age of 89 years. All but one, (IV-6), had chronic or paroxysmal 

SVA while eight fulfilled diagnostic criteria of familial DCM with an average LVEF of 40%. 

Only one relative, (IV-4), received appropriate ICD-therapy during follow-up, while another, 

(IV-27), received a cardiac transplant at the age of 50 due to end-stage heart failure. This patient 
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however had extensive cardiac sarcoidosis confirmed by histological examination of the 

explanted heart, which was believed to be the main cause of her condition.  

A total of 17 healthy mutation carriers (mean age 49 years, range: 23-68, Table S1) were 

identified. Five of these individuals developed advanced AVB with preserved LV function and 

no significant VA during an average follow-up period of 5.2 years at a mean age of 60 years 

(range: 55-69). One younger mutation carrier, (V-9), had 10% monomorphic premature 

ventricular contractions (PVCs) originating from the right ventricular outflow tract and short 

episodes of non-sustained VT of similar morphology on Holter monitoring. She had mild LV 

dysfunction (LVEF 0.50) without structural abnormalities or late gadolinium enhancement on 

cardiac magnetic resonance imaging. The patient underwent successful ablation for the 

arrhythmic substrate and no VA have been detected during five years of follow-up. In addition, 

her LV function normalised without medication. It is unclear if the disease expression of this 

patient was related to the genotype or if she represented a phenocopy with a different cause of 

her PVCs. 

A total of six deceased obligate mutation carriers were identified with little clinical 

information available, (Fig. 2A, Table S1). One of these individuals (II-2) died of cancer at the 

age of 54, while the remaining individuals died at an average age of 77 years, which indicated a 

near normal life expectancy despite their genotype. 

In summary, during this investigation 20 of 36 (46%) mutation carriers were affected or 

developed disease manifestations that required device implantation at an average age of 61.7 

years. Although all affected individuals had or developed advanced AVB requiring pacemaker 
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implantation only two patients (5%) including the proband had significant VA. Only nine of 36 

(25%) mutation carriers fulfilled diagnostic criteria of DCM. 

 

Family B 

The proband, (III-3), was diagnosed with DCM (LVEF 0.35) at the age of 54 and has 

remained stable on heart failure therapy for the past 6 years (Fig. 1+2B, Table 1+S1). Her son, 

(IV-6), died suddenly at the age of 18 while at rest and autopsy revealed an enlarged heart 

consistent with a diagnosis of DCM. The brother, (IV-5), of the deceased was diagnosed with 

DCM (LVEF 0.40) at the age of 25 and was treated with a prophylactic ICD from which he has 

received appropriate anti-tachycardia pacing once during twelve years of follow-up. Family 

investigations identified three additional surviving relatives with DCM of which one received a 

cardiac transplant at the age of 59, (III-5). Four mutation carriers had died prior to this 

investigation from CHF at an average age of 61 years.  

Genetic investigations identified a novel LMNA-p.Arg471His/c.1412G>A mutation. The 

mutation co-segregated with the disease in the family. Genetic cascade screening identified three 

healthy gene carriers with an average age of 38 years (one individual lost to follow-up). The 

p.Arg471His mutation was considered pathogenic since it co-segregated with the DCM-

phenotype in this family, was absent in the ExAC control exomes17, and has been reported 

previously in a DCM-patient.18 

 

Family C 
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The proband was diagnosed at the age of 41 with atrial fibrillation (Fig. 1+2C, Table 

1+S1). He later developed DCM with a LVEF of 45% and received a dual-chamber pacemaker at 

the age of 45 years due to total AVB. Four years later he died suddenly at rest. Post-mortem 

examination of the heart was consistent with DCM. His sister developed DCM with an LVEF of 

25% at the age of 38 years and has had episodes of nsVT and sVT. 

Genetic investigations identified a LMNA-p.Arg471Cys/ c.1411C>T missense mutation 

carried by both affected individuals. The same mutation has been identified in three additional 

unrelated probands with DCM at our institution (unpublished data). The p.Arg471Cys variant 

was considered to be a likely pathogenic variant since it was located in the same codon as the 

recognised disease causing mutation identified in family B, (p.Arg471His), and the frequency 

among ExAC control alleles was very low (3/117.104).17 

In summary, the disease expression in family B and C appeared to be severe since 65% of 

mutation carriers had DCM of which seven (47%) had died from either CHF or SCD. 

Surprisingly, no one had CCD. The average age of onset of disease was 48 years (Table 1). 

 

LMNA gene and lamin A and C protein expression in mutant fibroblast cell lines 

LMNA transcript and protein levels in fibroblast of mutation carriers were measured by 

qRT-PCR and WB and were not significantly different from control fibroblasts (Fig. 3A+B). 

However, the specific expression of lamin C protein was significantly increased in mutation 

carriers (Fig. 3C). This finding was supported by SRM MS analysis which showed that the 

expression of a lamin A-specific peptide relative to expression of common lamin A and lamin C 

peptides from p.Arg471His and p.Arg216Cys fibroblasts was lower compared to peptides from 
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control fibroblasts (Fig. 3D). In accordance with the result by WB this finding indicated that 

expression of the lamin C isoform was relatively increased compared to lamin A expression in 

mutation carriers.  

  

Lamin A and C proteins in the cytoskeletal fraction of cells 

Mutant lamin A/C peptides were identified and discriminated from wild type (WT) 

peptides by use of heavy-isotope labelled mutant peptides in the SRM MS analysis. In 

p.Arg216Cys fibroblasts SRM analysis was able to detect the endogenous mutant peptide 

NIYSEELCETK (red in fig. 4A, variation in bold) with high intensities (Fig. 4A). Similarly, the 

mutant peptides HQNGDDPLLTYR and CQNGDDPLLTYR were detectable in p.Arg471His 

and p.Arg471Cys fibroblast cells, respectively (Fig. 4B+C). As expected, the mutant peptides 

were not present in controls. 

Quantification of the WT peptide corresponding to the mutated p.Arg216Cys peptide 

demonstrated that the WT peptide accounted for approximately 70% of total lamin A and C 

protein in p.Arg216Cys fibroblasts (Fig. 4D). In contrast, only 50 % of the lamin protein was 

derived from the WT allele in the LMNA-p.Arg471His- and LMNA-p.Arg471Cys carriers 

indicating that these mutant lamin proteins were incorporated in the cytoskeletal fraction with 

similar efficiency as the WT protein (Fig. 4D).  

 

Immunohistology   

Histological examination did not show any obvious differences between LMNA and non-

LMNA DCM patients (Suppl. Figure S1). Antibody staining with an anti-LMNA antibody 
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demonstrated nuclear staining in all LMNA-patients without cytosolic aggregates which indicated 

nuclear incorporation of mutant lamin protein. Additional immuno-staining of p.Arg471His 

fibroblasts showed a normal nuclear morphology without intracellular aggregates supporting the 

expression and incorporation of mutated protein into the cytoskeleton (Sup. Figure S2).
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Discussion 

Clinical and genetic investigations 

Several clinical investigations have shown that LMNA-mutations in cardiac conditions are 

associated with a severe prognosis and that the presence of specific risk factors are associated 

with an increased risk of VA and sudden death.3-5 The disease expression in family B and C was 

in accordance with previous findings and showed that more than half of the patients died from 

CHF or VA. In contrast, the clinical investigations in family A, which included 36 carriers of the 

p.Arg261Cys mutation, showed a late onset of disease manifestations and a low frequency of 

VA. A substantial part of the mutation carriers had a near normal life span of which one patient 

even survived until the age of 89 years without a pacemaker, despite the presence of a complete 

AVB. Overall, the disease expression was associated with an apparently mild phenotype and few 

adverse disease complications which suggested that LMNA mutations may also be associated 

with a favourable prognosis. These findings were consistent with the results of recent Dutch 

study of a LMNA-p.Arg331Gln mutation in 57 mutation carriers, which was also associated with 

a lower risk of VA, end-stage CHF and SCD than previously anticipated.6  

So far clinical and genetic data of LMNA families have largely been provided by 

investigations of highly selected families at tertiary referral centres, which may introduce 

selection bias towards severely affected families.1, 2, 4, 5, 19, 20 The results of the current study 

underscore the importance of investigating the entire family and assess the phenotype of all 

individuals at risk of having inherited the condition to provide a firm basis for individualised risk 

assessment. 
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Expression studies  

For the first time to our knowledge protein MS was used to perform targeted analyses of 

wild type and mutant lamin A and C protein expression in heterozygous mutation carriers. The 

results showed that the mutated peptides were present in the cytoskeletal protein fraction and 

thereby likely to be incorporated into the nuclear lamin polymer. Furthermore, SRM revealed 

that the ratio of WT and mutated protein was 50:50 in fibroblasts obtained from mutation carriers 

of p.Arg471His and p.Arg471Cys in whom the disease expression was associated with a severe 

outcome. Interestingly, the proportion of mutant protein was only 30% in mutation carriers of 

p.Arg216Cys which may explain the apparently milder disease expression, although further 

conformational studies of additional families need to be performed. However, the results of the 

current study indicated that the proportion of incorporated mutant lamin protein may serve as a 

prognostic marker of disease which has the potential to improve current algorithms for risk 

assessment of individual LMNA families. 

The mutations investigated were all located in the common region of lamin A/C and 

thereby expected to affect both isoforms equally. However, the experimental results indicated 

that the protein expression levels of lamin A were unaffected in mutant cells. Surprisingly, the 

expression of lamin C protein was significantly increased in mutation carriers, leading to a 

decreased lamin A to lamin C ratio in LMNA carriers. This finding was also observed in our 

previous study of fibroblasts from carriers of a truncating LMNA-p.Arg321X mutation.9 

Similarly a decreased lamin A to lamin C ratio at mRNA and protein level has been observed in 

patients with progeria and Emery-Dreifuss muscular dystrophy.21, 22 The impact of these findings 

remain unclear and needs to be investigated further. 
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Immunohistochemistry of cardiac tissues and p.Arg471His fibroblasts did not show 

intracellular aggregates of mutant lamin protein (Sup. Fig. 1 and 2). Therefore, it is likely that the 

combination of a skewed lamin A to C ratio and the incorporation of mutated protein may lead to 

destabilisation of the nuclear envelope and impair the mechanical support of the nucleus. The 

results support the hypothesis that LMNA missense mutations act by a dominant-negative disease 

mechanism.18, 23-25 

 

Limitations  

Skin fibroblasts are easily accessible from mutation carriers compared to cardiac tissue. In 

addition, these fibroblasts are likely to share the same genetic background as cardiomyocytes of 

the patients, which may minimise potential bias compared to in vitro studies of mutations 

expressed in artificial cell systems unrelated to the patient. However, studies on protein functions 

in fibroblasts need confirmation in cardiac tissue in which the electromechanical coupling is a 

complex interplay between myocytes, fibroblasts, and extracellular matrix. 

 

Conclusion 

The clinical investigations of a large family with a novel pathogenic LMNA mutation 

showed that the disease expression of LMNA mutations may also be associated with a favourable 

prognosis in contrast to the findings in most previous reports. Furthermore, the results suggested 

that the clinical outcome in LMNA mutation carriers may be associated with the amount of 

mutant peptide incorporated into the nuclear envelope.  
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Figure legends 

Figure 1: Clinical endpoints according to age in LMNA mutation carriers. Abbreviations; HTX, 

heart transplantation; SUD, sudden unexpected death; ICD, implantable cardioverter 

defibrillator; PM, pacemaker; VT, ventricular tachycardia; SVA, supraventricular arrhythmias; 

DCM, dilated cardiomyopathy; AVB/LBBB, atrioventricular block or left bundle branch block.  

 

Figure 2: Pedigrees of LMNA-families. Square, male; circle, female; filled symbols, affected; 

grey symbols, possibly affected; crossed symbols, deceased; +, mutation carrier; -, non-mutation 

carrier; ?, unknown genetic status. 

 

Figure 3: (A) qRT-PCR analysis of LMNA transcript levels relative to α–tubulin (TUBA4A) in 

healthy controls and in LMNA-p.Arg471His and LMNA-p.Arg216Cys fibroblasts. Error bars 

denote standard deviation. (B) Western blot analysis. Representative Western blot detecting 

lamin A and lamin C proteins from the cytoskeletal fraction of patient and control fibroblasts. α-

tubulin was used as a loading control. (C) Quantitation of band intensities, from Figure 3A, of 

lamin A and lamin C relative to α-tubulin. Columns represent the means of signal intensities of 

lamin A and lamin C relative to α-tubulin. Error bars denote standard deviation; *p <0.05. (D) 

Lamin A and lamin C ratio quantitation by SRM. Schematic overview of lamin A and lamin C 

(lamin A/C) common peptides 1-3 (black) and lamin A specific peptide 4 (grey) used for the 

quantitation of lamin A to lamin C ratio. The graphs represent relative quantitation of lamin A to 

lamin A/C peptides by SRM-nLC-MS/MS in control and patient fibroblasts. The quantitative 

robustness was improved by utilization of isotopically labelled peptide standards, for each 
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quantified peptide, and by normalisation to the reference protein α-tubulin (Supplement S1). 

Error bars denote standard deviation.   

 

Figure 4: SRM mass spectrometry detection of variation specific peptides of lamin A and lamin 

C in the cytoskeletal fraction of patient fibroblasts. Endogenous peptide signal depicted in red.  

The corresponding heavy labelled standard peptides (blue) were detectable in both control and 

patient samples (A) Representative chromatogram of the mutant peptide (red), NIYSEELCETK. 

The peptide was only detected in the p.Arg216Cys patient. (B) Representative chromatogram of 

the endogenous mutant peptide, HQNGDDPLLTYR detected in patient carrying the 

p.Arg471His mutation and not in control. A small peak representing signal from noise, at a 

mismatched time point, was detected in control. (C) Chromatogram representing the endogenous 

mutant peptide (red), CQNGDDPLLTYR, detected in the patient with the p. Arg471Cys 

mutation. (D) Calculations of the relative amounts of wild type lamin A and lamin C in the 

cytoskeletal fractions of patient and control fibroblasts. The wild type peptides covering the 

respective mutation sites (WT) only present in lamin A and lamin C from the wild type allele and 

three reference peptides present in both wild type and mutant lamin A and C sequences (1, 2, and 

3) were detected, quantitated by SRM, and used for the calculations of the fractions of wildtype 

and mutant protein (for details see Supplement S1). Error bars denote standard deviations.  
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Table 1 

 LMNA-p.Arg216Cys (n=36) LMNA-p.Arg471His/Cys (n=17) 

Clinical event  n (%) Mean age 

(range) 

n (%)  Mean age (range) 

Unaffected at last follow up 11 (31) 50 (27-60) 4 (24) 32 (19-40) 

Conduction disease 17 (47) 66 (50-89) 4 (24) 49 (36-64) 

Dilated cardiomyopathy 12 (33) 63 (34-89) 11 (65) 48 (18-64) 

Supraventricular arrhythmia 14 (39) 68 (53-89) 3 (18) 54 (40-64) 

Ventricular tachycardia 7 (19) 58 (32-69) 3 (18) 40 (25-59) 

Sudden unexplained death 2 (6) 65 (61-69) 4 (24) 46 (18-70) 

Pacemaker 17 (47) 62 (34-89) 2 (12) 48 (40-56) 

Implantable cardioverter defibrillator 11 (31) 59 (34-73) 5 (29) 46 (26-59) 

Heart transplantation 1 (3) 58 1 (6) 59 

All-cause death 11 (33) 73 (54-91) 8 (47) 53 (18-70) 

Legend: Clinical events according to age in LMNA mutation carriers. Clinical data from index patients and three first-degree relatives have been 

included in a previous paper.4 
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Supplementary online material 

Supplementary Figure S1: Nuclear morphology of cardiac tissues of patients and control. 

Immunofluorescence microscopy analysis of control and patient cardiac tissue. The 

immunofluorescent image showing lamin A/C (green) and alfa- actinin2 (red) detected with 

mouse anti-lamin A/C antibody and α-actinin-2, respectively. Myocardial tissues were stained 

with hematoxylin eosin.  

 

Supplementary Figure S2: Immunofluorescence microscopy analysis of control and patient 

fibroblasts. The immunofluorescent image showing lamin A/C (green) and cell nuclei (blue) 

detected with mouse anti-lamin A/C antibody and DAPI, respectively. 
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Supplementary Table S1 

ID/ sex Presentation Age* CCD2 DCM3 SVA4 VA5 Device6 Comment 

Family A: LMNA-p.Arg216Cys 

II-2/M  -/54      Died of cancer 

II-5/F  -/84      Unknown cause of death 

III-1/F  -/60      Unknown cause of death 

III-3/F CHF 89/91 AVB+LBBB(89) 57/45%(89) AFLU(89)  VVI-PM(89) Death cause unknown 

III-4/F  -/83      Died of cancer 

III-6/F  -/69      Sudden death 

III-7/F Syncope 62/74 AVB+LBBB(62)  AFIB(73)  VVI-PM(62) Stroke(74) 

III-8/M CHF 87/89 AVB+LBBB(87) 65/50%(87) AFLU(87)   CHF(89), declined PM 

III-11/F  -/54      Died of multiple sclerosis 

IV-1/M Bradycardia 59/75 AVB(59) 54/45%(67) AFIB(59) nsVT(69) DDD-PM(59) Died of cancer, IHD 

IV-3/M Postoperative 

AVB 

67/70 AVB(67) 60/40%(67) AFIB(67) 20% PVCs, 

nsVT(67) 

DDD-PM(67), 

CRT-D(67) 

Mitral valve surgery 

RFA-PVCs twice 

IV-4/M Svt 61/65 AVB(61) 50/49%(61) AFIB(61) 13% PVCs, 

sVT(61) 

DDD-ICD(61) RFA-VT trice. CMR with septal 

and RV LGE 

IV-6/F FS 73/78 AVB(73)    DDD-ICD(73)  

IV-9/M sVT 59/65 AVB(59) 57/40%(59)  11%PVCs, 

multiple 

sVT(65) 

DDD-ICD(59), 

CRT-D(65) 

RFA-VT twice 

IV-10/F FS 57/64 PRP(57), 

AVB+LBBB(59) 

 AFIB(61)  DDD-ICD(59) Mild limb-girdle  muscular 

dystrophy 

IV-12/F FS 73/76 PRP+AVB(73)  AFLU(73)  DDD-PM(73) RFA-AFLU(73) 

IV-14/F FS 70/75 AVB(70)  AFIB(70)  DDD-PM(70)  

IV-15/M FS 69/73 AVB(69)  AFLU(69)  DDD-ICD(69) RFA-AFLU(69) 

IV-16/M AVB 61/72 AVB(61) 

LBBB(69) 

73/10%(65) 

51/50%(70) 

AFLU(65) 

AFIB(66) 

 DDD-PM(61) 

CRT-D(65) 

IHD, PCI, RFA-AFLA(65) 

IV-24/F CHF 59/66 LBBB(59) 

AVB(64) 

68/30%(59) AFIB(59)  DDD-PM(59) 

CRT-P(62) 

Alcohol abuse, IHD, died of 

CHF 

IV-27/F CHF 50/58 AVB(50) 

LBBB(56) 

72/20%(56) AFIB(53) nsVT(56) DDD-PM(50) 

CRT-P(56) 

Cardiac sarcoidosis, HTX(58), 

Died of graft failure 

IV-29/M FS 59/64 SND+PRP(59) 

AVB(60) 

59/60%(62) AFIB(61)  DDD-ICD(60)  

IV-30/M FS 58/60    PVCs(60)   

IV-32/M FS 55/57       

IV-33/F FS 56/58       

IV-37/F FS 54/60 SND+PRP(54)   PVCs(55) DDD-ICD(57)  
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AVB(57) nsVT(57) 

IV-38/F FS 50/55 SND+PRP(50)   PVCs(55)   

V-9/F FS 31/38  59/50%(34) 

49/60%(38) 

 PVCs(32) 

nsVT(32) 

DDD-ICD(34) RFA-PVCs from RVOT(34). No 

VT on FU 

V-12/F FS 23/27       

V-16/M FS 50/54      Stroke(53) 

V-17/F FS 49/49       

V-18/F FS 48/48       

V-25/M FS 48/51  56/45%(50)   VVI-ICD(50) Normalisation of LVEF on FU 

V-27/F FS 43/47       

V-29/F FS 46/50       

V-30/M FS 41/45       

Mean age at endpoint (range) 64.4 (50-89) 63.0/(34-89) 67.6(53-89) 57.8(32-69) 61.7(34-89)  

 

Family B: LMNA-p.Arg471His 

I-1/M SUD 46      No autopsy, no gene test 

II-1/F CHF 57      No clinical data 

II-2/F CHF 57      No clinical data 

II-3/F CHF 60      No clinical data 

III-3/F FS 54/61 PRP(61) 57/40%(54)   VVI-ICD(54) Stroke 

III-5/M CHF 53/67 LBBB(59) 78/20%(59) AFIB(58) PVCs(56) CRT-D(56) HTX(59) 

III-6/M CHF 64/70 LBBB(64) 68/35%(64) AFIB(64) PVCs(68) Declined ICD SUD(70) 

III-7/F FS 59/59  54/50%(59)  nsVT(59) VVI-ICD(59) Lost to FU (foreign citizen) 

IV-5/M FS 25/37 LBBB(36) 57/35%(25)  PVCs(25) 

nsVT(25) 

VVI-ICD(26) Stroke 

IV-6/M SCD 18      Autopsy: DCM 

IV-10/M FS 22/36       

IV-11/M FS 34/40       

IV-13/M FS 32      Lost to FU (foreign citizen) 

Family C: LMNA-p.Arg471Cys 

I-1/M  -/55      Died from lung cancer, no gene 

test 

II-1/M Stroke/AFIB/br

adycardia 

40/49 AVB(40) 63/45%(40) AFIB(40) 

AFLU(42) 

 DDD-PM(40) Stroke(40), SCD(49), autopsy: 

DCM 

II-2/F FS 36/45 SND(45) 64/25%(41)  PVCs(36) 

nsVT(36) 

sVT (46) 

VVI-ICD(37) Stroke(35) 

III-3/F FS 15/19       

Table legend: Clinical characteristics of LMNA mutation carriers. Data from index patients and three first-degree relatives have been included in a 

previous paper.4 Value numbers in parenthesis indicate age. 1Age at initial evaluation and at death, HTx, or last follow-up; 2Cardiac conduction 
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disease including sinusnode dysfunction (SND), PR-interval prolongation (PRP; PR-interval >200 ms), atrioventricular block (AVB; advanced 

AVB type 2 or 3rd degree AVB), left bundle branch block (LBBB); 3Dilated cardiomyopathy defined as left ventricular dysfunction with ejection 

fraction < 0.50, or left ventricular end-diastolic dimensions >112% of the predicted value by the Henry formula (16); 4Supraventricular 

arrhythmias including atrial fibrillation (AFIB) or atrial flutter (AFLU); 5Ventricular arrhythmias including premature ventricular contractions 

(PVCs; >1000/24h), ventricular tachycardia (>3 consecutive PVCs at a heart rate above 120/min); 6Dual-chamber pacemaker (DDD-PM), 

implantable cardioverter defibrillator (VVI-ICD/DDD-ICD), or biventricular pacemaker or ICD (CRT-P/CRT-D). Abbreviations: AFIB, atrial 

fibrillation; AFLU, atrial flutter; CHF, chronic heart failure; FU, follow up; FS, family screening; HTx, cardiac transplantation; DCM, dilated 

cardiomyopathy; F, female; LVEF, left ventricular ejection fraction; IHD, ischemic heart disease; M, male; RFA, radiofrequency ablation; SCD, 

sudden cardiac death; SUD, sudden unexpected death; sVT, sustained ventricular tachycardia. 
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Supplementary Table S2 

Peptide Sequence Precursor (m/z) values Transitions (m/z) values 

Endogenous: Lamin A/C 
common peptides 

 

Heavy: Lamin A/C common 
peptides 

LKDLEALLNSK 

IDSLSAQLSQLQK 

MQQQLDEYQELLDIK 

LKDLEALLNS[K+4] 

IDSLSAQLSQLQ[K+4] 

MQQQLDEYQELLDI[K+4] 

622.37 

715.90 

947.47 

626.37 

719.90 

951.47 

1002.55, 887.52, 774.44, 645.39, 565.82 

1002.56, 915.53, 844.49, 603.35, 516.31 

1378.71, 1265.63, 1150.60, 1021.56, 817.92 

1010.56, 895.53, 782.45, 653.41, 569.83 

1010.57, 923.54, 852.50, 611.36, 524.33 

1386.72, 1273.64, 1158.61, 1029.57, 821.92 

Endogenous: Lamin A specific 
peptide 

Heavy: Lamin A specific 
peptide 

SVGGSGGGSFGDNLVTR 

 

SVGGSGGGSFGDNLVT[R+5] 

783.88 

 

788.88 

1179.58, 921.48, 774.41, 602.36, 690.83 

 

1189.58, 931.49, 784.42, 612.37, 695.83 

Endogenous: Lamin A/C WT 
peptides 

 

Heavy: Lamin A/C WT 
peptides 

NIYSEELR 

QNGDDPLLTYR 

 

NIYSEEL[R+5] 

QNGDDPLLTY[R+5] 

512.26 

646.32 

 

517.26 

651.32 

796.38, 633.32, 546.29, 417.25, 288.20 

877.48, 762.45, 552.31, 439.23, 338.18 

 

806.39, 643.33, 556.30, 427.25, 298.21 

887.49, 772.46, 562.32, 449.24, 348.19 

Endogenous: Lamin A/C 
mutant peptides 

 

Heavy: Lamin A/C mutant 
peptides 

HQNGDDPLLTYR 

CQNGDDPLLTYR 

NIYSEELCETK 

 

HQNGDDPLLTY[R+5] 

CQNGDDPLLTY[R+5] 

NIYSEELCET[K+4] 

714.85 

726.33 

693.32 

 

719.85 

731.34 

697.32 

1291.63, 1163.57, 1049.53, 762.45 

1163.57, 1049.53, 992.50, 877.48, 762.45 

1271.58, 1158.50, 995.44, 908.40, 779.36 

 

1301.64, 1173.58, 1059.53, 772.46 

1173.58, 1059.53, 1002.51, 887.49, 772.46 

1279.60, 1166.51, 1003.45, 916.42, 787.37 

Endogenous reference peptides: 
tubulin beta-5 chain (TBB5) 

 

Heavy reference peptides:  
tubulin beta-5 chain (TBB5) 

ISVYYNEATGGK 

ALTVPELTQQVFDAK 

 

ISVYYNEATGG[K+4] 

ALTVPELTQQVFDA[K+4] 

651.32 

830.45 

 

655.33 

834.46 

1188.55, 1101.52, 1002.45, 839.39,676.33 

1275.66, 936.48, 480.25, 687.87, 638.33 

 

1196.57, 1109.54, 1010.47, 847.40, 684.34 

1283.67, 944.49, 488.26, 691.87, 642.34 

Table legend: Endogenous and heavy labelled peptides used in SRM analysis 


