
 

  

 

Aalborg Universitet

Backtracking search heuristics for solving the all-partition array problem

Bemman, Brian; Meredith, David

Published in:
International Society for Music Information Retrieval Conference

Creative Commons License
CC BY 4.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Bemman, B., & Meredith, D. (2019). Backtracking search heuristics for solving the all-partition array problem. In
International Society for Music Information Retrieval Conference (pp. 391-397). Article 46 International Society
for Music Information Retrieval. http://archives.ismir.net/ismir2019/paper/000046.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 10, 2024

https://vbn.aau.dk/en/publications/ff5bf057-d7a0-47e3-8076-a00d63036ea0
http://archives.ismir.net/ismir2019/paper/000046.pdf


BACKTRACKING SEARCH HEURISTICS FOR SOLVING THE
ALL-PARTITION ARRAY PROBLEM

Brian Bemman
Aalborg University
Aalborg, Denmark

bb@create.aau.dk

David Meredith
Aalborg University
Aalborg, Denmark

dave@create.aau.dk

ABSTRACT

Recent efforts to model the compositional processes of
Milton Babbitt have yielded a number of computationally
challenging problems. One of these problems, known as
the all-partition array problem, is a particularly hard vari-
ant of set covering, and several different approaches, in-
cluding mathematical optimization, constraint satisfaction,
and greedy backtracking, have been proposed for solving
it. Of these previous approaches, only constraint program-
ming has led to a successful solution. Unfortunately, this
solution is expensive in terms of computation time. We
present here two new search heuristics and a modification
to a previously proposed heuristic, that, when applied to
a greedy backtracking algorithm, allow the all-partition
array problem to be solved in a practical running time.
We demonstrate the success of our heuristics by solving
for three different instances of the problem found in Bab-
bitt’s music, including one previously solved with con-
straint programming and one Babbitt himself was unable
to solve. Use of the new heuristics allows each instance of
the problem to be solved more quickly than was possible
with previous approaches.

1. INTRODUCTION

Milton Babbitt (1916–2011) was a composer of serial mu-
sic, whose work constituted a substantial contribution to
12-tone music theory and composition [2–6]. His works
and the compositional techniques he developed have been
studied extensively by music theorists and noted for their
complexity [10, 13, 15, 18]. Recent computational work
has shed further light on this complexity by looking, in
particular, at a 12-tone structure and method of compo-
sition that Babbitt developed, known as the all-partition
array [7, 9, 19, 20].

Satisfying all the constraints necessary to construct an
all-partition array is challenging, not least because it in-
volves solving a difficult variant of the set-cover prob-
lem [7, 8, 12]. In this paper, we present an improvement

c© Brian Bemman, David Meredith. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Brian Bemman, David Meredith. “Backtracking search heuris-
tics for solving the all-partition array problem”, 20th International Soci-
ety for Music Information Retrieval Conference, Delft, The Netherlands,
2019.

to a previous method, based on greedy backtracking, that
applies two new search heuristics and a modification of a
third heuristic that was originally proposed in [9]. These
heuristics aim to facilitate the satisfaction of the most chal-
lenging of the all-partition array constraints when using a
backtracking algorithm (to be discussed in section 4).

In section 2, we review the all-partition array and fol-
low this with an overview in section 3 of recent computa-
tional work on solving the all-partition array problem. We
focus in particular on the procedural greedy backtracking
approach proposed in [9] to which the heuristics proposed
in this paper have been applied. In section 4, we present
our new heuristics and give pseudo-code for one possible
implementation. In section 5, we demonstrate the effec-
tiveness of the new heuristics by using them to discover
solutions to three instances of the all-partition array prob-
lem. We report and compare the average running times as
well as the number of required backtracks for these three
solutions. We also provide a complete solution to one of
these instances as evidence of correctness. Finally, in sec-
tion 6, we summarize our results and propose some possi-
ble directions for future work.

2. THE ALL-PARTITION ARRAY

Constructing an all-partition array starts with an I×J ma-
trix, A, in which each entry is an integer between 0 and
11, representing a pitch class, and where each row contains
J/12 twelve-tone rows. In this paper, we focus on matrices
where I = 6 and J = 96 because these figure prominently
in Babbitt’s music [14], and so far have proved difficult to
generate [7, 9]. The resulting set of 48 tone rows in the
matrix must be closed under any combination of transpo-
sition, inversion and retrograde. 1 Matrix A will therefore
contain 48 occurrences of each of the integers from 0 to
11. It is important to note that not all organizations of these
pitch classes in A will prove successful in constructing an
all-partition array, but a desirable trait is for pitch classes to

1 The exact instance of the type of 6 × 96 matrix shown throughout
this paper has the following form:

A =


R5 I4 RI7 P2 R11 P8 RI1 I10
RI4 P11 R2 I1 RI10 I7 R8 P5

P3 R0 I11 RI8 P9 R6 I5 RI2
RI5 I2 R3 P0 RI11 I8 R9 P6

I6 R1 P4 RI3 I0 RI9 P10 R7

P7 R10 I9 R10 P1 R4 I3 RI6

,

where P0 = 〈0, 1, 6, 8, 2, 7, 10, 11, 3, 5, 4, 9〉.
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Figure 1: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with a single region defined by a partition (in dark
grey) whose “shape” is represented as the integer composition,
IntComp12(3, 3, 2, 2, 2, 0).

be evenly distributed [7]. However, the exact organizations
which prove successful are still unknown [16, p. 284].

As shown in [20], a complete all-partition array is a cov-
ering of matrix, A, by K sets, each of which is a partition
of the set {0, 1, . . . , 11} whose parts (1) contain consecu-
tive row elements from A and (2) have cardinalities equal
to the summands in one of the K distinct integer partitions
of L = 12 (e.g., 6+6 or 5+4+2+1) containing I or fewer
unordered summands greater than zero. 2 Figure 1 shows a
6×12 excerpt from a 6×96 pitch-class matrix, A, and one
set forming a region in A containing every pitch class ex-
actly once and corresponding to an integer partition, whose
exact “shape” is more precisely represented as the integer
composition, IntComp12(3, 3, 2, 2, 2, 0) [9]. 3

There are a total of 58 distinct integer partitions of 12
into 6 or fewer non-zero summands [14]. This means that
the number of pitch classes required of an all-partition ar-
ray having K regions, exceeds the number of entries in its
matrix by (K · 12)− (I ·J). When I = 6 and J = 96, this
difference is 120. On the musical surface, these 120 addi-
tionally required pitch classes are found through horizontal
repetitions of at most one in each row from any one con-
tiguous region to the next. As shown in [20], these horizon-
tal row repetitions can be found instead through horizontal
overlaps. These overlaps greatly simplify any computa-
tional model for generating an all-partition array because
the matrix can remain fixed in size.

Figure 2 shows the same 6 × 12 excerpt from
Figure 1, now with a second region corresponding to
a distinct partition defined by the integer composition,
IntComp12(1, 0, 4, 3, 0, 4) (in light grey), with two over-
laps shared with the first region. Note how the second
region (in light grey) formed by its composition shares
two overlapped locations (in rows 1 and 3) which lie at
the rightmost column of the first region. A complete all-
partition array of the type considered here is based on an
I = 6 and J = 96 matrix containing K = 58 distinct
regions with 120 overlaps.

The constraints of the all-partition array are motivated

2 As in [20], we denote an integer partition of a positive integer, L,
by IntPartL(s1, s2, . . . , sI) and define it to be an ordered set of non-
negative integers, 〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si and s1 ≥

s2 ≥ · · · ≥ sI .
3 As in [20], we define an integer composition of a positive integer, L,

denoted by IntCompL(s1, s2, . . . , sI), to be an ordered set of I non-
negative integers, 〈s1, s2, . . . , sI〉, where L =

∑I
i=1 si. Unlike an

integer partition, however, the summands in an integer composition need
not be in descending order of size.

Figure 2: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with two regions defined by distinct integer parti-
tions. Note that the region formed by the second composition,
IntComp12(1, 0, 4, 3, 0, 4) (in light grey), overlaps two loca-
tions (rows 1 and 3) from the first region.

by Babbitt’s desire for maximal diversity [14], which is the
exhaustive presentation of as many musical parameters as
possible (e.g., all 12 pitch classes, 48 tone rows, and K
partitions). This makes the all-partition array problem ap-
propriate for methods used in combinatorial optimization
or constraint satisfaction, which often rely on either max-
imizing some objective function or strictly satisfying a set
of constraints, respectively.

3. PREVIOUS COMPUTATIONAL WORK ON THE
ALL-PARTITION ARRAY PROBLEM

Efforts to solve the all-partition array problem have re-
sulted in a number of different approaches [9, 19, 20]. In
[20], an integer programming (IP) model expressed the
problem as a set of linear (in)equalities and managed to
solve significantly smaller instances of the problem for
matrices with six rows and up to 24 columns (requiring
(J + 2)/2 regions which fix the number of overlaps to be
12). Solving for a matrix of this size required in excess of
30 minutes (Gurobi Optimizer v6.0 solver [1] running on
a 2 GHz Intel Core i7 laptop with 8 GB RAM), and the
computational time drastically increased with an increase
in the number of columns. This suggests that solving for
larger matrix sizes, such as the ones considered in this pa-
per, would prove intractable for this IP model.

The first computational method to automatically gen-
erate an all-partition array from a pitch class matrix was
a constraint programming (CP) model, described in [19].
This model solved a 4×96 matrix (requiring 34 regions and
24 overlaps) by splitting the whole of the matrix in half and
solving each smaller sub-matrix before re-joining them to
form a complete solution. Solving the second sub-matrix
was made easier by discovering certain “easy-to-find” par-
titions and excluding these from the first sub-matrix. Find-
ing a solution still required over 30 minutes (Sugar v2-1-0
solver [17] running on a 2 GHz Intel Core i7 laptop with 8
GB RAM) and this method of splitting the matrix unfortu-
nately excludes possible solutions. Moreover, it is still un-
clear whether this model could be used to efficiently solve
other instances of the all-partition array problem.

The heuristics proposed in this paper are intended to
be used with the procedural greedy backtracking algorithm
originally proposed in [9]. Figure 3 gives pseudo-code for
a simplified version of the main backtracking procedure
originally presented in [9].
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BACKTRACKINGBABBITT()

1 C←
⊕K

i=1〈〈〉〉 I Lists of candidates
2 k ← 1
3 while 0 < k ≤ K
4 if C[k] is empty
5 P← FINDUNUSEDPARTITIONS(. . .)
6 C[k]← FINDCANDIDATES(P, . . .)
7 if C[k] is empty
8 k ← k − 1 I Backtrack
9 else
10 k ← k + 1 I Proceed
11 else I Backtracked to previously visited k
12 Select next overlaps for current candidate in C[k]
13 if current overlaps for current candidate is nil
14 Current candidate becomes next candidate in C[k]
15 if current candidate is nil
16 C[k]← 〈〉 I Make empty
17 k ← k − 1
18 else
19 Select first overlaps (if any) for current candidate
20 k ← k + 1
21 else
22 k ← k + 1
23 return C

Figure 3: Pseudo-code for a simplified version of the
BACKTRACKINGBABBITT algorithm originally presented in [9].
Note that

⊕n
i=1〈xi〉 = 〈x1, x2, . . . xn, 〉, the assignment opera-

tor is denoted by ‘←’ and scoping is indicated by indentation.

The algorithm shown in Figure 3 works from left to
right in a given matrix. For each region, indexed by k,
it first finds the partitions that have not yet been used in
positions 1 to k (line 5) and then finds a list of candidate
compositions (i.e., C[k]) from these unused partitions (line
6) that form valid regions in the matrix according to the
constraints discussed in section 2. If there are no candidate
compositions, the algorithm backtracks by decrementing
k by 1 (lines 7–8), otherwise it proceeds by increment-
ing k by 1 (line 10). In the event that the algorithm has
backtracked to a previously visited k containing candidates
(line 11), the next set of overlaps for the current candidate
in C[k] is chosen (line 12). If there are no overlaps remain-
ing (line 13) then the next candidate in C[k] is chosen. The
algorithm then backtracks if there are no remaining candi-
dates (lines 16–17) or proceeds after selecting the first set
of overlaps (if any are available) for this new current can-
didate (lines 19–20). Note that we have provided here only
those details necessary for understanding how our heuris-
tics have been implemented (see section 4). 4

Even with the help of the search heuristics described
in [9], the algorithm above proved unable to generate a
complete solution to the all-partition array problem after
100, 000 backtracks when tested on a 6 × 96 matrix. In
the following section, we discuss why this failure likely
occurred.

4 More detailed pseudo-code for the original backtracking algo-
rithm can be found in [9] and an improved implementation (writ-
ten in Julia v.1.1.0 [11]) with our proposed heuristics can be found
in the following repository: https://github.com/brianm2b/
generate-all-partition-arrays.

4. PROPOSED BACKTRACKING SEARCH
HEURISTICS

As noted in [9], a greedy deterministic backtracking algo-
rithm for solving the all-partition array problem based on a
depth-first search procedure which finds candidate regions
from left to right in a given matrix will incur considerable
computational cost in terms of time without sufficiently
good heuristics for limiting the amount of backtracking re-
quired. When attempts were made to use this algorithm
to solve for a 6 × 96 matrix, much of the backtracking
was concentrated towards the far right of the matrix after
the algorithm had already successfully discovered most of
the required partitions. This means that the algorithm was
unable to use the few remaining unused partitions to find
compositions capable of forming successful regions (ac-
cording to the constraints discussed in section 2) from the
remaining matrix elements. If one relaxes the constraint
that missing pitch classes from the final region must come
from overlaps from previous contiguous regions and, in-
stead, allows these pitch classes to be added to the end of
the matrix, then the problem becomes significantly more
tractable. As it turns out, this is exactly what Babbitt was
forced to do in many of his works [7,13]. It is these matri-
ces, found for example in Babbitt’s About Time (1982) and
Arie da Capo (1974), that are the focus of this paper, as no
known solution which satisfies all constraints exists. 5

Figure 4 illustrates two scenarios for forming a final re-
gion in a nearly complete all-partition array where only
one partition remains to be used. In Figure 4(b) the fi-
nal region fails to cover one entry in the matrix due to an
overlap of pitch class 9 (row 2) with the previous region.
In Figure 4(c), every entry is covered, but pitch class 9 is
added to the end (row 3) instead of overlapping with the
previous region.

4.1 First Proposed Search Heuristic

The first of our proposed search heuristics is based on a
simple assumption regarding the difficulty of finding a fi-
nal region noted above. By excluding from the left-to-
right search those partitions that successfully form regions
in the final position K at the far right-hand side of A, it
will be easier not only to form a complete matrix cover-
ing (Figure 4(c)), but also to avoid violating the constraint
that all missing pitch classes from any one region must be
overlaps (Figure 4(b)).

Let us suppose Pk, 1 ≤ k ≤ K, is the set of all unused
partitions not found in the sequence of selected candidate
compositions from 1 up to k and R is the set of partitions
that have been found to successfully form regions at K.
The modified set of all unused partitions, P ′k, from 1 up to
k is given by

P ′k =


Pk \R, if (|Pk ∩R| = r ∧

|Pk| > r); and
Pk, otherwise,

(1)

5 See [13] for an example of an all-partition array of this type that
forms an incomplete solution to the all-partition array problem.
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(a) A nearly covered matrix and complete all-partition ar-
ray with 9 uncovered pitch classes and one unused parti-
tion, IntPart12(7, 1, 1, 1, 1, 1), remaining.

(b) An unsuccessful matrix covering where a single pitch-
class 2 remains uncovered by the final region. Note that
all missing pitch classes from the uncovered elements in
(a) are overlaps with previous contiguous regions.

(c) A successful matrix covering by the final region where
pitch-class 2 from (b) has been covered, requiring that the
missing pitch class 9 is added to the end of the matrix
instead of overlapping with the previous region (as in (b)).

Figure 4: A 6×96 pitch-class matrix with 57 of its K = 58 par-
titions in (a) and two possible ways in (b) and (c) to ensure that the
final unused partition, IntComp12(1, 1, 1, 1, 1, 7) (in light grey),
forms a region containing every pitch class exactly once—both
of which result in an incomplete solution to the all-partition array
problem. For clarity, greyed out pitch classes belong to regions
formed by partitions that have not been shown.

where r, 0 ≤ r ≤ |R|, denotes a specified number of par-
titions in R to exclude from Pk. The first case in Eqn (1)
states that the modified set of all unused partitions, P ′k, is
the set difference of all unused partitions from 1 up to k
and those found in R when (1) the number of partitions at
the intersection of Pk and R is equal to r, and (2) the num-
ber of unused partitions is greater than r. When either of
these two conditions are not met, P ′k is simply all unused
partitions remaining (i.e., Pk). Collectively, these cases al-
low for partitions from R to be freely chosen so long as at
least r partitions from R remain unused until there are r
regions left to be found.

4.2 Second Proposed Search Heuristic

The second of our proposed heuristics is based in part on
a modification to one originally proposed in [9]. A cen-
tral feature of both heuristics, however, is that they work
on the assumption that, since the matrix from which an all-
partition array is constructed is regular (i.e., not ragged),
regions should be chosen at each k so as to minimize the
“raggedness” of their right hand column locations in each
row. We make two significant improvements to this orig-
inal heuristic which allow us to (1) work with a modifi-
cation of the problem in which additionally required pitch

classes appear as overlaps and not horizontal repetitions
[20] and (2) minimize the raggedness of regions at each k
in a way which takes into account both how far off from
and in which direction their right hand column locations
are from “ideal” locations specified in (1) while correcting
for this same error found in the previous k − 1 region.

For the first of our improvements, let us suppose
we have a list of candidate compositions, Ck =
〈ck,1, ck,2, ...ck,N 〉 (corresponding to e.g., line 6 in
Figure 3), at position k, where 1 ≤ k ≤ K. Ideally, af-
ter choosing a composition for k, the rightmost column lo-
cation of each row in this composition’s region would be
J · k/K. This rightmost column location after choosing
ck,n from Ck we denote l′k,n,i for a matrix row, i. For ex-
ample, if we let L′k,n be equal to 〈l′k,n,1, . . . , l′k,n,I〉, then
the second region shown in Figure 2 would be L′k,n =
〈3, 3, 5, 5, 2, 4〉. To measure the raggedness or degree of
difference in a region’s rightmost column locations, Dk,n,
that results from choosing ck,n in a fixed-size matrix, we
use the following formula, based on city-block distance:

Dk,n =

I∑
i=1

∣∣l′k,n,i − J·k
K

∣∣ , (2)

where |x| denotes the absolute value of x. The term,
J · k/K, specifies for any given region and row at k an
“ideal” column location in a fixed-size matrix containing
overlaps rather than in a potentially ragged matrix contain-
ing horizontal repetitions as in the original construction of
an all-partition array. 6 This modification simplifies the
modeling of the problem and aligns it with other proposed
models [19, 20].

Our second improvement is based on the observation
that Eqn (2) computes the magnitude and not the direction
of the difference in each row between a region’s right hand
column location and its ideal location. This means, for ex-
ample, that it is not possible to distinguish between two re-
gions that are equally ragged according to Dk,n but where
one may be short of its ideal column locations and the other
is longer. For this reason, we propose the use of an adjust-
ment which captures for a given k how far off and in which
direction the region chosen at k − 1 is from its ideal col-
umn locations defined by the right hand term in Eqn (2).
We can express this adjustment by defining for a region at
k the rightmost column location for a matrix row, i, before
choosing ck,n from Ck, which we denote lk,i. For exam-
ple, if we let Lk,i be equal to 〈lk,1, . . . , lk,I〉, then, for the
second region shown in Figure 2, Lk,i = 〈3, 3, 2, 2, 2, 0〉.
Our second heuristic then is given by

Sk,n =
I∑

i=1

∣∣∣(l′k,n,i − J·k
K

)
+
(
lk,i − J·(k−1)

K

)∣∣∣ , (3)

where the adjustment, expressed as the difference lk,i −
J·(k−1)

K , has been added to the difference shown in Eqn (2).

6 In [9], this “ideal” column location was expressed as 12k/n, where
n is the number of matrix rows, due to the use of horizontal repetitions.
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The absolute value of this sum is then taken and the result-
ing positive value is summed over all rows of i to form the
final measure of adjusted raggedness, Sk,n. Use of Eqn (3)
has the effect of preventing the accumulation of regions
having the same directional error, either too short or too
far past the ideal column locations for each row.

4.3 Modified backtracking algorithm with improved
search heuristics

Whether only the magnitude of difference from an ideal lo-
cation (Eqn (2)), or the magnitude and direction of this dif-
ference (Eqn (3)), is used, the goal of both heuristics is to
minimize the degree of raggedness in the column locations
of any one region formed by a candidate composition at
k. We propose using a greedy strategy, for implementation
with the backtracking algorithm proposed in [9], in which,
for each k, we choose the candidate composition, cn, in Ck

that minimizes either Dk,n or Sk,n. As a given region may
have more than one possible set of overlaps (or none), we
sort each region’s sets of overlaps for each cn according
to whichever set results in the smallest value for the single
heuristic, either Dk,n or Sk,n, used globally throughout the
search. The first of our heuristics shown in Eqn (1) can be
implemented in two parts: one which occurs before the
backtracking search begins and the other during the search
when unused partitions from 1 up to k are found. Our two
other heuristics shown in Eqn (2) and Eqn (3) can be im-
plemented simply during the search when sorting the list
of discovered candidate compositions in each Ck.

In Figure 5, asterisks indicate our modifications to the
original backtracking algorithm in Figure 3 required to im-
plement the new heuristics. Prior to the start of the back-
tracking search, the FINDCANDIDATES function finds the
set of partitions, R, that prove successful in forming re-
gions at K, as required in Eqn (1) (see line 2 in Figure 5).
These partitions are then passed to the function for find-
ing unused partitions from 1 up to k in line 6, which re-
turns a sorted set of lexicographically ordered composi-
tions grouped by partition, P′. In line 7, the pool of candi-
dates for the kth region is chosen from this returned set. In
line 11, the set of candidates found at k is sorted according
to the value assigned to each candidate by either Eqn (2) or
(3) (but not both).

5. SOLUTIONS

As evidence of the correctness for the modified backtrack-
ing algorithm in Figure 5 and a demonstration of its perfor-
mance using our proposed heuristics, we solved for three
different instances of matrices of two sizes found in Bab-
bitt’s works. Table 2 shows the approximate times in sec-
onds and fewest number of backtracks required by our
heuristics to solve these three matrices (Julia v.1.1.0 [11]
running on a 2.4 GHz Intel Core i5 laptop with 8 GB
RAM).

For the purposes of bench marking, all solving times
shown in Table 2 were averaged over three runs and termi-
nated after 2 × 107 backtracks if no solution was found.

BACKTRACKINGBABBITT*()
1 C←

⊕K
i=1〈〈〉〉 I Lists of candidates

2* R← FINDCANDIDATES(. . .)
3 k ← 1
4 while 0 < k ≤ K
5 if C[k] is empty
6* P′ ← FINDUNUSEDPARTITIONS(R, . . .)
7* C[k]← FINDCANDIDATES(P′, . . .)
8 if C[k] is empty
9 k ← k − 1 I Backtrack
10 else
11* C[k]← SORTBYHEURISTICS(C[k])
12 k ← k + 1 I Proceed
13 else I Backtracked to previously visited k
14 Select next overlaps for current candidate in C[k]
15 if current overlaps for current candidate is nil
16 Current candidate becomes next candidate in C[k]
17 if current candidate is nil
18 C[k]← 〈〉 I Make empty
19 k ← k − 1
20 else
21 Select first overlaps (if any) for current candidate
22 k ← k + 1
23 else
24 k ← k + 1
25 return C

Figure 5: Pseudo-code for a simplified version of modifi-
cations to the BACKTRACKINGBABBITT algorithm originally
posed in [9] required to implement our new heuristics, expressed
in Eqn (1), Eqn (2), and Eqn (3). The ’*’ denotes modified lines
to the original implementation shown in Figure 3.

The reported solutions were found by running the algo-
rithm with the given set of heuristics for all values of the
parameter, r, from 1 to |R| (where |x| denotes cardinality)
and selecting the one which resulted in the fewest number
of respective backtracks. The first of these matrices was
constructed manually by Babbitt and no known complete
solution has existed prior to our solving it here using P ′

(r = 11) and D, and P ′ (r = 13 = |R|) and S—the lat-
ter of which resulted in a fewer number of backtracks. The
complete solution to this matrix using the best combination
of heuristics appears in Table 1 below. The second matrix
in Table 2 was constructed manually by a student of Bab-
bitt named David Smalley [9] and at least one known so-
lution (discovered by Smalley) existed prior to our solving
it here using P ′ (r = 22 = |R|) and D, and P ′ (r = 18)
and S. The final matrix was previously solved in [19] us-
ing constraint programming in≈ 30 minutes, however, the
combination of P ′ (r = 1 where |R| = 7) and S dis-
covered a solution in ≈ 22 minutes. Overall, this matrix
required the highest number of backtracks (over 5 million
in the best case) of all matrices tested here. In all cases, we
have used P ′, as solving using either D or S alone proved
infeasible within the specified backtracking limit. Simi-
larly, using P ′ alone also proved unsuccessful.

The significant difference in solving times and number
of required backtracks in Table 2 for each of the matrices
using one set of heuristics or another is interesting to note.
The only difference between the first and second matrices,
for example, is their organization of pitch classes, as both
are the same size and require the same number of regions
and overlaps. However, using P ′ and D solves the second
matrix in approximately 1 second and 2377 backtracks but
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29A843 -30 -071 -1 -1B6 -6 5 43
70B -B 15 -56 9 -92 -28A34B0

349B5A 1 2 -2 -2 6870 -0 9
8102 6 -6 -67A -A39B4 -4 -45 -5 -5 21860743B -B9A50786 21A
6 5 -50A4 -4,B,8 -8 -873 -3129A -A -A 5640B8397
7 -78139 -9 2 56A0B -B 4387 -791 -12

6412 6313 5413 322212 53212 5314 5421 43213 7312 913 822 93

-3 A82 9 651 -1B07 -7 -7A32489
-0 -05716 9 -9A2438B 6 -6 -67 51094A8
-9 453BA72 861 -10BA -10539 4 1 08 67
5 B943 0168 27AB3 -35492768 -8 0 14935A B

-721 4 -4 5A06B -B -B2 -23
5A46B098 -83172BA6 450 -07 2 -23198 5

831 814 543 741 5321 732 84 4214 5212 715 623 7221

-9 -9 05B1 67 -72 38A -A490 157
321 075 -5 B632A -A8 -894 -4 165 -5 7B03 824

2B43 -3 -3 59A160 -027 8 -89 -9A3
87 2061A 95 3 4B 61 -12

798 -816 -6BA04 -45 817 -792 -230B -B 64A5
-5064BA -A 12 7938B 04 -46 5A1 8 9 732B -B60

632 43212 52213 522 5322 4322 4322 6214 3321 42212 4222 34

6B 8342 -2A 96 175 0B8 924 -4A36 -67 -7 -7
9A 76 -61 -1B -B -B5 -5098
-35 -5 B4780 -02 -2 1 63 AB9 5 -5
0874 B 53 -3A -A96 70 -02 -2
21 -19 -9 78 -830 546A -A B271 -13 -38 -89AB460 58913274B0A6

-0A 54 -4 3297 18 -854 -40AB6921 -13

424 42312 5231 26 3313 4231 3241 43 3223 8212 7213 12

B105498A23 -36B5701A9 -9 -94283 0 -0B7561
42 3A -A501B76 3A429856B17 -70 34 8A92

418207 6 54B93A 7620185A9B 34 706812
-281 459BA3

-6 -65 293187
7 8 B -B4A05 6

10 12 921 62212 75 651 11 1 6321 10 2 642 62

Table 1: A generated all-partition array which solves one instance of the all-partition array problem based on a 6 × 96 matrix having
58 distinct regions and 120 overlaps. Each box contains the elements in A belonging to a region formed by a distinct integer partition,
where a dash indicates those that overlap. Note that partitions are denoted using a shorthand notation, e.g., 43, where the base indicates
the length of a part and the exponent denotes its number of occurrences. The integers 10 and 11 are the letters A and B, respectively.

P ′, D P ′, S

Matrix A time (s) backtracks r time (s) backtracks r

1. Babbitt(6, 96) 176.92 583724 11 3.88 5909 13
2. Smalley(6, 96) 1.25 2377 22 96.03 231933 18
3. Babbitt(4, 96) 3791.94 14224645 1 1321.09 5390388 1

Table 2: Approximate times and fewest number of required
backtracks for solving three different matrices using the search
heuristics, P ′, D, and S.

using P ′ and S is significantly more costly. The reverse
is true of these sets of heuristics in the first matrix. This
result appears to support the findings reported in [20], that
each matrix represents a unique problem space, which, in
our case, may require the use of heuristics with different
considerations. Contrary to what one might expect, how-
ever, the smaller third matrix actually proved more difficult
than the larger and more combinatorially expansive matri-
ces (i.e., requiring more regions) with a best-case solving
time and number of backtracks roughly 3 orders of mag-
nitude greater. Finally, it is important to note that while
the best solving times and number of backtracks for the
first two matrices are low, their use of values greater than
1 for the parameter, r, in P ′ means that some potential so-

lutions are excluded, namely, those in which one or more
of these r partitions in P ′ appear at positions, k, where
k ≤ K − r. This is not true, however, in the third ma-
trix, where only one of the possible partitions in P ′ was
excluded (i.e., r = 1).

6. CONCLUSION

In this paper, we provided improvements to an existing
backtracking algorithm in the form of three search heuris-
tics which proved successful in solving the all-partition ar-
ray problem for three different instances found in Babbitt’s
music. Our findings demonstrate that, when used together,
our proposed heuristics allow the backtracking approach
to outperform other approaches. However, it is also ap-
parent from our results that the solving time and number
of required backtracks required is highly dependent on the
specific matrix given as input. In future work, it would
prove useful to investigate methods of analyzing the orga-
nization of pitch classes in a matrix prior to searching and
using these findings to modify the ideal column locations
accordingly during the search.
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