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Abstract 

What is the best approach to perform building simulations as means to support decision-making and 

optimize building performance? Traditionally, the search for a compliant design is carried out in a manual 

one-at-a-time (OAT) approach where one design parameter is optimized before attention is shifted to the 

next one. In contrast, the Monte Carlo method makes it possible to combine many design parameters 

simultaneously and consider numerous input combinations. This paper presents a comparison of design 

approaches and their ability to optimize the performance of an office room with respect to energy 

demand and indoor climate. The test case is an office space with eight discretized inputs resulting in 

93,750 possible designs. Bootstrapping is used to vary the baseline and fixing order for two systematic 

OAT approaches and to assess an increasing number of Monte Carlo samples. Summarily, OAT 

optimization depends heavily on the baseline and reveals only few, local optima close to this baseline, 

which are potentially far from the best solutions. On average, sampling 32 random simulations unveils 

better solutions and is less likely to suggest poor solutions. An increased sample of 1024 simulations 

reveals diverse solutions and favourable input ranges, while enabling sensitivity analysis, metamodeling, 

and flexible constraints. 

1 Introduction 

Building design is becoming ever more challenging. It is a complex process involving multiple decision-

makers, which have to meet ever-stricter building requirements at a limited budget. Building 
performance simulation (BPS) software is often used to aid decision-making in the search of a design, 
where a comfortable and healthy indoor climate is obtained at the lowest environmental impact and cost. 
In this search, the design team may vary a large set of design parameters such as window-wall-ratio, 
glazing properties, ventilation rates and insulation levels. When combined, these parameters constitute a 
vast multi-dimensional “design space” which must be explored to find potential solutions that meet the 
requirements and ambitions of all stakeholders. However, there is no common, unambiguous way to 

explore the many opportunities and practice differ between countries, companies and practitioners 
[1][2]. The adopted approach also depends on the applied software’s ability to do parameter variations 
and optimization which varies considerably between applications [3][4][5]. In this paper, we identify and 
compare common approaches to do parameter variations as means to explore the design space and 

optimize building performance.   
 
When exploring design space, the design team often rely on experience and rules-of-thumb to select 

important parameters, which are varied in series of one-at-a-time (OAT) variations. The latter means 
that only one parameter is varied between successive simulations in order to assess the consequences of 
the given input change or to optimize that particular input. It is a laborious task to perform a parameter 
study manually and the modeller must be methodical to avoid inducing errors. Time limits may cause the 
modeller to vary only a few, important parameters. Unfortunately, modellers’ ability to identify and rank 
important variables has been shown not to coincide with the quantitative ranking based on sensitivity 

analysis [6]. Consequently, if the parameter study does not involve the most important inputs, it will 
reduce the potential of finding optimal designs. To remedy this, more parameters can be included when 
the simulations are automated, which is possible with many simulation programs.1 Similarly, rapid OAT 
variations can be made by changing sliders in visual programming applications such as Grasshopper and 
Dynamo (Figure 1 right) [7][8]. However, such OAT parameter studies reveal only local optima in certain 
regions of the design space whereas “global” methods are required to cover the multidimensional design 
space and find globally optimal designs [9].  

 

                                                
1 E.g. Sefaira’s “response curves” (Figure 1 left), OpenStudio’s “Parametric Analysis Tool”, IESVE’s “Parametric Tool”, 

and BSim’s “BSimBatch”. 



  

Figure 1 Examples of applications that facilitate one-at-a-time design space exploration. Left: Response 
curve from 10 OAT variations with Sefaira [10]. Right: Sliders in Grasshopper enables OAT parametric 
design. 

Popular “global” methods to explore a multidimensional design space include Monte Carlo methods, 

factorial experiments, multivariate optimization, and metamodeling [11][4][12][13][14][15].2 Their 

common feature is to vary multiple inputs simultaneously thus taking into account parameter interactions 

and enabling coverage of the combined design space. Suppose that all design parameters are discretized. 

In that case, all possible outcomes, and potential solutions, can be obtained using a full factorial 

experiment as depicted on Figure 4 (top left). However, the number of possible input combinations 

increases exponentially with the number of varied inputs, which renders full factorial design impractical 

when addressing many parameters. For instance, 10 parameters, each discretized into five options, 

would require more than a million simulations (510). To address this computational challenge, 

optimization algorithms can be applied to search for optimal input configurations with a reduced set of 

simulations. The use of optimization is increasing in the field building simulation and a large variety of 

applications and plugins makes this possible [2][16][17][18][16]. 

 

Another approach is to use the Monte Carlo method to select hundreds or thousands of (quasi)-random 

input combinations to cover the design space evenly. For these simulations, design criteria can be applied 

to find a subset of high-performing solutions [19][11]. The extent and shape of the design space and the 

possible solutions can be assessed by uncertainty analysis [20][21]. A related set of statistical methods is 

sensitivity analysis, which reveals parameter importance and interaction effects [22][23]. This helps 

decision-makers to focus on the most important design parameters and their interactions while 

insignificant parameters can be ignored. Finally, Monte Carlo simulations can be used to construct 

metamodels from which millions of additional input combinations can be evaluated in an instant [24]. The 

metamodels also enable rapid optimization or instant feedback on specific designs. A growing number of 

BPS programs now facilitate Monte Carlo simulations, e.g. OpenStudio (~2014) [25], DesignBuilder v. 6 

(2019),  IDA ICE 4.8 (beta, ~2019), and BSim (2019).  

 

The above trends in the software industry make it easier for practitioners to perform both one-at-a-time 

parameter studies and global (“all-at-a-time”) design space exploration. Despite the added software 

features, most practitioners still perform manual parameter studies or automated OAT variations. In this 

paper, we aim to compare the different approaches to identify best practice for design space exploration. 

Specifically, we compare two OAT methods, denoted Radial and Winding Stairs, with the Monte Carlo 

approach for which we consider both random and quasi-random sampling and different sample sizes 

(number of simulations). In earlier work, we argued that Monte Carlo simulations, combined with 

sensitivity analysis, metamodeling and interactive visualization, could support decision-making in building 

design. Here, we seek numerical proof of the allegedly superior Monte Carlo methods as compared to 

common OAT parameter studies. The use of optimization algorithms is not considered for the following 

reasons. Optimization have already been addressed thoroughly in literature and, more importantly, the 

Monte Carlo approach enables uncertainty analysis, sensitivity analysis, and metamodeling. By adding 

                                                
2 Metamodels may also be referred to as surrogate models, response surface models, or emulators. 



constraints to the sample of Monte Carlo simulations, the design team can easily identify optimal 

solutions – and non-optimal designs, which too contain valuable information. 

1.1 Terminology: Definition of important terms 

Before moving on, we describe frequently used terms, which are essential for the understanding of the 

presented work.  

 

• Baseline 

The baseline, or reference model, is the initial design configuration, which has been set up in a 

building simulation software and quality assured. For one-at-a-time parameter variations, this 

baseline forms the starting point from which the modeller makes design variations. Due to the 

large uncertainties in early design, there is no unique, explicit baseline and the modeller has to 

choose a baseline with specific starting values – also for the design parameters, which are to be 

varied in the following parameter variations. Similarly, the Monte Carlo approach also requires a 

fully defined simulation model, which typically contains hundreds or thousands model inputs. In 

contrast to OAT, there is no need to define specific initial values for the design parameters. These 

are instead described by probability distributions. 3 Hence, the Monte Carlo method do not rely on 

the choice of a single, initial baseline, but it does require a complete model for which input values 

related to the design parameters can be any of those described by their probability distributions. 

 

• Sampling 

In a Monte Carlo framework, specific input values for variable design parameters are randomly 

sampled from their probability distributions. For each new simulation, a set of sampled input 

values replace the previous values related to the design parameters. There are many sampling 

strategies such as random sampling, stratified random sampling, Latin Hypercube sampling and 

quasi-random sampling from space-filling methods such a low-discrepancy sequences (e.g. Sobol 

and Halton). A final note is that design parameter may affect multiple input values in the model. 

For example, if we vary the Solar Heat Gain Coefficient for all windows in the models, we consider 

this a single “design parameter”.  

 

• Fixing order 

For one-parameter-at-a-time design exploration, the modeller may choose to vary a design 

parameter, A, and “fixate” it at its optimal value, before shifting his attention to another design 

parameters, B, which is then optimized and fixated, and so forth. Eventually all design 

parameters have been optimized, resulting in a final “optimal” design. However, the order of 

which parameters are optimized and “fixated” may be chosen differently, e.g. optimizing “B”, 

then “A”, then “D”, and so on. The final design may depend on this so-called “fixing order”.  

 

• Bootstrapping 

Bootstrapping is a resampling technique, which allows us to estimate the distribution of optimal 

solutions obtained from different design approaches with varying settings. For example, for a 

finite set of design combinations (here 93,750), the optimal solution found from 32 randomly 

sampled Monte Carlo simulations can be poor if unlucky with the random selection, and vice 

versa. Instead, by resampling 32 simulations (and picking the best one each time) many times, 

we obtain a distribution of solutions from which we can assess the most likely solutions (median) 

and extreme solutions (good and poor).  

                                                
3 In a design context, “probability” may be misleading since the design team may choose the inputs they desire. 

However, the term “probability” is commonly used in a Monte Carlo framework where input variations are described by 
probability density functions (for continuous inputs) and probability mass functions (for discrete inputs).    



2 Test case: Generic office room  

2.1 Requirements for case study  

First, we need to establish the requirements for a test case, which allow us to compare the different 

design approaches. Firstly, we consider an office space, since it is probably the most common space type 

in non-residential buildings. In addition to aesthetic and layout concerns, the design of offices must meet 

requirements for thermal comfort and daylight availability with minimal energy demand and costs. For 

office rooms located at the facade, a wide range of important and interdependent design parameters can 

be varied in addition to the internal loads and HVAC strategies. These circumstances render the office a 

suitable case to test various design approaches.  

 

For the office space, it is possible to simulate all design combinations for a selection of important design 

parameters by discretizing these parameters and combining them with factorial sampling. Each design 

combination is assessed with respect to energy demand, daylight availability, and thermal comfort. This 

all-encompassing set of design combinations enables us to make theoretical comparisons of different 

design strategies, for which we need to test different baselines, fixing orders, and number of Monte Carlo 

simulations.  

2.2 Context and design parameters 

The office space is an ordinary, rectangular room with a single window centred in the South facing 

facade. It is situated in the heat-dominated, temperate climate of Denmark and there are no obstructions 

providing shade. System schedules and set points have been defined from Danish building regulations 

and an industry guideline on indoor climate simulations [27].  

 

Table 1 Discretized design parameters for the generic office room. 

 
 

The eight variable design parameters and their discretized variabilities are listed in Table 1. The choice of 

variable inputs is based on a sensitivity analysis in a parallel, ongoing study4, and their variations are 

constructed, such that they cover typical designs and layouts for office spaces in Denmark. For example, 

the room depth ranges from narrow (4 m) to deep (8 m) while the width is fixed at 5 meters. This width 

allows for two opposing workstations and bookshelves along the interior walls, which is a common 

interior layout. To elaborate, we provide a short motivation and explanation of the design parameters: 

 

• Internal load 5 

This variation in the total internal load roughly cover the combinations of 1 to 6 persons (1.2 

met) with a variable equipment setup, i.e. ranging from a small laptop to a powerful workstation 

with two monitors [27]. The variable also include a small contribution from efficient LED-lighting.  

                                                
4 14 inputs were ranked with respect to their importance for the three outputs using the TOM method, which is based 

on estimates of total-orders effects [28]. Based on that ranking, the eight most influential inputs have been kept 
variable whereas less influential inputs have been fixed, e.g. thermal mass, the façade’s U-value, and night cooling.  
5 The internal load is normally a constraint and not a design parameter but the test case and large number of 

simulations are reused across several studies.  



• Room depth 

The variable room depth represents both narrow and deep rooms and accommodates 1 to 6 

workstations 

• WWR – internal window-to-wall-ratio 

Measured from the inside, this variation ranges from what is considered minimal and maximal 

window openings in practice. The small window is centred 0.8 meter above the floor with the top 

at 2.1 meters. In increasing steps, the windows are first extended sideways, hereafter towards 

the floor, and finally towards the ceiling.  

 

• SHGC – Solar Heat Gain Coefficient 

The glazing type is represented by SGHC but light transmittance and U-value vary 

simultaneously/correspondingly.  

• Overhang 

The overhang is defined by the angle from the middle of the window to the tip of the overhang. 

• Shading factor 

A value of 0.2 represents a nearly opaque screen allowing 20% of the heat to pass, whereas 0,6 

represent a semi-transparent screen, and 1 means “no screen”. Set points is set such that the 

screen is active roughly 15% of the yearly working hours in accordance to the “standard” 

ambition level in Danish guideline [27].  

• Ventilation 

The variation in ventilation rate approximately span from the minimum rate necessary to meet 

the requirement for indoor air quality, at the minimum internal load, to a typical maximal rate for 

which mechanical cooling and draught can be avoided. 

• Cooling 

The zero-option means no mechanical cooling, whereas the alternative represents “mechanical 

cooling” with a maximum cooling effect of 60 W/m². 

2.3 Extent of design space and solution space 

The discretised design parameters are combined, using factorial sampling, into 93,750 possible designs.6 

For each of these, we run a building performance simulation with BSim (version 7.16.8.11) and 

aggregate the results for energy demand, thermal comfort and daylight. Energy demand represents the 

yearly energy consumption for heating, cooling, ventilation, and lighting, which are combined using 

primary energy factors of 1 and 2.5 for district heating and electricity, respectively. Thermal comfort is 

assessed by the number of hours above 26°C, which must not exceed 100 hours. The minimum 

requirement for daylight availability is to achieve a daylight factor of 2% in at least 67% of the usable 

floor area.  

 

The histograms in Figure 2 show the distributions for each of the three performance objectives. The right-

skewed distribution for energy demand vary from 15.5 to 161 kWh/m² with a median of 40.0 kWh/m². 

For thermal comfort, the number of hours with an operative temperature above 26°C range from 0 to 

1541 hours. The criterion of 100 hours is met for 81.1% of these outcomes. The results for daylight 

availability cover the entire range of 0 to 100% of the usable floor area with a daylight factor of 2%. 

However, only 45,450 simulations (48.5%) meet the criteria of 67%.  

 

                                                
6 Since each parameter in reality could obtain infinitely many values, there are also infinitely many possible solutions, 
but this large set of combinations is assumed to provide a sufficient representation of the design space. 



 

Figure 2 Top) Output distributions obtained by aggregating the results from 93.750 BSim simulations. 
Bottom) First-order, Si, and total-order, ST, sensitivity indices for each of the three outputs. 

Figure 3 shows how the individual and combined constraints for indoor climate affects the constrained 

distribution of energy demand. In combination, the two criteria generate a so-called “solution space” 

which contains 30,670 simulations corresponding to 32.7% of the total set. Note that the constraints shift 

the energy distribution to the right and thus remove the designs with lowest energy demand. As a result, 

the solution with lowest energy demand while meeting the criteria has a value of 21.0 kWh/m². In 

conclusion, this extreme defines the optimal solution for this test case when ignoring other aspects, such 

as cost, aesthetics, buildability, etc. Moreover, all solutions are considered equally acceptable in terms of 

thermal comfort and daylight. That means a design with no hours of overheating is considered equally 

acceptable as a design with exactly 100 hours above 26°C.  

 



 

Figure 3 Distribution of the annual energy demand with (and without) constraints for thermal comfort and 

daylight availability. The bin size is 1 kWh/m².  

For each of the three outputs, we have conducted variance-based sensitivity analysis to provide better 

understanding into the relationships between the design parameters and the performance objectives. The 

variance-based analysis reveals how much each input contribute to the variance of a given output and to 

which extent input interactions add to this variance. For this test case, Figure 2 (bottom) displays two 

sensitivity measures, the first-order index Si and total-order index ST, for all inputs for each of the three 

outputs. The former index, Si, indicates how much the ith input contribute to the output variance by itself, 

whereas the total-order index, ST, denotes how much the ith input and its interactions with other variable 

inputs contribute to the output variance. Si is often used to prioritize or rank inputs by importance – and 

thus requiring the most attention – whereas ST is used to identify insignificant inputs that could be 

neglected or fixed without affecting the output notably.  

 

Firstly, we observe that the rankings of both Si and ST differ for all three outputs. As an example, only 

four inputs affect daylight not including ventilation and cooling, which in contrast affect the other outputs 

greatly. The “solar shading” variable stands out since it has almost no influence on any of the three 

outputs. This may sound surprising but keep in mind that its activation is limited to only 15% of the in-

use hours. Most importantly, we observe large differences between the first-order and total-order effects 

for all inputs for energy demand and thermal comfort. This indicate a great deal of interaction effects. 

Thus, the model’s response to a change of a given input depends considerably of the values of the other 

inputs. Ultimately, this suggests that design space optimization is challenging due to the high degree of 

interactions between the inputs. 

3 Methodology 

3.1 Design space exploration methods 

There is no explicit, well-defined list of methods to explore the multidimensional design space. Though, 

trends and recurrent approaches can be seen in literature and consultancy practice, and many software 

applications enable similar features to perform automated building simulations. We have identified the 

following design space exploration methods (see Figure 4 for visual descriptions): 

 

• Heuristic approach 

Perhaps the most common practice is to test different designs based on rules-of-thumb, 

educated guesses and experience. This approach is highly dependent on the individual modeller 



and variations are typically unstructured and performed manually. 

 

• Radial 7  

Starting from a random point (the baseline), each input is varied while keeping the others fixed. 

Thus, each parameter is varied in turn – each time with respect to the same original baseline. 

When each input has been varied, the optimal solution may be any of the assessed variations or, 

alternatively, by combining the best input values obtained for each set of parameter variations. 

Therefore, this “combined” design point is also assessed and may be the optimal point for linear 

problems with no or little interaction between inputs (see Figure 4). Some BPS software 

applications enable this radial approach, e.g. Sefaira’s response curves. 

 

• Winding Stairs 8 

Starting from a random baseline, a single, randomly selected, input is varied and eventually 

fixed at its optimal value, which creates a starting point for the next, randomly selected, input to 

be varied and optimized. This OAT optimization continues until all of the selected inputs have 

been addressed and sequentially optimized. The resulting solution will depend on the choice of 

baseline and the order of which the parameters are addressed, i.e. “fixing order”. Windings stairs 

occur in practice when modellers use “sliders” in e.g. Grasshopper to find a local optimum before 

changing additional sliders in the same manner.  

 

• Factorial 

Factorial sampling is used to consider all possible combinations of a discretized design space. As 

stated in the introduction, this extensive, global approach is often not applicable in practice due 

to the exponential growth in possible design combinations making it too time-consuming. 

 

• Monte Carlo method 

The Monte Carlo method rely on repeated random sampling from a multidimensional input space. 

Thus, all inputs are varied randomly between consecutive simulations in this global approach. 

The Monte Carlo simulations can be continued infinitely, and the “experiment” is therefore 

stopped when the desired objective is achieved, e.g. providing a sufficient large set for 

uncertainty analysis or sensitivity analysis or, as in this study, until a desired optimal solution is 

found.  

 

As mentioned, different sampling strategies exist for Monte Carlo simulations. The simplest version is 

plain “random” sampling for which each input value is picked at random without considering the other 

inputs or previously sampled values. Therefore, some samples (i.e. design combinations) may be picked 

closely together and others far apart – leaving “gaps” and “clusters” in the investigated design space. A 

more sophisticated strategy is to apply quasi-random sampling using a space-filling technique, where 

each new “quasi-random” point is picked in the largest gap among the previously selected samples. Such 

strategies are statistically more efficient and cover the design space more evenly. Though, the quasi-

random sampling are apparently not available in the surveyed software applications, which currently 

facilitate Monte Carlo simulations. In this work, we consider both simple random Monte Carlo simulations 

(MC) and quasi-random simulations (qMC) to assess the potential of the latter.  

 

  

                                                
7 The term ”radial” is borrowed from [30] even though the authors use “radial design” to describe iterated OAT 

variations.  
8 In this analogy, the descend of a flight of winding stairs represents the optimization (minimum) of a given input, 

until we make a quarter-turn a descend the next flight, i.e. optimize the next input (in a new direction). Inspired from 
[31]. 



 

Figure 4 Conceptual visualizations of approaches to explore of a (discretized) 3-dimensional design space. 
The local methods are shown with an alternative baseline and fixing order.  

3.2 Theoretical comparison of OAT and MC approaches 

A design team must meet both qualitative and quantitative requirements, but in this study, we provide a 

numerical comparison of “optimal” solutions obtained from different design strategies. The term “optimal” 

is somewhat controversial, since different stakeholders may emphasize different aspects of building 

performance. In multi-objective optimization, Pareto fronts are often used to present a range of solutions 

including the trade-offs between two opposing objectives. However, such visual presentations are not 

viable here, where we wish to compare optima under all kind of settings. However, Cost and Energy 

demand are popular objectives to optimize while constraining other performance objectives, e.g. by 

minimum or maximum values [16]. Since construction costs are difficult to assess during conceptual 

design, we aim to compare office designs with the minimal energy demand while meeting constraints for 

daylight availability and thermal comfort.  

 

Each design method will produce different optimized solutions depending on method-specific settings, 

such as baseline and fixing order. We therefore apply bootstrapping to vary these settings, which lead to 

distributions of optimal solutions for each design approach [26]. Finally, these distributions are compared 

using statistics and illustrated with boxplots showing both common and extreme values. These statistics 

indicate which approach is most likely to reveal the best solution and how robust each approach is.  

 

For Radial design, the optimal solution depends on the choice of baseline (initial set of input values). For 

Winding Stairs, the proposed solution also depend on the fixing order. If, for at specific baseline, none of 

the OAT variations complies with the constraints for thermal comfort and daylight, we cannot carry out 

this particular design optimization in an unambiguous and systematic manner. We have therefore chosen 

to give these methods an advantage by selecting the baseline from the set of 30,650 simulations that do 

meet the constraints. Thus, all 30,650 compliant baselines are tested for the Radial approach. For 

Winding Stairs, a randomly selected, compliant baseline is combined with one of the 40,320 possible 



fixing orders (factorial of 8). Testing all combinations is unfeasible. Instead, bootstrapping is applied to 

test 100,000 random combinations of baselines and fixing orders.  

 

Bootstrapping is also used to test the Monte Carlo methods under different settings. Thus, for a given 

sample size, sampling is repeated 100,000 times. The number of quasi-random samples are considered 

in exponentially increasing sizes, i.e. 32, 62, … , 1024. Knowing that quasi-random sampling is more 

efficient than random sampling, we consider only the sample sizes of 32 and 1024 when applying random 

sampling. This upper limit of sample size originate from earlier work, which indicates that highly accurate 

metamodels can be constructed from 1024, or less, building simulations [24]. The variation in sample 

size makes it possible to assess how many simulations, on average, is needed to outperform the OAT 

approaches. Sobol low-discrepancy sequences are used to select the quasi-random samples.9 For each 

sample size, we select 100,000 different Sobol sequences by varying the starting point of the Sobol 

sequence. This completes the setup for all but the heuristic design approach, which requires a more 

practical setup.  

3.3 Heuristic approach and student challenge 

Assessment of the heuristics approach requires a group of test persons with knowledge of building 

physics and building performance simulations. This study has involved two consecutive classes with a 

total of 22 students enrolled at a master’s program in Indoor Environmental and Energy Engineering. The 

students are given a description of the case study and its context, and then asked to use domain 

knowledge, educated guesses and experience to minimize energy demand while meeting the indoor 

climate constraints. For this experiment, we provide a specific baseline from the solution space since we 

are interested to see how skilful the participants are at optimizing the design rather than how “lucky” 

they have been at choosing a starting point. The baseline is defined by the middle option for most design 

parameters, which is believed to reflect a realistic scenario with initial guesses “in-the-middle” after which 

the inputs are varied to higher and lower values. Exceptions for this baseline are the parameters solar 

shading and mechanical cooling, which in a Danish context are often biased towards “no external 

shading” and “no cooling”. Finally, the baseline is chosen such that it meets the indoor climate criteria in 

order to compare the heuristic approach with Radial and Winding Stairs that also benefit from a compliant 

starting point. 

 

For this experiment, we created a small web application enabling rapid, error-free parameter variations 

for the office room. Figure 5 shows a screenshot of the web application, which has access to the 

aggregated inputs and outputs from the 93,750 BSim simulations – however these are not visible to the 

student. The top part displays a table with the eight design parameters and the available, discrete values. 

Small visualizations illustrate the chosen input value. The user selects a combination of input values 

(highlighted in dark grey) and press the “Calculate” button after which the chosen input values and the 

resulting outputs values are inserted into a new row in the “Results” table. Conditional formatting of cell 

colour is used to highlight whether the indoor climate objectives meet the requirement (green) or not 

(red). With this setup, each student were asked to find an optimal solution with a maximum of 28 

iterations, which corresponds to the number of evaluations needed to perform a Winding Stairs 

optimization. Such limit is considered realistic based on common practice10. Upon completion of the 

parameter study, all variations including the optimal one were submitted to the lecturer (first author).  

 

                                                
9 Sobol sequences has been chosen over alternative methods, as Halton Sequences or Latin Hypercube Sampling, due 

to expectedly improved efficiency [32][33]. 
10 Based on common practice at MOE, which is one of the largest engineering consultancies in Denmark. From 

collaborations and employee experiences with other companies, such practice is believed to be representative for large 
companies in Denmark. 



 

Figure 5 Screenshot of our web page used by the students to test the heuristic approach (Daylight Factor 
abbreviated DF).  

3.3.1 Students trying out Winding Stairs 

Leading up to above experiment, the students are asked to try the Winding Stairs approach. This exercise 

is meant to give them better understanding of the Winding Stairs approach and to give them hands-on 

experience with a systematic, manual optimization study. Interestingly, this exercise has revealed some 

surprising learnings and therefore the results are included in section  

4 Results 

4.1 Theoretical comparison of design approaches 

As described in the methodology section, we vary the baseline and fixing order for the OAT approaches 

and resample the Monte Carlo based simulations, which allows us to make a statistical comparison of 

their ability to identify low-energy solutions. The boxes in Figure 6 show the median along with the 25th 

and 75th percentiles for the distributions of energy-optimized solutions. Extreme outliers are omitted by 

setting the whisker length equal to the interquartile range (Matlab default) which corresponds to 2.7 

standard deviations for normally distributed data (i.e. 99.3% of the data). 11 A quick glance of the 

boxplots reveals that the Monte Carlo based methods results in smaller variance and a lower median. 

Thus, they are more robust and, on average, provide better solutions. To elaborate, 29 and 28 parameter 

variations are needed for the Radial and windings stairs optimization, respectively, but the design team is 

more likely to find a better design from 32 random simulations and has less risk of ending up with a 

poor-performing design. Increasing the number of Monte Carlo samples gradually improves both 

performance and robustness. With 256 quasi-random samples, the upper limit is less than the average 

solutions obtained from the OAT approaches. When comparing simple random sampling with the 

supposedly more efficiently quasi-random sampling, we observe slight improvement for the size of 32 

samples. At higher samples sized, here 1024, the improvement apparently becomes insignificant.  

 

                                                
11 For Monte Carlo, 32 simulations can be sampled infinitely times, and at some point the 32 worst simulations will be 

sampled. Thus, extreme outliers become a result of the number of bootstraps and are of no interest in this study. 



 
Figure 6 Box plots showing the lowest energy demand found when varying method-specific settings. qMC 

denotes quasi-random Monte Carlo sampling using Sobol low-discrepancy sequences whereas MC refer to 

random sampling. The subscript denotes the number of samples. 

 

Let us take a closer look at the two OAT methods. Their medians are almost identical so, on average, the 

will provide equally good solutions. Though, the Radial design approach is more robust since Winding 

Stairs is more likely to suggest poor-performing solutions with higher energy demand. From the upper 

limits, we see that both OAT methods will sometimes propose optimized solutions that are worse than the 

median for the entire set of simulations meeting the indoor climate criteria (dashed line). This indicates 

that the OAT methods will propose “worse-than-average” solutions if the baseline is poorly, or unluckily, 

selected. In such cases, they cannot “escape” a poor starting point and instead they find a local minimum 

and fail to identify a high-performing design. Figure 7 shows the results of variance-based sensitivity 

analysis, which reveals how the energy demand for the proposed solutions from Windings Stairs depends 

on the choices of baseline and fixing order. From the first orders effects, we learn that the choice of 

baseline has the largest impact on the proposed solution but the fixing order do also contribute to the 

variation of solutions. Interaction effects account for roughly one third of the lowest energy variation, 

which means that the fixing order and baseline are mutually dependent and that the optimal fixing order 

depends largely on the chosen baseline. Thus, the design team cannot know, in general, in which order to 

assess and optimize the design parameters. 

 

  



Figure 7 Variance-based sensitivity analysis for energy demand when varying baseline and fixing order 

for Winding Stairs. 

4.2 Heuristic design and students’ challenge  

Now we turn our attention to the heuristic approach represented by 22 graduate students. As described 

in 3.3, the students have been offered a specific, compliant baseline, which is also applied for the Radial 

and Winding Stairs optimization in this comparison. We remind that the baseline consists of the 

“midpoint” options for the first six parameters and has no cooling nor shading. It is worth to notice that 

this baseline has an Energy Demand of 34.2 kWh/m² which is considerably lower than the solutions’ 

median of 46.7 kWh/m². The distribution of optimized designs found by the students and the systematic 

approaches are illustrated on Figure 8. First and foremost, the students perform better than both OAT 

approaches with solutions in the range of 21.5 and 32.1 kWh/m² (outliers are included to present this 

range). Note that the Radial approach has a unique solution for this baseline since it does not depend on 

fixing order. In contrast, Winding Stairs has 40,320 possible fixing orders but, interestingly, only 15 

unique solutions, or local minima, are found. The Monte Carlo based approach do not benefit from a 

favourable baseline and somewhere between 256 and 512 quasi-randomly sampled simulations are 

needed to obtain the same median as the students.  

 

 

Figure 8 Variations of solutions’ energy demand found for the specific “in-the-middle” baseline used in the 
student case study.  

Figure 9 provides an alternative depiction of the above experiment. The small subplots represent the 

entire solution space, whereas the leftmost plot shows only a small section of the cumulative distribution 

containing the 8% most energy-efficient designs. It illustrate how narrow the solution space becomes 

when searching for the energy-optimal designs. Moreover, we observe how the doubling of Monte Carlo 

samples gradually improves the probability of finding the optimal solution in the distribution’s tail.   

 



 

Figure 9 Topright) Distribution of energy demand for all simulations meeting the indoor climate 

constraints (bin size 1 kWh/m²). Bottomright) Corresponding cumulative distribution. Left) Left-most 
section of the cumulative distribution along with the medians of the best solutions identified from 
different design approaches.  

4.3 Optimal input values 

So far, emphasis has been on optimal values for the output energy demand obtained by the various 

design approaches. We now focus on inputs and investigate whether the different methods are able to 

indicate specific input values, or ranges of input values, which are most likely to produce energy-efficient 

solutions. For this investigation, we compare the distributions of input values that lead to energy efficient 

solutions using the following approaches:   

 

• Heuristic approach conducted by students  

• Winding Stairs performed by students starting with the “in-the-middle” baseline  

• Winding Stairs using all 40,320 theoretical fixing orders starting with the “in-the-middle” baseline 

• A single set of Monte Carlo simulations using 1024 random samples 

• Factorial sampling of all combinations which lead to the benchmark of “optimal” input values 

 



 

Figure 10 Input distributions for the solutions obtained by the students (heristic and Winding Staris), 
theoretical Windings Stairs with a fixed baseline, Monte Carlo with 1024 random samples, and factorial 
sampling. Baseline values are highlighted with purple boxes.   

For the comparison, we first need to establish a benchmark as to what “optimal” or “favourable” input 

values are. In other words, we seek the input values that are most likely to produce solutions with low 

energy demand. We therefore define a “high-performing” solution space by selecting solutions with an 

energy demand less than 32 kWh/m² year, since these are all better than the median solutions for Radial 

and Windings Stairs (see Figure 6). This set of high-performing solutions comprise of 2448 simulations, 

which is 5.4% of all simulations meeting the indoor climate criteria. The histogram related to the factorial 

approach on Figure 10 shows the input distributions that lead to these high-performing solutions. These 

input distributions cover almost the entire range for each design input. Exceptions are a few options for 

WWR (90%), SHGC (17%), and ventilation (6.8 and 8.2 h-1) for which there are no or few solutions. 

These results indicate that a high-performing set of solutions can be reached with thousands of diverse 

combinations of input values. The peaks show the most prevalent input values leading to energy-efficient 



solutions. Thus, it is favourable to fix a variable input within such peaks if the design team hopes to 

maintain the most design freedom when addressing the remaining inputs. However, the presence of bins 

with fewer simulations shows that it also possible to find high-performance solutions for such values.  

 

Turning our attention to the students, we compare their input choices with the benchmark distribution 

acknowledging that the number of participants is limited. For the heuristic approach, the students 

manage to avoid the aforementioned unfavourable input options for WWR, SHGC, and Ventilation. Apart 

from that, there is seemingly no or little correlation, i.e. their choice of inputs do not align with the 

favourable distributions of the high-performing set of solutions. Examples of contradictory trends are the 

prevalence of an internal load of 5 W/m² and the option of “no mechanical cooling”. This could be an 

unintentional consequence of the order, for which the inputs are presented on the webpage. It may also 

be due to student bias, e.g. that mechanical cooling is preferably avoided. 

 

As mentioned, Winding Stairs results in only 15 different solutions for this particular baseline despite the 

numerous fixing orders. The most remarkable result is that for all design parameters, except one 

(SHGC), the most frequent input value is the same as the baseline. Apparently, the Winding Stairs 

approach rarely “escapes” the baseline, which underlines the importance of guessing a fortunate 

baseline. The obtained solutions only reveal a tiny part of the possible solutions and do not reflect the 

diversity of solutions nor which input values are favourable. Neither does it yield very good results as 

shown in Figure 8. Another important outcome is deduced from the input distributions for Winding Stairs 

as performed by the students. Their solutions include the selection of several input values (coloured with 

diagonal strips) that should not be possible with this baseline. It turns out that 19 of 22 students failed to 

follow the systematic approach strictly. For example, they did not continue with best, or a compliant, 

option when addressing a new parameter or they made “an illegal jump” in the input space. These 

mistakes may be due to the limited timeframe but time is also limited when performing building 

simulations in consultancy. When making 28 consecutive parameter variations manually, errors are likely 

to occur. 

 

Finally, we consider the Monte Carlo based approach using a single set of 1024 randomly selected 

simulations. When the same criteria of 32 kWh/m² is applied, a set of 37 simulations remain – also 

meeting the indoor climate constraints. The input distributions for these Monte Carlo solutions are almost 

identical to those from factorial sampling. Monte Carlo therefore reveals similar trends and ranges of 

favourable input values as the benchmark, for which all design combinations have been simulated. As 

seen on Figure 9, Monte Carlo approach will seldom find the single “optimal” solution but trends to be 

used for design guidance are as informative as when considering all of the design space.  

  



5 Discussion 

In the above comparison, we aimed to provide an objective comparison of design approaches based on 

quantitative measures and statistics. Here, we discuss the design methods from a more subjective 

perspective and comment on other aspects of the design approaches and the office test case.  

 

In the theoretical study of the Radial and Winding Stairs approach, their performance is based on all 

compliant baselines. However, an experienced modeller is expected to identify and begin with a decent 

performing baseline and avoid extreme starting points, e.g. high airflow and mechanical cooling for a 

room with a modest internal load and small windows. In our comparison, we compensate for this by 

using only compliant baselines that meet the indoor climate criteria. Moreover, when considering all 

compliant baselines and fixing orders, the comparison is not biased towards specific input configuration, 

which modellers could be prone to use. In practice, a potential bias, due to experience or preferences, 

could hinder the modeller from finding extreme solutions – both good and bad. Finally, from experience 

with Danish practice, we believe that it is uncommon to perform systematic, manual optimization of as 

much as eight design parameters. If less parameters are considered, the optimized solution lie closer to 

the baseline and the performance of the OAT approaches will be worse. 

 

So far, we have paid little attention on how the setup of Monte Carlo based simulations differs from 

traditional, manually configured, simulations. The Monte Carlo method requires a slightly different way of 

thinking and careful consideration when dealing with correlated or interdependent inputs. For example, 

the glazing properties SHGC, light transmittance (LT), and U-value are mutually interdependent. If the 

variability of SHGC is described by a probability density function, its relationship with LT and U-value may 

be described from correlation matrices. Alternatively, the modeller may define a number of distinct 

windows from which to sample in the Monte Carlo experiment. Another distinction from common practice 

relates to the comparison of designs with entirely different systems with diverse properties, e.g. 

mechanical cooling system and natural ventilation. One way to handle this unambiguity is to perform 

sequential Monte Carlo runs and combine the simulation data afterwards. However, with manually 

configured simulations, it is also challenging to set up and compare such systems. As mentioned in the 

introduction, there seems to be a tendency of software vendors integrating Monte Carlo based methods 

into their building simulation software. This makes Monte Carlo based simulations more accessible and 

easier to use. The inconvenience of increased computing time can be reduced by parallel or cloud 

computing, which may reduce computation time significantly. For this study, computing 1000 BSim 

simulations took between 5-8 hours using a combination of Excel and inefficient Windows automation 

software. In ongoing development, the software developer has parallelized the simulations and removed 

redundant display of graphics, which has led to a vast decrease in computing time, such that 1000 

simulations can be run in a few minutes. 

 

The results of this study obviously reflects the chosen test case, i.e. the early design of an office space 

with large variabilities and many interdependent design parameters. What about rooms or buildings with 

fewer, less interdependent inputs having smaller uncertainties? In such cases, the advantage of applying 

Monte Carlo instead of OAT approaches is probably less significant. Due to the better coverage of the 

design space, the Monte Carlo approach is still expected provide more and better solutions while offering 

additional information from sensitivity analysis. If, during early design, the design team only considers a 

few design parameters with limited variability, they are likely to miss the most promising designs. With a 

mediocre early design solution, it may become expensive and time-consuming to ensure compliance 

during later design stages, in which changes almost inevitably occur. Another aspect of the applied test 

case is the limited selection of only three performance objectives (outputs). If more objectives and 

constraints are introduced, it will further reduce the solution space making it harder to find compliant 

solutions. Moreover, we applied static constrains, but in practice constraints and ambitious may change 

during the design process, e.g. when trying to achieve specific points in environmental assessment 

schemas, such as LEED or DGNB. These circumstances augments the use of a Monte Carlo approach, 

which allow for a design space exploration that is much more thorough and, in addition, constraints can 

be adjusted after the simulations have been completed.  

 

Access to numerous Monte Carlo simulations facilitate new ways to analyse and communicate the 

simulation data. The interactive parallel coordinate plot as illustrated on Figure 11 offers an effective way 

to visualize and explore multidimensional data. In real-time, a multi-actor design team can apply 



constraints to inputs and outputs and immediately observe the consequences and find solutions that 

meets everyone’s wishes. Combined with histograms and sensitivity analysis, such interactive plots help 

reveal favourable inputs ranges dependent on the flexible constraints [28]. In this manner, the search for 

potential solutions is influenced by multiple stakeholders with different opinions, and not governed by the 

modellers own design optimization strategy and constraints. 

 

 

Figure 11 Screenshot of an interactive parallel coordinate plot combined with histograms showing the 
parameters’ distributions [29]. Based on criteria-dependent sensitivity analysis, SATOR, the bar plots 

above the coordinates indicate how much the parameters have been affected by the applied criteria [28].  

6 Conclusion 

In this research, we compare different approaches to explore a multidimensional design space using 

building simulations as means to find high-performing solutions. The design space is represented by an 

office room for which eight important design parameters have been discretized to allow for exhaustive 

factorial sampling, which results in 93,750 possible input configurations. The simulation software, BSim, 

is used to perform whole-year simulations, from which we aggregate the results for energy demand, 

thermal comfort, and daylight availability. This complete set of simulations facilitates a statistical 

comparison of two common OAT optimization strategies, Radial and Winding Stairs, and a Monte Carlo 

based approach. For our test case with eight discrete inputs, Radial and Winding Stairs optimization 

require 29 and 28 systematic variations, respectively, whereas the Monte Carlo approach is assessed with 

an exponentially increasing number of samples. A complementary study based on 22 students was 

conducted to assess a manual, heuristic approach where the design optimization is based on domain-

knowledge and experience. The main findings of this research include: 

 

(1) On average, 32 randomly selected simulations will contain a solution (~31 kWh/m²) that is more 

energy-efficient than those from Radial and Winding Stairs (both ~32 kWh/m²). The upper-limits 

of the distributions are 50 and 56 kWh/m² for Radial and Winding Stairs whereas the extreme for 

32 random samples is 43 kWh/m² indicating Monte Carlo as the most robust approach – even 

with low samples.  

(2) For Winding Stairs, variance-based sensitivity analysis shows that the optimal solution depends 

mostly on the baseline. More importantly, the combination of baseline and fixing order has 

significant influence on the proposed solutions (Sij is 0.28), which means there is no global best 

order in which to address and optimize design parameters. In addition, the proposed solution lies 

close to the baseline as shown for the “in-the-middle” baseline, which resulted in only 15 local 

optima. 

(3) Increasing the number of samples gradually improved the performance of the Monte Carlo 

approach, which reveal more and better solutions. Even with extremely unfortunate sampling of 

1024 simulations, it will reveal solutions with lower energy demand than the 25%-quartiles 

obtained from Radial and Winding Stairs optimization. 

(4) Only the Monte Carlo approach can reveal favourable input values or ranges, which are most 

likely to lead to high-performing designs. The distributions shapes are very similar when 

comparing the inputs producing the best solutions (<32 kWh/m²) obtained from 1024 random 

samples and all 93,750 simulations. 



(5) When applying the Monte Carlo method with few simulations, quasi-random sampling will 

typically reveal slightly better solutions compared to random sampling due to a better coverage 

of the design space. However, with larger sample sizes, the difference becomes insignificant. 

(6) In the experimental study, the students have been provided with a compliant, “in-the-middle” 

baseline which is slightly better than average. With this starting point, the students perform 

significantly better than both OAT approaches and between 256 and 512 quasi-random 

simulations are necessary to obtain better solutions.  

(7) In a training exercise, 19 of 22 students made mistakes when asked to carry out a set of Winding 

Stairs parameter variations. This illustrate how difficult it is to be systematic and avoid error in 

manual parameter studies.  

This study of an office space involves eight interdependent design parameters with large variabilities. In 

general, the design variabilities are often smaller and correspondingly less is the energy-savings 

potential. However, the building physics remains the same with many inputs, outputs, and complex 

interdependencies, which advocates the use of the multidimensional, global Monte Carlo approach. Monte 

Carlo makes it easier to address many design parameters, whereas heuristic OAT approaches seldom 

encompasses as many as eight design parameters. More often, only a few design parameters is 

considered and the design space investigation is less structured and thorough. Thus, the potential of 

using Monte Carlo is expected to be even more significant than shown in this study.  

 

In addition to revealing more energy-efficient designs, we have argued that a large set of Monte Carlo 

simulations provide more flexibility to vary constraints and inputs, which supports decision-making during 

design meetings with multiple stakeholder having different preferences. In addition, the Monte Carlo 

approach facilitate global sensitivity analysis and the construction of metamodels, which enable additional 

optimization and rapid feedback. However, heuristic OAT approaches are still the dominating approach in 

common practice and, despite recent developments, the integration of Monte Carlo methods are still 

immature in most building simulation software. This study shows that a Monte Carlo based approach has 

great potential to help designers create better designs with low energy and high performance. To realize 

this potential, software developers must make Monte Carlo methods more accessible and easy-to-use for 

practitioners. 

 

In conclusion, Monte Carlo simulations cover the design space thoroughly and therefore reveals a variety 

of high-performing solutions whereas OAT optimization lead to only one of the local optima close to the 

arbitrarily chosen starting point.  

References 

[1] S. Attia, “Computational optimisation for zero energy building design - Interviews with twentyeight 

international experts,” 2012. 

[2] S. Attia, M. Hamdy, W. O’Brien, and S. Carlucci, “Assessing gaps and needs for integrating 

building performance optimization tools in net zero energy buildings design,” Energy Build., vol. 

60, pp. 110–124, May 2013. 

[3] IBPSA-USA, “BEST Directory | Building Energy Software Tools,” 2019. [Online]. Available: 

http://www.buildingenergysoftwaretools.com/. [Accessed: 19-Jun-2019]. 

[4] T. Østergård, R. L. Jensen, and S. E. Maagaard, “Building simulations supporting decision making 

in early design – A review,” Renew. Sustain. Energy Rev., vol. 61, pp. 187–201, 2016. 

[5] D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, “Contrasting the capabilities of building 

energy performance simulation programs,” Build. Environ., vol. 43, no. 4, pp. 661–673, 2008. 

[6] S. Imam, D. A. Coley, and I. Walker, “The building performance gap: Are modellers literate?,” 

Build. Serv. Eng. Res. Technol, vol. 0, no. 0, pp. 1–25, 2017. 

[7] J. Nembrini, S. Samberger, and G. Labelle, “Parametric scripting for early design performance 

simulation,” Energy Build., vol. 68, pp. 786–798, 2014. 

[8] T. Banke, “Parametri i praksis,” Det Kongelige Danske Kunstakademis Skoler for Arkitektur, 

Design og Konservering, 2013. 

[9] S. Stevanović, “Optimization of passive solar design strategies: A review,” Renew. Sustain. Energy 

Rev., vol. 25, pp. 177–196, Sep. 2013. 



[10] Trimble Inc., “Sefaira,” 2019. [Online]. Available: http://sefaira.com/. [Accessed: 19-Jun-2019]. 

[11] J. Wright, E. Nikolaidou, and C. J. Hopfe, “Exhaustive Search; Does it have a Role in Explorative 

Design?,” in Building Simulation & Optimization 2016, 2016. 

[12] T. Han, Q. Huang, A. Zhang, and Q. Zhang, “Simulation-based decision support tools in the early 

design stages of a green building-A review,” Sustain., vol. 10, no. 10, 2018. 

[13] B. Lee, N. Pourmousavian, and J. L. M. Hensen, “Full-factorial design space exploration approach 

for multi-criteria decision making of the design of industrial halls,” Energy Build., vol. 117, pp. 

352–361, 2016. 

[14] L. Van Gelder, H. Janssen, and S. Roels, “Probabilistic design and analysis of building 

performances: Methodology and application example,” Energy Build., vol. 79, pp. 202–211, Aug. 

2014. 

[15] J. Hester, J. Gregory, and R. Kirchain, “Sequential Early-Design Guidance for Residential Single-

Family Buildings Using a Probabilistic Metamodel of Energy Consumption,” Accept. Energy Build., 

vol. 134, no. 2017, pp. 202–211, 2016. 

[16] R. Evins, “A review of computational optimisation methods applied to sustainable building design,” 

Renew. Sustain. Energy Rev., vol. 22, pp. 230–245, 2013. 

[17] A.-T. Nguyen, S. Reiter, and P. Rigo, “A review on simulation-based optimization methods applied 

to building performance analysis,” Appl. Energy, vol. 113, pp. 1043–1058, Jan. 2014. 

[18] V. Machairas, A. Tsangrassoulis, and K. Axarli, “Algorithms for optimization of building design: A 

review,” Renew. Sustain. Energy Rev., vol. 31, no. 1364, pp. 101–112, 2014. 

[19] T. Østergård, R. L. Jensen, and S. E. Maagaard, “Early Building Design: Informed decision-making 

by exploring multidimensional design space using sensitivity analysis,” Energy Build., vol. 142, pp. 

8–22, May 2017. 

[20] C. J. Hopfe, G. L. M. Augenbroe, and J. L. M. Hensen, “Multi-criteria decision making under 

uncertainty in building performance assessment,” Build. Environ., vol. 69, pp. 81–90, Nov. 2013. 

[21] C. J. Hopfe and J. L. M. Hensen, “Uncertainty analysis in building performance simulation for 

design support,” Energy Build., vol. 43, no. 10, pp. 2798–2805, Oct. 2011. 

[22] A. Saltelli et al., Global sensitivity analysis: the primer. Chichester, England: John Wiley & Sons 

Ltd., 2008. 

[23] W. Tian, “A review of sensitivity analysis methods in building energy analysis,” Renew. Sustain. 

Energy Rev., vol. 20, pp. 411–419, 2013. 

[24] T. Østergård, R. L. Jensen, and S. E. Maagaard, “A comparison of six metamodeling techniques 

applied to building performance simulations,” Appl. Energy, vol. 211, pp. 89–103, 2018. 

[25] D. L. Macumber, B. L. Ball, and N. L. Long, “A graphical tool for cloud-based building energy 

simulation,” in 2014 ASHRAE/IBPSA-USA Building Simulation Conference, 2014, pp. 87–94. 

[26] Wikipedia: The Free Encyclopedia, “Resampling (statistics),” Wikimedia Foundation Inc., 2019. 

[Online]. Available: https://en.wikipedia.org/wiki/Resampling_(statistics)#Bootstrap. [Accessed: 

22-Aug-2019]. 

[27] M. H. Vorre, M. H. Wagner, S. E. Maagaard, P. Noyé, N. L. Lyng, and L. H. Mortensen, 

“Branchevejledning for indeklimaberegninger,” Danish Research Institute, Copenhagen, 2017. 

[28] T. Østergård, R. Lund Jensen, and S. E. Maagaard, “Interactive Building Design Space Exploration 

Using Regionalized Sensitivity Analysis,” Proc. 15th Int. Conf. Int. Build. Perform. Simul. Assoc., 

2017. 

[29] MOE|BuildingDesign, “DataExplorer,” 2019. [Online]. Available: 

https://buildingdesign.moe.dk/tools/dataexplorer/. [Accessed: 29-Aug-2019]. 

[30] F. Campolongo, A. Saltelli, and J. Cariboni, “From screening to quantitative sensitivity analysis. A 

unified approach,” Comput. Phys. Commun., vol. 182, no. 4, pp. 978–988, 2011. 

[31] K. Chan, A. Saltelli, and S. Tarantola, “Winding stairs: A sampling tool to compute sensitivity 

indices,” Stat. Comput., vol. 10, no. 3, pp. 187–196, 2000. 

[32] S. Kucherenko, D. Albrecht, and A. Saltelli, “Exploring multi-dimensional spaces: a Comparison of 

Latin Hypercube and Quasi Monte Carlo Sampling Techniques,” 8th IMACS Semin. Monte Carlo 

Methods, pp. 1–32, 2015. 

[33] I. M. Sobol’ and B. V. Shukman, “Random and quasirandom sequences: Numerical estimates of 

uniformity of distribution,” Math. Comput. Model., vol. 18, no. 8, pp. 39–45, Oct. 1993. 

 


