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Polynomial-Time What-If Analysis for
Prefix-Manipulating MPLS Networks∗

Stefan Schmid1,2 Jiřı́ Srba2
1 University of Vienna, Austria 2 Aalborg University, Denmark

Abstract—While automated network verification is emerging
as a critical enabler to manage large complex networks, current
approaches come with a high computational complexity. This
paper initiates the study of communication networks whose
configurations can be verified fast, namely in polynomial time.
In particular, we show that in communication networks based
on prefix rewriting, which include MPLS networks, important
network properties such as reachability, loop-freedom, and trans-
parency, can be verified efficiently, even in the presence of
failures. This enables a fast what-if analysis, addressing a major
concern of network administrators: while configuring and testing
network policies for a fully functional network is challenging,
ensuring policy compliance in the face of (possibly multiple)
failures, is almost impossible for human administrators. At the
heart of our approach lies an interesting connection to the theory
of prefix rewriting systems, a subfield of language and automata
theory.

I. INTRODUCTION

The operation of traditional computer networks is known
to be a difficult manual and error-prone task, forcing admin-
istrators to become “masters of complexity”. Over the last
years, even tech-savvy companies such as GitHub, Amazon,
GoDaddy, etc. have reported major issues with their network,
due to misconfigurations and including loops [1], leading to
disruptive downtimes [2]. A recent misconfiguration led to
an hour-long, nation-wide outage for Time Warners backbone
network [3], and BGP-related incidents make news every
few months [3]. Ensuring a correct network operation is
particularly challenging in the face of (one or even multiple)
link failures, introducing combinatorial complexity [4], [5].
To make things worse, our methodologies and techniques to
manage and debug networks have hardly evolved over the last
twenty years, and tools such as ping and traceroute are limited
to test end-to-end connectivity [6].

As a response to the difficulty of maintaining policy com-
pliance, and given the critical role that computer networks
(including the Internet, datacenter networks, enterprise net-
works) play today, researchers have started developing more
principled approaches to networking and specification, in par-
ticular in the context of software-defined networking. Indeed,
over the last years, we have witnessed great advances in the
development of mathematical foundations for computer net-
works and the emergence of high-level network programming
languages [7], [8].

While powerful, however, existing formal frameworks often
come with potentially high (super-polynomial) running times
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in the worst-case: the underlying decision procedures can
be PSPACE-complete [7] or even undecidable [9], which
potentially limits their usability in practice. Indeed, existing
solutions tend to trade generality over efficiency, and today
we lack a good understanding of the tradeoff between expres-
siveness and computational tractability [10].

A. Our Contributions

Our work is motivated by the question whether and to which
extent it is possible to verify computer network configurations
in polynomial time. We find that fast verification is indeed
possible for a large class of communication networks, namely
networks based on prefix-rewriting (not to be confused with
IP prefix routing). The key to the fast analysis algorithms
for prefix rewriting networks lies in the specific, stack-like
structure of packet headers and forwarding rules.

MPLS networks [11], networks based on multiprotocol label
switching, are the most prominent and widely-deployed class
of prefix rewriting networks. Accordingly, they serve as a
case study and main application in this paper, however, our
framework is applicable to other prefix-manipulating routing
protocols like e.g. segment routing. To the best of our knowl-
edge, our paper is the first to provide a formal model and
fast automated analysis of prefix-manipulating networks under
(possibly multiple) failures.

In particular, we present a formal framework which allows
us to verify, automatically and in polynomial-time, fundamen-
tal network properties such as reachability, cycle detection,
and transparency, both in fully functional networks as well
as under (permanent and transient) failures. That is, our
framework also allows us to conduct automated and fast what-
if analysis. This is attractive as link failures, even multiple
ones at a time, are common in practice [5] and introduce
a combinatorial complexity which can overburden a human
operator or system administrator.

Networks based on prefix rewriting rely on a natural (but not
well-known) connection to the theory of pushdown automata
rewriting systems [12], a subfield in language and automata
theory. Unlike much prior work on network verification, this
connection also allows us to deal with dynamically changing
packet header sizes: a reality in many networks.

More generally, this paper also informs about the impact of
the specific structure of forwarding rules on the verification
complexity: we prove that arbitrary rewriting rules (as they
are for example supported by modern OpenFlow switches) can
render many underlying problems computationally intractable.
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In particular, we prove that for any given maximum number
of link failures, checking interface connectivity, transparency,
and loop-free routing, are undecidable problems.

B. Related Work

Our work is motivated by the verification complexities
introduced by (one or multiple) link failures, and we are
particularly interested in fundamental reachability properties.
Indeed, recent incidents reported in [4] and [8] demonstrate
the potential security threats introduced by link failures and
the resulting, policy-violating changes in network reachability.
While already small violations of the intended reachability
policies in computer networks can compromise availability,
security, and performance of the network [8], network opera-
tors today often use a pragmatic and manual “fix it when it
breaks” approach.

Researchers have started developing network verification
tools which enable operators to systematically reason about
their networks [13]. Often, network verification is considered
from a program verification perspective [8]: the network
control plane can be thought of as a program that takes
configurations to generate a data plane, and the data plane
is a program that takes a packet and its location (i.e., a router
port) as input, and outputs a packet on a different location.

While early formal verification in networking revolved
around correctness and protocol security [14], [15], recent
work [7], [16]–[19] focused on the analysis of forwarding
tables. Well-known static analysis tools include HSA [20],
Libra [21] and VeriFlow [22]. There also exist efforts on
active testing of the data plane, using traffic [23], [24]. Fayaz
et al. recently initiated the study of “exhaustive” reachability
analysis and verification, in all possible environments in which
a network can incarnate [8].

Existing network verification frameworks often have a high
runtime complexity, and complexity is often seen as the enemy
of correctness and security [25]. Already the verification of
simple networks based on stateless routers communicating is
known to be PSPACE-complete [7], and by introducing a
notion of state (e.g., stateful middleboxes but also modern
switches [26]–[28]), the problems may even become undecid-
able [9], [29].

For an interesting study of complexities involved in verify-
ing different types of middleboxes, we refer the reader to a
recent paper by Velner et al. [29]: the authors also discuss
polynomial time verification algorithms based on dynamic
programming (for stateless and increasing middleboxes) and
suggest abstracting away channel ordering, enabling safety
checking in EXPSPACE for stateful middleboxes. The poly-
nomial time algorithm from [29] relies on the restriction of
a finite set of header symbols, and contrary to our work,
this does not allow to model networks with unboundedly
many headers, like MPLS and segment routing networks. The
complexity question is also related to the recent studies on
the (sometimes surprising) computational power (and hence
complexity) of different networks: e.g., Peresini and Kos-
tic [30] showed how to simulate a Rule 110 cellular automaton

in a general network model, and Newport and Zhou [31]
highlighted the computational power of SDNs.

Our work on strictly polynomial-time verification relies
on the theory of prefix rewriting systems [12]. As a side
contribution, our approach, unlike much prior work [7], [20],
also supports packet headers whose size can change dynam-
ically and be potentially unbounded (e.g., MPLS shim layer
headers [11]).

C. Preliminaries

Our approach leverages a connection to language and au-
tomata theory. In this section, we introduce the necessary
preliminaries. Let Σ be a set. Then Σ∗ is a set of all
strings over Σ including the empty string ε. The length
of w ∈ Σ∗ is denoted as |w|. A (nondeterministic) finite
automaton A = (Q, q0, G,Σ,→) consists of a finite set of
states Q, the initial state q0 ∈ Q, the set of accepting (goal)
states G ⊆ Q, a finite alphabet Σ and the transition relation
→⊆ Q×Σ×Q, written as q a→ q′ whenever (q, a, q′) ∈→. A
finite automaton A accepts the language L(A) consisting of
all strings w = a1a2 . . . an ∈ Σ∗ for which there exists a path,
from the initial state, q0

a1→ q1
a2→ q2

a3→ . . .
an→ qn to qn ∈ G.

A language L ⊆ Σ∗ is regular if there is a finite automaton
A such that L = L(A). We recall that regular languages are
closed under the operations of intersection, union, Kleene star,
concatenation and complement. It is decidable in a polynomial
time whether a given finite automaton A accepts a string w and
whether L(A) is empty. For an introduction to finite automata
theory, we refer the reader e.g. to [32].

D. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces our network model and its desirable prop-
erties we want to test automatically. Section III provides the
motivation for our work by showing that the basic network
properties studied in this paper are generally undecidable.
In Section IV we introduce a formal model for MPLS
networks which serves as a case study for prefix-rewriting
networks. Section V is the heart of this paper, and describes
the polynomial-time verification procedure for prefix-rewriting
networks in general and MPLS networks in particular. We
conclude in Section VI.

II. NETWORK MODEL AND PROPERTIES

This section introduces our formal network model, as well
as the properties it should provide in terms of connectivity,
reachability, loop-freedom and transparency.

A. Network Model

Definition 1 (Network): A network is a tuple N =
(V,E, I inv , Ioutv , λv, L, δ

F
v ) where

• V is a finite nonempty set of nodes (the switches or
routers),

• E ⊆ V × V is the set of edges or links,
• for each node v ∈ V , the finite set I inv is the set of

incoming interfaces of v, and the finite set Ioutv is the set
of outgoing interfaces of v,



• for each node v ∈ V the function λv : I inv ∪ Ioutv → V is
the interface function mapping each incoming interface
to the previous-hop node, and each outgoing interface
to the next-hop node such that (λv(in), v) ∈ E and
(v, λv(out)) ∈ E for all v ∈ V , all in ∈ I inv and all
out ∈ Ioutv ,

• L is a nonempty, finite set of labels used in packet
headers, and

• for each set of failed links F ⊆ E and each node v ∈ V
we have a commutable routing function δFv : I inv ×L∗ →
2(I

out×L∗) such that for all incoming interfaces in ∈ I inv
and all packet headers h ∈ L∗ (sequence of labels), the
set δFv (in, h) is finite and consists of pairs of outgoing
interfaces together with modified packet headers.

In our network model we consider only stateless nodes
(that have no memory) and we are particularly interested in
the routing behavior under failures. We represent a packet
routing sequence consisting of forwarding operations as tuples
(vi, ini, hi, out i, hi+1, Fi): node vi receives, on the incoming
interface ini, a packet with header hi ∈ L∗; given that links
Fi are currently down, the node forwards the packet to the
(live) outgoing interface out i, with a new header hi+1.

Definition 2 (Packet routing with at most k-link failures): A
packet routing in a network with at most k-link failures, given
a packet with the header h1 received at incoming interface in1

of v1, is a finite or infinite sequence of tuples

(v1, in1, h1, out1, h2, F1),

(v2, in2, h2, out2, h3, F2),

. . .

where for all applicable i ≥ 1, we have vi ∈ V , ini ∈ I invi ,
hi ∈ L∗, out i ∈ Ioutvi , Fi ⊆ E such that |Fi| ≤ k and where

• (out i, hi+1) ∈ δFi
vi (ini, hi), and

• (vi, λv(out i)) = (λ(ini+1), vi+1) ∈ E r Fi.

The visited nodes during the packet routing are given by the
sequence v1, v2, . . .. If the packet routing sequence is finite and
ends with the tuple (vn, inn, hn, outn, hn+1, Fn), we say that
the packet with the header h1 at incoming interface in1 of
node v1 can arrive (in a network with at most k link failures)
to an outgoing interface outn of the node vn with the header
hn+1. Note that we allow dynamic changes of link failures
during the packet routing, under the assumption that at any
moment at most k links can fail. In the rest of the paper we
implicitly assume that k ≤ |L|.

Example 1: Let us consider an example in the context of
MPLS. Figure 1 shows an excerpt of a larger MPLS network,
inspired by the similar example given in the Cisco MPLS
specification [33]. We assume that the link between v1 and
v2 is down, forcing traffic to be rerouted via v3 and v4. We
defer a detailed discussion of the failover behavior to later.
Identifying the interface names with edges in the network (and
where (−, v1) denotes the only incoming interface of the node

v1 v2

v3 v4

50 5251

61|51

60|51 51

Fig. 1: Example: MPLS Fast-Reroute [33]. The failed link is
dashed and the bold arrows show the current flow allocation.
In this case, a backup tunnel (v1, v3, v4) has been established
around the “protected” link (v1, v2) that failed.

v1 and (v2,−) the only outgoing interface of the node v2), we
obtain the following packet routing sequence:

(v1, (−, v1), 50, (v1, v3), 60|51, {(v1, v2)}),

(v3, (v1, v3), 60|51, (v3, v4), 61|51, {(v1, v2)}),

(v4, (v3, v4), 61|51, (v4, v2), 51, ∅),

(v2, (v4, v2), 51, (v2,−), 52, ∅) .

The routing sequence assumes that during the first two packet
forwards the link between v1 and v2 is down, after which the
link was repaired (denoted by the empty set of failed links).

B. Properties and Problems

One of the most fundamental tasks of any computer net-
work, is to provide connectivity between endpoints. At the
same time, due to policy and security constraints, connectivity
may also be explicitly prohibited: for example, a packet
entering from an insecure port or a packet having a certain
header should not be forwarded to a certain secure port.
We will refer to this property as the interface connectivity.
Another fundamental property many networks should provide
is transparency: it is often desirable that from the outside,
changes in the internal technology or routing of a network
are not visible, facilitating a simple interface to neighboring
networks. In other words, a network may be abstracted as a
single “big switch”. Another fundamental property any useful
network should provide is loop-freedom. As we will see in
the following, loop-freedom comes in different flavors, and
indeed, certain loops may be unavoidable or even desirable,
e.g., during the traversal of middleboxes or virtualized network
functions deployed in the network core, as long as they are
finite and “on purpose”’.

Succinctly, we define the desirable properties in a
parametrized way, given a fixed number k as an upper bound
on the number of tolerable link failures.
• Interface connectivity problem: Given an incoming inter-

face in of a node v, an outgoing interface out of a node
v′, and a subset L′ ⊆ L of label symbols, we ask: is there
a header h ∈ L′∗ such that a packet with the header h at
interface in of node v can arrive at the interface out of
node v′ with some modified header h′ ∈ L∗?

• Transparency problem: Given two nodes v and v′, an
incoming interface in of v and an outgoing interface out



of v′, we ask: for any packet arriving with an empty
header at interface in of v and reaching the interface out
of v′, is its header at the interface out also empty?

• Cyclic routing problem: Given an incoming interface in
of a node v, we ask: is there a header h ∈ L∗ such
that there exists an infinite packet routing sequence for a
packet with the header h starting at the interface in of
node v?

• r-Repeated routing problem: Given an incoming interface
in of a node v, we ask: is there a header h ∈ L∗, a node
v′ ∈ V and packet routing sequence for a packet with
header h, starting at the interface in of the node v, such
that the node v′ is visited at least r-times?

III. MOTIVATION: COMPLEXITY AND UNDECIDABILITY

Our paper is motivated by the observation that checking
the properties defined above can be undecidable or compu-
tationally infeasible, already in networks based on simple
forwarding rules.

Theorem 1: For any given number k of maximum link
failures, the interface connectivity, transparency and cyclic
routing problems are undecidable.

On the other hand, the r-repeated routing problem is decid-
able for any r.

Theorem 2: For any given number k of maximum link
failures, the r-repeated routing problem is decidable.

Note that while the problem is decidable, the brute force
algorithm runs in exponential time even for a fixed number r.
We will show later on that for specific networks (like MPLS),
we can decide the r-repeated routing problem in polynomial
time for any fixed number r, even when considering an
arbitrary number k of link failures.

IV. CASE STUDY AND MODEL FOR MPLS NETWORKS

Prefix-rewriting networks as studied in this paper are not
a new concept, but rather, one of the most widely deployed
network protocols today is based on prefix rewriting: networks
based on Multiprotocol Label Switching (MPLS) [11]. We will
hence consider MPLS networks as our main case study. In
this section, we first provide some background on MPLS net-
works and then introduce a formal model for MPLS networks
accordingly. We will conclude with an extended example.

A. MPLS Networks

MPLS networks are used to establish tunnels across a
transport medium. In a nutshell, forwarding decisions are
based on the contents of labels assigned to data packets. MPLS
typically operates between Layer 2 and Layer 3 and uses a
label stack, where each stack entry contains four fields: (1) a
label value; (2) a traffic class field for QoS (quality of service)
priority and ECN (Explicit Congestion Notification); (3) a 1-
bit bottom of stack flag; (4) an 8 bit TTL (time to live) field.
The Traffic Class field is also known under the name exp field,
which is “reserved for experimental use”1.

1For example, this field can be set to indicate that a label has been popped
already, to remove load from the egress router.

An MPLS node serving as label switch router (a.k.a. transit
router) uses the label included in the packet header to de-
termine the next hop on the label switched path (LSP). On
this occasion, the old label may be replaced with a new label
before the packet is routed forward. An MPLS node serving
as label edge router acts as the entry and exit point for the
network: a label edge router pushes an MPLS label onto an
incoming packet resp. pops it from an outgoing packet.

Upon receiving a packet, an MPLS node examines the label
at the top of the stack, and depending on the content, performs
a swap, push or pop operation on the packet label stack:

1) In a swap operation the label is swapped with a new label,
and the packet is forwarded along the path associated with
the new label.

2) In a push operation a new label is pushed on top of the
existing label, encapsulating the packet in another layer
of MPLS and introducing hierarchical routing.

3) In a pop operation the label is removed from the packet.
If the popped label was the last on the stack, the packet
leaves the MPLS tunnel.

We are particularly interested in analyzing network behav-
iors under failure. MPLS includes a local protection mecha-
nism called fast reroute resp. local protection, allowing to
protect a label switched path by a backup path. Let us first
recall the example in Figure 1. In this example, in the absence
of failures, node v1 forwards packets arriving with (top-of-
stack) label 50 to node v2, swapping the label from 50 to 51.
However, if link (v1, v2) is currently unavailable (indicated
as dashed line), v1’s failover rules for link (v1, v2) apply (if
any are defined). In this case, to route around link (v1, v2), v1
pushes a label, say 60, on top of the label 51 (note: not 50),
and forwards the packet to v3. Using a standard forwarding
rule installed at v3, we will swap the top label to 61, and v4
will pop the top label. Thus, the rerouted packet arrives at
v2 with the original label 51, and the packet can continue its
journey similarly to the non-faulty scenario.

In general, MPLS link protection comes in two flavors,
which we will simply call local and global protection. In a
local protection scheme, each failed link (u, v) is protected
individually, i.e., traffic is rerouted along an alternative path
from u to v. The use of backup routes is recursive, in the
sense that if along the backup route from u to v another
link e fails, we recursively reroute around e as well, before
continuing on our backup route to v. The main advantage
of the local protection scheme is that it is relatively simple:
essentially, we have to push a new label (of the backup tunnel)
for each failed link, recursively routing around the failed link.
The main disadvantage however is that local rerouting severely
limits rerouting flexibilities, compared to the global protection
scheme where traffic can be rerouted directly to the destination,
by swapping MPLS labels accordingly: especially in case of
multiple link failures, insisting on rerouting to the endpoint
of each failed link may unnecessarily increase route lengths
and network loads. The main drawback of the global rerouting
scheme is that it renders what-if analysis even more complex:



computing all possible routes along which traffic may be
rerouted under a set of failures is challenging for a human
admin. Accordingly, admins are often explicitly discouraged
of using global rerouting.

We will provide a more detailed example of both the local
and global protection at the end of this section, after having
introduced our formal model.

B. A Formal Model of MPLS Networks

We shall now formally define an MPLS network model
as a particular instance of the general network model N =
(V,E, I inv , Ioutv , λv, L, δ

F
v ) introduced in Section II.

First, we define the set Op of MPLS operations on header
sequences:

Op = {swap(`) | ` ∈ L} ∪ {push(`) | ` ∈ L} ∪ {pop} .

An MPLS network is defined via the local routing table τv
for each node v ∈ V :

τv : I inv × (L ∪ {⊥}) ↪→ Ioutv ×Op

is a partial function that for a packet arriving at an incoming
interface in and the top-most label symbol ` (or ⊥ that
stands for the empty label-stack), either returns τv(in, `) =
(out , o) where out is an outgoing interface and o is some
label operation to be performed; or the output is undefined
meaning that the packet is dropped. We require that whenever
τv(in,⊥) = (out , o), then o must be of the form push(`) (in
other words pop and swap operations may not be applied on
an empty label-stack).

We also employ a local link protection mechanism (fast
reroute): for each node v ∈ V , a partial link protection function

πv : Ioutv × (L ∪ {⊥}) ↪→ Ioutv ×Op

is defined. Here, if πv(in,⊥) = (out , o) then o must be the
push operation. The intuition is that if some outgoing interface
out is down, the link protection function suggests (in case
that out is protected) a backup outgoing interface, together
an additional operator on the header. If the link protection
function is undefined, the packet is dropped.

As links can have multiple protections, we define the link
protection dependency graph (Ioutv ,→) such that out → out ′

iff πv(out , `) = (out ′, o) for some label ` ∈ L ∪ {⊥} and
some operation o. For sanity reasons (to avoid cyclic link
protection), in the rest of the paper we require that every
link protection function πv has an acyclic link protection
dependency graph. If needed, this fact can be easily verified
in polynomial time.

Definition 3 (MPLS network): An MPLS network is a
network N = (V,E, I inv , Ioutv , λv, L, δ

F
v ) defining for each

node v a local routing table τv and a link protection function
πv . The δFv function is defined as follows (here ε is the empty
string of labels, ` ∈ L and h ∈ L∗):
• δFv (in, ε) = PF

v (out , `) provided that τv(in,⊥) =
(out , push(`)),

• δFv (in, `h) = PF
v (out , `′h) provided that τv(in, `) =

(out , swap(`′)),

• δFv (in, `h) = PF
v (out , `′`h) provided that τv(in, `) =

(out , push(`′)),
• δFv (in, `h) = PF

v (out , h) provided that τv(in, `) =
(out , pop)

where PF
v (out , h) is the fast reroute function defined via the

link protection function πv as follows:

PF
v (out , h) =

{(out , h)} if (v, λv(out)) 6∈ F else
PF
v (out ′, `) if h = ε and πv(out ,⊥) = (out ′, push(`))

PF
v (out ′, `′h′) if h = `h′ and πv(out , `) = (out ′, swap(`′))

PF
v (out ′, `′h) if h = `h′ and πv(out , `) = (out ′, push(`′))

PF
v (out ′, h′) if h = `h′ and πv(out , `) = (out ′, pop)

∅ otherwise.

Note that because the dependency graph (Ioutv ,→) is acyclic,
the recursive definition of PF

v (out , h) is well founded.

C. Example

Let us illustrate our model and notation with two examples
in Figures 2 (for local rerouting) and 3 (for global rerouting).
We indicate the current flow in bold, the failed link dashed and
for simplicity we identify node interfaces with the correspond-
ing links. Figure 2 top shows the current flow before the link
failure. If link (v2, v3) fails, node v2 pushes a label, essentially
rerouting the flow via v6 and v7 to v3 again (Figure 2 middle).
If in addition, also link (v2, v6) fails, this link is protected by
rerouting the traffic via v5 (Figure 2 bottom).

The main disadvantage of this local protection scheme is
that the flow from in2 to out2 is forced to be routed via v3,
although from v7, it could be in principle directly forwarded
to v8, reducing the overall traffic.

Figure 3 top (single link failure) shows how the flexibilities
introduced by a global rerouting scheme can be exploited to
overcome this problem. If two links fail (Figure 3 bottom), a
hybrid approach may be used: it is sufficient to protect the
link (v2, v6) using a local rerouting.

The examples above show the application of the push rules
only in case of a link failure, however, our MPLS network
model is general enough to allow for the use of push rules
also as a standard router behaviour e.g. for tunneling.

V. POLYNOMIAL-TIME VERIFICATION

The key to the polynomial-time verifiability of the MPLS-
like networks introduced in this paper lies in the specific
structure of the switch resp. router rules. As we will see, this
allows to leverage the theory of prefix rewriting system and in
particular pushdown automata rewriting towards fast network
verification. In the following, we first formally introduce prefix
rewriting systems. Subsequently, we show how to build MPLS-
based prefix rewriting networks, and prove the polynomial-
time verifiability of the fundamental properties introduced in
Section II.
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Fig. 2: Example of local protection. Top: Initially, traffic from
in1 (entering with empty stack ⊥) to out1 is routed along the
path v1  v2  v3  v4 and then to out1. Traffic from
in2 to out2 is routed along the path v1  v2  v3  v8
and then to out2. Middle: Behavior when link (v2, v3) fails.
Bottom: Behavior when links (v2, v3) and (v2, v6) fail.

A. Prefix Rewriting Systems

Prefix-manipulating networks can be verified by translating
them into pushdown automata and applying the automata-
theoretic techniques that give us polynomial time decision
procedures.

Let Γ be a nonempty and finite alphabet. A prefix rewrite
system is a finite collection of rewrite rules R ⊆ Γ∗ × Γ∗.
We write v → w of an element (v, w) ∈ R and require that
v 6= ε where ε is the empty string. A prefix rewrite system R
generates an infinite transition system GR = (Γ∗,→R) such
that vt →R wt if and only if (v, w) ∈ R and t ∈ Γ∗. A
prefix rewrite system is called a pushdown system if for every
(v, w) ∈ R we have |v| = 2 and 1 ≤ |w| ≤ 3. Hence the
first symbol in v and w is interpreted as the control state of
the pushdown automaton and the second symbol in v is the
current top of the stack. If |w| = 1 then the rule pops the top
of the stack. If |w| = 2 then it swaps the top with another
symbol and if |w| = 3 then it swaps the current top of the
stack and pushes a new symbol on the top of the stack.

Let S ⊆ Γ∗ be a set of strings. We define the sets
post∗R(S) = {u′ | u →∗R u′, u ∈ S} and post+R(S) = {u′ |
u →+

R u′, u ∈ S} where →+
R is the transitive closure of →R
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Fig. 3: Example of global protection. Same example as in
Figure 2, however, failed links do not have to be masked
individually, but traffic can be rerouted more flexibly. Top:
rerouting around failed link (v2, v3): now the flow from in2 to
out2 travels directly via v7 and v8 to the destination. Bottom:
In addition also link (v5, v6) fails, which however is masked
with local protection.

and →∗R is the reflexive and transitive closure of the relation
→R.

Theorem 3 ([34], [35]): Let R be a pushdown system over
the alphabet Γ. Let S ⊆ Γ∗ be a regular set of pushdown
configurations given by a finite automaton A such that L(A) =
S. Then we can in polynomial time (w.r.t. to the size of A
and R) construct finite automata Apost∗ and Apost+ such that
L(Apost∗) = post∗R(S) and L(Apost+) = post+R(S).

B. Translating MPLS Networks to Prefix Rewrite Systems

We now show how to encode entire network models, in
particular MPLS networks, as a pushdown prefix rewriting
system. We use the following intuition for encoding of packet
routing as a pushdown system:
• control states are of the form (v, in) or (v, out , i) where v

is a node, in incoming interface of v and out an outgoing
interface of v, and i is the number of times a link failed
in the given node, and

• labels will be stack symbols (including a special symbol
⊥ for the bottom of the stack).

Hence a packet with the header h ∈ L∗ arriving at incoming
interface in of a node v will be represented by the pushdown
configuration (v, in)h⊥. A packet with header h that should
be forwarded at node v to the outgoing interface out is repre-
sented by the configuration (v, out , i)h⊥, where i represents
the number of times the fast reroute mechanism was employed
at the node v. We have 0 ≤ i ≤ k where k is the maximum
number of link failures. Note that since πv is only a partial
function, it is possible that a given outgoing interface out is



protected fewer times than k (or it is unprotected and then the
control state (v, out , 0) appears only with the number 0).

Assume a given MPLS network N =
(V,E, I inv , Ioutv , λv, L, δ

F
v ) together with the routing table

τv and link protection πv for each v ∈ V . Let k be a fixed
number of maximum link failures such that k ≤ |E|.

We define the corresponding pushdown system R(N) over
Γ = L ∪ {⊥} ∪ {(v, in) | v ∈ V, in ∈ I inv } ∪ {(v, out , i) |
v ∈ V, out ∈ Ioutv , 0 ≤ i ≤ k} such that R(N) contains the
following rules:

a) (v, out , i)`→ (v′, in)` for every ` ∈ L ∪ {⊥} and every
i, 0 ≤ i ≤ k, such that v′ = λv(out) and v = λv′(in),

b1) (v, in)⊥ → (v, out , 0)`⊥ if τv(in,⊥) = (out , push(`)),
b2) (v, in)`→ (v, out , 0)`′ if τv(in, `) = (out , swap(`′)),
b3) (v, in)`→ (v, out , 0)`′` if τv(in, `) = (out , push(`′)),
b4) (v, in)`→ (v, out , 0) if τv(in, `) = (out , pop),
c1) (v, out , i)⊥ → (v, out ′, i+ 1)`⊥ for every i, 0 ≤ i < k,

where πv(out ,⊥) = (out ′, push(`)),
c2) (v, out , i)` → (v, out ′, i + 1)`′ for every i, 0 ≤ i < k,

where πv(out , `) = (out ′, swap(`′)),
c3) (v, out , i)` → (v, out ′, i + 1)`′` for every i, 0 ≤ i < k,

where πv(out , `) = (out ′, push(`′)), and
c4) (v, out , i)` → (v, out ′, i + 1) for every i, 0 ≤ i < k,

where πv(out , `) = (out ′, pop).

The rule a) makes the connection between the outgoing
interface of a node to its next hop and the packet is forwarded
there (and hence the top most label ` does not change). Rules
b1) to b4) implement the node forwarding operation on the
top most label ` of the forwarded packet. Note that an empty
header ⊥, arriving for example from another network using
a different routing protocol, is handled separately by the rule
b1). Finally, the rules c1) to c4) enumerate all possible reroute
options for up to k link failures. As 0 ≤ i ≤ k and k is w.l.o.g.
assumed to be smaller than or equal to the number of edges in
N , the system R(N) can be constructed in polynomial time.

C. Fast Verification

The following theorem is the key to all our decidability
results on prefix rewriting networks.

Theorem 4: Consider an MPLS network with at most k
link failures. Then a packet with a header h1 at an incoming
interface in1 of the node v1 can reach an outgoing inter-
face out2 of a node v2 with the header h2 if and only if
(v1, in1)h1⊥ →∗ (v2, out2, i)h2⊥ for some i, 0 ≤ i ≤ k.

Sketch: Let us first assume a routing sequence as in
Definition 2 for a network N with at most k link failures.
We shall argue that the first packet forwarding in the routing
sequence

(v1, in1, h1, out1, h2, F1)

where λv1(out1) = v2 and (v1, v2) ∈ ErF1, can be captured
by a series of rewriting rules in the pushdown system. This
scheme can be then extended to the whole routing sequence
by a simple inductive argument. By the semantics of the
MPLS networks, and by a single application of one of the

rules b1)–b4) and up to |F1| applications of the rules c1)–
c4), we get the following rewriting sequence in the pushdown
system (v1, in1)h1⊥ → (v1, out , 0)h⊥ → (v1, out

′, 1)h′⊥ →
(v1, out

′′, 2)h′′⊥ → . . .→ (v1, out1, i)h2⊥ where i ≤ |F1| ≤
k. This sequence can be extended by the application of the
rule a) such that (v1, out1, i)h2⊥ → (v2, in2)h2⊥ to the next
packet forward and so on.

Let us on the other hand assume that (v1, in1)h1⊥ →∗
(v2, out2, i)h2⊥ for some i, 0 ≤ i ≤ k. We shall argue
that there is a corresponding routing sequence by analyzing
the rules a), b1)–b4) and c1)–c4). First we observe, that the
application of the rule a) is compatible with the definition
of packet routing sequence, as it simply forwards the packet
from the outgoing interface out to the incoming interface in;
it is ensured that they are connected by an edge. The header
is not altered by the application of the rule a). Rules b1)–
b4) perform the prefix manipulation of the packet arriving at
the incoming interface in exactly according to the forwarding
table τv , following the semantics from Definition 3. In a
similar fashion, the rules c1)–c4) perform, in a series of steps,
the link protection mechanism given by the table πv . By every
application of the rule, the counter in the third component
increases by one, simulating the function PF

v (out , h) from
Definition 3 that applies the link protection recursively for
up to |F | steps where |F | ≤ k. Hence every computation
in the pushdown system corresponds to a real packet routing
sequence in a network with up to k link failures.

1) Application to Interface Connectivity Problem: As-
sume that we are given an MPLS network N =
(V,E, I inv , Ioutv , λv, L, δ

F
v ) with at most k link failures and

let R(N) be the pushdown system for N constructed above.
Let in be a given incoming interface of a node v, let out be
a given outgoing interface of a node v′ and let L′ be a subset
of label symbols.

We want to provide an answer to the question whether there
is a header h ∈ L′∗ such that a packet with this header at
incoming interface in of v can arrive to the interface out of
v′. We can decide this question by first constructing a finite
automaton A accepting the regular language {(v, in)h⊥ |
h ∈ L′∗}. Clearly such A can be constructed by using
only three states and O(|L′|) transitions. Then, in polynomial
time, we construct the automaton Apost∗ that recognizes
post∗R(N)(L(A)). By a direct application of Theorem 4, the
answer to the interface connectivity problem is positive if
and only if there is an i, 0 ≤ i ≤ k, such that the string
(v′, out , i)h′⊥ is accepted by Apost∗ for some h′ ∈ L∗. This
can be verified in polynomial time e.g., by running DFS from
the initial state of Apost∗: the first symbol that we read must
be of the form (v′, out , i); afterwards, we perform a search to
check whether some accepting state is reachable (ignoring the
symbols on the transitions). Hence we can conclude with the
following theorem.

Theorem 5: The interface connectivity problem is decidable
in polynomial time for MPLS networks.

2) Application to Cyclic Routing Problem: Assume a given
MPLS network N = (V,E, I inv , Ioutv , λv, L, δ

F
v ) in which



there are at most k link failures. For a given incoming interface
in of a node v, we want to find out if there is a header h ∈ L∗
such that there is an infinite routing sequence for the packet
with the header h starting at the interface in of v. We shall
again use the pushdown system R(N) constructed above and
first we realize the following fact.

Lemma 1: There is an infinite routing sequence in N for
a packet with the header h ∈ L∗ starting at the incoming
interface in of v iff there is an infinite computation of the push-
down system R(N) starting at the configuration (v, in)h⊥.

Proof: Follows from Theorem 4 and the fact that one step
in the routing sequence is simulated by at most k+2 rewritings
in the pushdown system—one for changing from the output
interface to the input one by rule a), one for forwarding the
packet by one of the rules b1) to b4), followed by at most k
applications of the rules c1) to c4).

Let us now consider some infinite computation of R(N)
of the form q1h1⊥, q2h2⊥, . . . where each qj is of the type
(vj , inj) or (vj , outj , ij). We call a configuration qjhj⊥ in
this sequence a nondecreasing configuration if |hj | ≤ |hm| for
all m > j. Surely the infinite sequence must contain an infinite
number of nondecreasing configurations. Moreover, because
we have finitely many control states in R(N) and finitely many
labels that are on the top of the label stack, there must be some
q and some ` such that there are infinitely many nondecreasing
configurations of the form q`h′j⊥ for some h′j where 1 ≤ j. In
fact, during this computation the h′j part of the stack is never
popped, so we necessarily get that

q`→∗R(N) q`h
′ for some h′ ∈ L∗ . (1)

On the other hand, if there is some q and ` such that
Equation 1 holds, this implies the existence of an infinite
computation sequence from any configuration of the form
q`h, for any h ∈ L∗. We call any pair (q, `) that satisfies
Equation 1 a repeating head. Clearly, all repeating heads (there
are only polynomially many of those) can be enumerated in
polynomial time by constructing a finite automaton Apost+ for
post+R(N)({q`}) and checking if from some state of Apost+

that is reachable from its initial state under the sequence
q, `, an accepting state of Apost+ is reachable. We can now
conclude with the following theorem.

Theorem 6: The cyclic routing problem in MPLS networks
is decidable in polynomial time.

Proof: For each repeating head (q, `) check if q`h⊥ ∈
post∗({(v, in)h′⊥ | h′ ∈ L∗}) for some h ∈ L∗. This
can be done in polynomial time. If this succeeds at least
for one repeating head (q, `), we can claim that the answer
to the cyclic routing problem is positive; if it fails for all
repeating heads, then the answer is negative. As there are only
polynomially many repeating heads, the test can be performed
in polynomial time.

3) Application to r-Repeated Routing Problem: As before,
assume a given MPLS network N with at most k link
failures, together with the corresponding pushdown system
R(N) constructed above. Let in be a given incoming interface
of a node v. We want to check whether there is some header

and routing sequence of packet starting at the interface in of
v where some node v′ repeats at least r times.

In order to do so, we shall create a modified set of rules
R′(N) such that whenever q`→ q′α′ where α′ ∈ L∗ is a rule
in R(N) then
• (q,−, 0)`→ (q′,−, 0)α′ is a rule in R′(N), and
• (q,−, 0)` → (q′, v′, 1)α′ is a rule in R′(N) whenever
q = (v′, in ′) for some incoming interface in ′ of v′, and

• (q, v′, j)`→ (q′, v′, j+1)α′ is a rule in R′(N) whenever
q = (v′, in ′) for some incoming interface in ′ of v′ and
1 ≤ j < r.

The modified pushdown system behaves identically to the
R(N), but additionally, it can at any moment nondeterminis-
tically guess a node v′ that should repeat at least r times. It
starts counting in the last coordinate of the control state, how
many times the node appeared so far. To check whether the
network N can perform r-repeated routing from an incoming
interface in of a node v, we construct in polynomial time the
finite automaton for the regular language

post∗R′(N)({((v, in),−, 0)h⊥ | h ∈ L∗})

and intersect it with the regular language

{((v′, out ′, 0), v′, r)h′⊥ | v′ ∈ V, out ′ ∈ Ioutv′ , h
′ ∈ L∗} .

If the intersection is nonempty, the answer to the r-repeated
routing problem is positive; otherwise the answer is negative.
This can be all done in polynomial time, assuming that the
number r is fixed (not part of the input). Hence we can
conclude with the following theorem.

Theorem 7: For MPLS networks, the r-repeated routing
problem is decidable in polynomial time, for any fixed r.

4) Application to Transparency Problem: Given a prefix
rewriting network N with at most k link failures, an incoming
interface in of a node v and an outgoing interface out of a
node v′. We want to make sure that if a packet with empty
header arriving at in of the node v ever reaches the interface
out of v′ then its header must be empty too. In order to
verify this property, we first construct a simple three state finite
automaton A accepting the language {(v, in)⊥} and then in
polynomial time construct the automaton Apost∗ recognizing
the regular language post∗R(N)(L(A)). Finally, we intersect
post∗R(N)(L(A)) with the regular language {(v′, out , i)h⊥ |
0 ≤ i ≤ k, h ∈ L∗, |h| > 0} and check (again in polynomial
time) whether the resulting regular language is empty or not. If
it is empty, the answer to the transparency problem is positive;
otherwise it is negative.

Theorem 8: The transparency problem for MPLS networks
is decidable in polynomial time.

VI. CONCLUSION

Against the backdrop that already simple forwarding rules
can render basic reachability, transparency, and loop-freedom
problems computationally hard or even undecidable, as shown
in the beginning of this paper, we set off to investigate
whether there exist computer networks which support strictly



polynomial-time verification. We find that networks based
on prefix rewriting offer such an environment, allowing us
to exploit a connection to prefix rewriting systems. Prefix
rewriting networks are practically relevant, and include, among
others, MPLS routing and segment routing. We believe that
they can hence be an attractive framework to design and
operate computer networks supporting fast verification.

We understand our work as a first step, and hope that it
can inspire further research which networks and properties
can (and cannot) be computed or verified in polynomial time.
For example, our polynomial-time result can be generalized
further, e.g., it can be extended to model networks including a
number of nodes performing stateful processing by encoding
them into the control state of the pushdown automaton. As
long as the number of such nodes is constant (not part of the
input problem), we still preserve polynomial time decidability.
We are currently developping a software tool based on our
concepts and the initial prototype shows promissing results.
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