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Comparison of Cation Exchange Capacity 
Estimated from Vis–NIR Spectral Relectance 
Data and a Pedotransfer Function
Hafeez Ur Rehman,* Maria Knadel, Lis W. de Jonge, 
Per Moldrup, Mogens H. Greve, and Emmanuel Arthur

Knowledge of the cation exchange capacity (CEC) for soils or other porous media 
is very important for civil engineering and agricultural applications. However, the 
standard laboratory methods to measure CEC are costly and laborious. The aim 
of this research was to develop a visible–near-infrared spectroscopy (Vis–NIRS, 
400–2500 nm) calibration model to predict CEC based on multivariate analysis 
and to compare the predictive ability of Vis–NIRS with that of a pedotransfer 
function (PTF). For this purpose, reference CEC was measured by the ammonium 
acetate method for 235 soil samples, collected from 21 countries. Diffuse spec-
tral reflectance data were also collected by using a NIRSTM DS2500 spectrometer. 
The model was constructed on a calibration subset (80%) and evaluated with a 
validation subset (20%) using partial least squares regression. The Vis–NIRS cali-
bration model was sufficiently robust based on the cross-validation results [R2 
= 0.79, RMSE of cross-validation values of 7.9 cmolc kg−1 and bias = −0.14]. The 
independent validation of the Vis–NIRS model showed good prediction accuracy, 
regardless of sample origin (RMSE of prediction  value of 5.0 cmolc kg−1 and ratio 
of performance to interquartile distance value of 4.5). Moreover, the Vis–NIRS 
prediction performance was superior to that of the PTF, which was influenced by 
the sample origin (RMSE values of 11.5 cmolc kg−1). The better prediction of CEC 
by the Vis–NIRS calibration model suggests that it is due to the co-variation of 
CEC with clay (type and content) and organic C content.

Abbreviations: CEC, cation exchange capacity; OC, organic carbon; OM, organic matter; PLSR, partial 
least squares regression; PTF, pedotransfer function; RMSEC, root mean square error of calibration; 
RMSECV, root mean square error of cross-validation; RMSEP, root mean square error of prediction; 
RPIQ, the ratio of performance to interquartile distance; Vis–NIR, visible–near-infrared; Vis–NIRS, vis-
ible–near-infrared spectroscopy.

Cation exchange capacity (CEC) is a vital soil property that plays an important 
role in filtration of water, provision of food and fiber, and soil swell and shrinkage potential. 
The CEC is an essential soil property required in national or global soil databases because 
it is significant in decision making in agronomy, environmental management, and geotech-
nical applications (Janzen, 2004; Khorshidi and Lu, 2017; Yilmaz, 2004). In agronomy 
and environmental management, CEC is crucially important for soil fertility, nutrient 
dynamics, and hydraulic conductivity (Noble et al., 2000; Środoń and McCarty, 2008; 
Stockmann et al., 2015). For many geotechnical applications, CEC and clay content and 
type are required for preliminary design estimates and assessment of the swelling potential 
of clays (Yilmaz, 2004; Yukselen-Aksoy and Kaya, 2006).

Conventional methods for determining CEC comprise the ammonium acetate 
(Sumner and Miller, 1996), the barium chloride (Bascomb, 1964), or the ammonium 
chloride methods (Schollenberger and Dreibelbis, 1930). Drawbacks of these methods 
are that they are costly and time-consuming for a large number of samples. To combat 
these challenges, several pedotransfer functions (PTFs) have been developed to predict 
CEC from easily measured soil properties. The consistency of PTFs is mainly depen-
dent on the number of samples and range of the input parameters (Chirico et al., 2010). 
Pedotransfer functions for CEC are often developed from a combination of different prop-
erties (e.g., clay content, organic C [OC] content, and hygroscopic water content) (Arthur, 
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2017; Krogh et al., 2000; McBratney et al., 2002; Olorunfemi et 
al., 2016; Torrent et al., 2015). For instance, Krogh et al. (2000) 
showed that a PTF based on clay and OM contents dominated by 
illite reliably explained 90% of the variability in CEC for Danish 
soils. Similarly, McBratney et al. (2002) also showed that a PTF 
based on clay and OC explained 73% of the variability in CEC.

An alternative method for predicting CEC is the application of 
visible–near-infrared diffuse reflectance spectroscopy (Vis–NIRS: 
range from 400 to 2500 nm). The use of  Vis–NIRS has shown great 
potential for estimating several soil physical, chemical, and hydrau-
lic properties and some biological properties due to its simplicity, 
rapidity, nondestructiveness, and cost-effective analysis (Babaeian 
et al., 2015; Hermansen et al., 2017; Rossel et al., 2006; Santra et 
al., 2009; Soriano-Disla et al., 2014; Stenberg et al., 2010). Previous 
local studies have successfully estimated CEC using Vis–NIRS for 
samples from specific geographic areas. For example, Pinheiro et al. 
(2017) used 434 Brazilian samples and reported good prediction 
performance of Vis–NIRS for CEC (range: 1 to 69 cmolc kg−1) 
(RMSE of prediction [RMSEP] = 5.86 cmolc kg−1). Similar pre-
diction performance was also reported for CEC for 50 Californian 
and 330 Turkish soils (Ulusoy et al., 2016; van Groenigen et al., 
2003). Prediction of soil properties with Vis–NIRS from a specific 
geographic area often produces better results than predictions from 
different geographic areas, due to similar soil mineralogical com-
position and specific spectra measurement protocols and spectral 
analysis in a region of interest (Horta et al., 2015). Further, develop-
ing multivariate calibrations is important to reduce the calibration 
errors for a large number of samples having large variability (Stevens 
et al., 2013). To the best of our knowledge, no studies of  Vis–NIRS 
measurement of CEC of soils from different geographic origins have 
yet been presented in the literature. The objectives of the study were 
(i) to develop a Vis–NIRS calibration model to predict CEC for soil 
samples collected from different geographical regions, and (ii) to 
compare the predictive ability of the Vis–NIRS CEC calibration 
with a newly developed PTF based on clay and OC contents.

 6Materials and Methods
Soil Sampling

To account for regional variability in the samples used for 
the study, we collected 235 soil samples from different parts of 
the world (Fig. 1). The samples were collected from Western and 
Northern Europe (108), North America (75), South America (14), 
Africa (31), and Asia (7). The dataset covered a wide range of soil 
texture classes from clay to sand (Fig. 1).

Laboratory Analysis
The soil samples were air dried, ground to pass a 2-mm sieve, 

and analyzed in a laboratory for CEC, clay, silt, sand, and OC 
contents. Cation exchange capacity was determined through 
extraction in ammonium acetate at pH 7 for the majority of 
the samples and at pH 8.2 for 25 samples (Sumner and Miller, 
1996). The particle size distribution was determined by the wet 

sieving, pipette, and hydrometer method as described in Gee and 
Or (2002) after removal of organic matter (OM) and carbonates. 
The total C content was determined on ball-milled samples with 
an organic elemental analyzer coupled to a thermal conductiv-
ity detector (Thermo Fisher Scientific) by the oxidation of C at 
1800°C. Total C equaled OC unless a preceding test indicated 
the presence of carbonates. For samples containing carbonates, 
OC was the difference between total C and inorganic C calcu-
lated from the CaCO3 percentage. For 60 of the samples, OM was 
determined by the Walkley–Black method (Nelson and Sommers, 
1996) and then converted to OC by assuming that 58% of OM is 
OC (Warington and Peake, 1880).

Vis–NIRS Measurements
The 2-mm sieved and air-dried samples were scanned 

in the laboratory (average temperature = 24°C and relative 
humidity = 62.4% during the scanning) using a commercially 
available Vis–NIR spectrometer, NIRSTM DS2500 (FOSS). 
The spectrometer was equipped with Si (400–1100 nm) and PbS 
(1100–2500 nm) detectors. The instrument covered a spectral 
range between 400 and 2500 nm with a spectral resolution of 
8.75-nm full width at half height and a sampling interval of 0.5 nm. 
Prior to the measurements, the instrument was calibrated using 
white reference (Spectralon). When calculating relative reflectance, 
the digital number of the sample was ratioed against the digital 
number of the white reference. Approximately 50 g of soil was 
placed in a 7-cm sample cup equipped with a 6-cm quartz window 
at the bottom. Reflectance was collected at seven spots of the 
sample cup and the average spectrum was extracted for each sample 
for further analysis. The reflectance measurements were converted 
to absorbance by A = [log(R−1)], where R is the reflectance.

Multivariate Data Analysis
Before developing Vis–NIRS calibration model for CEC, the 

dataset of 235 samples was divided into calibration and validation 

Fig. 1. Distribution of soil samples in the USDA soil texture triangle.
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subsets. The split was done automatically with the onion algorithm 
(Sousa et al., 2015) in the PLS Toolbox 8.2 software (Eigenvector 
Research) into two subsets: 80% (188 samples) for calibration 
and 20% (47 samples) assigned to a validation subset to assess the 
models’ performance. The onion splitting method first selects a 
ring of the unique samples according to CEC range (based on 
distance from the mean—like the outermost layer of an onion); 
these are placed in the calibration set. Second, a ring of less unique 
CEC samples, just inside the first set (the next onion layer), is put 
into the validation set. This is repeated two more times, so there 
are three outer rings of the most unique and less unique samples. 
Finally, all remaining samples are split randomly into the calibra-
tion and validation subsets.

Partial least square regression (PLSR) has become a preferred 
method for constructing predictive Vis–NIRS models (Feyziyev et 
al., 2016; Ulusoy et al., 2016; van Groenigen et al., 2003; Waruru 
et al., 2015). We applied PLSR by using Unscrambler X 10.5 soft-
ware (Camo ASA) to model the relationship between the reference 
CEC data and the Vis–NIR absorbance spectral data. Before PLSR 
analysis, preprocessing techniques such as smoothing, derivatives, 
standard normal variate (SNV), baseline, and normalization were 
tested. Due to the fine resolution of the spectra, pre-processing 
techniques had no impact on the calibration models and the raw 
absorbance spectral data were used in the development of the 
calibration models. The calibration model was validated using a 
leave-one-out full cross-validation method resulting in estimation 
of CEC for all 188 samples.

Development of Pedotransfer Function
To compare the performance of the Vis–NIRS calibration 

model to PTF prediction, the calibration dataset was also used to 
develop a PTF based on clay and OC content. A brief description 
of the PTF is

( ) ( )
( )

= + ´ + ´

< = =2

CEC 0.60 0.61  Clay 2.00 OC

 value 0.001; adjusted 0.53; SEE 11.9p R
 [1]

where CEC is in centimoles of charge per kilogram, clay and OC 
contents are in mass percent, and SEE is the standard error of the 
estimate.

The prediction of CEC for the validation dataset was then 
used to compare the performance of the PTF to that of the Vis–
NIRS calibration model.

Evaluation of Model Performance
To evaluate the predictive ability of the Vis–NIRS model 

and PTF, the RMSE of calibration (RMSEC), the RMSE of 
cross-validation (RMSECV), and the value of the squared Pearson 
correlation coefficient (R2) were used. To evaluate the independent 
validation, the RMSE of prediction (RMSEP), and the ratio of 
performance to interquartile distance (RPIQ) were additionally 
used. The model was ranked by RPIQ as a measure of the goodness 
of the calibration model (Bellon-Maurel et al., 2010). The RMSE 
and RPIQ are calculated as

( )-
= å

2
e rCEC CEC

RMSE
N

 [2]

where CECe and CECr are the estimated and reference values of 
CEC, and N is the number of samples, and

-
= =

IQ Q3 Q1
RPIQ

RMSEP RMSEP
 [3]

where IQ is the interquartile distance that gives the range that 
accounts for 50% of the population around the median, Q1 is 
where 25% of the samples can be found, and Q3 is where 75% of 
the samples can be found.

The range of measured values of the considered soil property 
influences the RMSE strongly. Thus, to compare the performance 
of the model to other studies where RPIQ is not available, the 
standardized RMSE (SRMSE) was used:

SRMSE = RMSE/Range [4]

where Range represents the difference between the smallest and 
largest values of CEC for the respective dataset or from published 
studies. Smaller SRMSE values denote better predictions and 
vice versa.

 6Results and Discussion
Soil Properties

The descriptive statistics of the particle size distribution, OC, 
and CEC of the investigated samples are presented in Table 1, and 
an overview of their distribution in the USDA texture triangle is 
illustrated in Fig. 1. The soil samples are distributed across the 
texture classes from clay to sand; silt was the only texture class with 
no samples. The soil samples exhibited a wide range in CEC (1–83 

Table 1. General statistics of soil texture, organic C (OC), and cation exchange capacity (CEC) for the entire dataset (n = 235) and calibration (n = 188) 
and validation (n = 47) subsets.

Property Mean Min. Max. SD Q1† Q3†

Clay, % 30 (30, 28)‡ 1 (2, 1) 83 (83, 75) 21 (21, 20) 1 (13, 13) 42 (42, 42)

Silt, % 29 (29, 29) 3 (7, 3) 73 (73, 62) 14 (15, 13) 3 (18, 19) 39 (39, 37)

Sand, % 41 (41, 43) 0 (0, 0) 96 (91, 96) 25 (26, 25) 0 (16, 24) 61 (61, 60)

OC, % 1.69 (1.76, 1.41) 0.03 (0.03, 0.10) 8.42 (8.42, 4.48) 1.38 (1.45, 1.0) 0.03 (0.69, 0.77) 2.26 (2.37, 1.94)

CEC, cmolc kg−1 23 (22, 23) 1 (1, 2) 83 (83, 83) 18 (17, 20) 1 (11, 10) 31 (31, 33)

† Q1, first quartile; Q3, third quartile.
‡ The first value is for the entire dataset, the first value in parentheses is for the calibration subset, and the second value in parentheses is for the validation subset.
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cmolc kg−1), clay content (1–83%), and OC content (0.03–8.42%). 
Differences in the sample origin are evident in the variability in 
the clay mineral composition as well. The samples were dominated 
by kaolinites (?12%), smectites (?25%), illites and micas (?13%), 
or a mixture of two or more of these three minerals and traces of 
vermiculite (?50%). The variability in the properties and the clay 
mineral composition was very important for developing models 
that have wider applicability than local models. Supplemental 
information on the soil properties for each sample is provided in 
Supplemental Table S1.

General Characterization of the Vis–NIR Spectra
The distinct differences in spectral signatures among three-

selected soil samples with identical clay content (?43%) but 
different clay mineralogy (illitic, kaolinitic, and smectitic) are pre-
sented in Fig. 2. The different clay minerals in soils show diagnostic 
absorption in the Vis–NIR range. These absorption bands caused 
by vibrational transitions commonly display sharp and narrow fea-
tures (Zheng et al., 2016) (Fig. 2). The selected smectitic sample 
from Texas, USA, shows large CEC values (43.3 cmolc kg−1) and 
display distinct spectral features. The absorption bands near 
?1400 nm (overtones caused by O-H stretch in its octahedral layer), 
?1900 nm (overtones caused by molecular water), and ?2200 nm 
(combination vibration of water bound in the interlayer lattice) 
(Bishop et al., 1994; Post and Noble, 1993) are very pronounced 
and clear. The illite minerals are typically formed in colder regions 
(Ben-Dor, 2002). Here, the illite-rich soil sample is from Denmark 
with CEC of 16.2 cmolc kg−1. It shows a more pronounced absorp-
tion feature near 1900 nm, related to OH bonds and two very 
weak absorption near 1400 and 2200 nm, all common for illite 
minerals (Stenberg et al., 2010). A kaolinitic sample is represented 
by a Nigerian soil with CEC of 5.2 cmolc kg−1. It shows very pro-
nounced absorption peaks near 1400 and 1900 nm related to OH 
bonds (Clark, 1999; Post and Noble, 1993). The observed peak 
near 2200 nm is a result of a combination of Al-OH bending 

and O-H stretch (Bishop et al., 1994; Clark et al., 1990; Post and 
Noble, 1993). The Nigerian sample shows spectral doublet near 
2200 nm. Moreover, it shows the highest absorption feature in the 
visible range. The typical convex spectral feature near 500 nm is 
also observed here and is related to the presence of OM (Ben-Dor, 
2002). An additional absorption band near 920 nm indicates the 
presence of Fe oxide mineral (goethite) (Scheinost et al., 1998).

The CEC is more related to clay minerals than the total 
amount of clay. This can also be seen in the spectra. Even though 
all three soils contained the same amount of clay (?43%), they had 
significantly different CEC values, and the response related to the 
different minerals was also clear in the Vis–NIR spectra.

Vis–NIRS Calibration Model 
and Independent Validation
CEC Calibration Model

A successful calibration model for CEC using Vis–NIR spec-
tra and seven factors was obtained after the regression analyses 
(Supplemental Table S2). The R2, RMSEC, and bias of the cali-
bration model were 0.83, 6.99 and 0.00 cmolc kg−1, respectively. 
As illustrated in Fig. 3, the performance of the calibration model 
after cross-validation was very good (R2 = 0.79, bias = −0.14, and 
RMSECV and SRMSE of 7.89 cmolc kg−1 and 0.10, respectively). 
This is in agreement with previous studies where the performance 
of CEC calibration models, after cross-validation, was excellent. 
For example, studies by Waruru et al. (2014), Ulusoy et al. (2016), 
and Shepherd and Walsh (2002) reported R2 > 0.80 and SRMSE 
values ranging from 0.05 to 0.09. Even though CEC is not spec-
trally active in the Vis–NIR range, it reflects the OM content, 
clay mineral types, and clay content of the samples—three prop-
erties that are expressed strongly in the Vis–NIR spectra (Dalal 
and Henry, 1986; Soriano-Disla et al., 2014; Viscarra Rossel et al., 
2006). It is therefore probable that the obtained strong relationship 
between Vis–NIR spectra and the CEC content emanates from 

Fig. 2. Example of visible–near-infrared (Vis–NIR) spectra for an 
illite-rich (Denmark), kaolinite-rich (Nigeria), and smectite-rich 
(Texas) soil samples.

Fig. 3. Results of a leave-one-out full cross-validation of the cation 
exchange capacity (CEC) calibration model. RMSECV, RMSE of 
cross-validation; SRMSE, standardized RMSE (RMSE/RangeCEC, 
where RangeCEC is the range in values for CEC).
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the dependence of CEC on other spectrally active soil properties. 
Thus, the correlations between Vis–NIR spectra with clay and OC 
on the exact same calibration set were also tested. One needs to 
keep in mind, however, that the three properties represent different 
ranges and units. Thus, a direct comparison is difficult. Moreover, 
the caveat with this comparison is the inherent assumption that 
the accuracy and error associated with the laboratory measure-
ment of the three properties is similar. Clearly higher accuracy 
for CEC (calibration: R2 = 0.83, RMSEC = 6.99 cmolc kg−1 and 
cross-validation: R2 = 0.79, RMSECV = 7.89 cmolc kg−1) than 
for clay (calibration: R2 = 0.69, RMSEC = 11.73% and cross-
validation: R2 = 0.65, RMSECV = 12.57%) and OC contents 
(calibration: R2 = 0.57, RMSEC = 0.95% and cross-validation: 
R2 = 0.53, RMSECV = 0.99%) using Vis–NIRS-derived calibra-
tion, and cross-validated models were found. The calibration and 
cross-validation results suggest a combined contribution of both 
mineral and organic spectral responses for CEC determination. 
To confirm this joined contribution, the regression coefficients of 
the Vis–NIR calibration model of CEC were compared with and 
superimposed on those of clay and OC models.

Regression Coeicients
The regression coefficients from the calibration PLSR analy-

sis for CEC, clay, and OC contents are shown in Fig. 4. Multiple 
wavelengths important for the CEC determination are present in 
the regression coefficient across visible and NIR spectral range and 
can be related to both soil mineral and organic components. In the 
visible range, there is a high and negative regression coefficient near 
500 nm that nearly overlaps with a regression coefficient from the 
OC model. The absorptions in this region are usually assigned to 
Fe oxides as the possible components (Sherman, 1985). Further, 
two less important coefficients near 610 and 780 nm are present 
and are overlapping with more pronounced coefficients from OC 
and clay, respectively. Absorption features near 620 nm were previ-
ously reported to be related to Fe oxides in goethite and hematite, 
but the region between 570 and 700 nm was also assigned to OM 
(Galvdo et al., 1997; Stenberg et al., 2010). No possible compo-
nent responsible for the absorptions near 780 nm was found in 
the literature; however, amine (N-H) and aromatics (C-H) were 
previously found to contribute to absorptions at 751 and 825 nm 
(Clark et al., 1990). Thus, this region is most likely related to OM.

The most important wavelengths for CEC determination in 
the NIR region are located near 1400, 1900, and 2200 nm. The 
negative regression coefficient at 1400 nm is present for all three 
properties and is related to the first overtone of O-H stretch in its 
octahedral layer of clay minerals. Absorptions near 1900 nm are 
related to OH and the combination vibrations of water bound in 
the interlayer lattice (Bishop et al., 1994). Here, a positive regres-
sion coefficient for both CEC and clay and a negative for OC can 
be seen. At ?2200 nm, a high and negative regression coefficient 
for CEC is present and is of much higher intensity than that of 
OC, which was most likely decreased due to higher absorption 
near 2100 nm (assigned to OM) (Ben-Dor et al., 1997). A positive 

regression coefficient can be seen in region of 2200 nm and is 
assigned to Al-OH bend with O-H stretch combinations typical 
for clay minerals.

Less important regression coefficients at 2280 (Ben-Dor et 
al., 1997) and 2300 nm (Mg-OH) (Clark et al., 1990) can be also 
noticed for the CEC and are overlapping with OC and clay regres-
sion coefficients near 2210 nm (Al–OH bend and O–H stretch 
combination) (Clark et al., 1990) and 2308 nm (aliphatic C–H 
stretch) (Ben-Dor et al., 1997), respectively. The analysis of regres-
sion coefficients confirmed that the determination of CEC was 
enabled through its co-variation with both clay and OC, and what 
is explained by the good correlation with clay and OC contents 
(Eq. [1]) and regression coefficients.

CEC Independent Validation
The independent validation of the calibration model, pre-

sented in Fig. 5a, showed very good prediction accuracy (R2 = 0.94, 
RMSEP = 5.01 cmolc kg−1, SRMSE = 0.06, and RPIQ = 4.50). 
Generally, the prediction of CEC from Vis–NIRS in the literature 
shows high predictive accuracy. Rossel et al. (2016) provided an 
overview of the CEC prediction performance of 26 studies with 
an average R2 and RMSE of 0.73 (0.43–0.90) and 3.80 cmolc kg−1 
(1.00–9.60), respectively. The CEC-independent validation 
results presented here showed better accuracy than some studies 
that used datasets with less variable samples from local datasets or 

Fig. 4. The comparison between the regression coefficients of calibra-
tion models for (a) cation exchange capacity (CEC) and clay content, 
and (b) CEC and organic C (OC) content.
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from one geographical region. For instance, Pinheiro et al. (2017) 
reported less accurate CEC prediction for Brazilian soil samples 
with R2 = 0.68, SRMSE = 0.09, and RPIQ = 0.82; Waruru et al. 
(2014) estimated CEC for 120 samples from Kenya and reported 
R2 = 0.70 and SRMSE = 0.13; and Leone et al. (2012) achieved 
R2 = 0.70 and SRMSE = 0.08 for 124 samples from Italy. The less 
accurate prediction of the spectroscopic models for CEC reported 
in previous studies can be attributed to a lower variability or smaller 
CEC range in the soil samples used for calibration. Results better 
than and/or comparable with those of our study were reported 
by Nduwamungu et al. (2009), who used 150 Canadian samples 
and reported CEC prediction accuracy of R2 = 0.89 and SRMSE 
= 0.10. Similarly, Vendrame et al. (2012) obtained R2 of 0.81 and 
SRMSE of 0.05 for 148 Brazilian samples.

Comparison of Vis–NIRS and Pedotransfer 
Functions for CEC Prediction

The tedious nature of conventional measurement methods for 
CEC precipitated the development of PTFs that are based on easily 
measureable soil properties (e.g., clay and OC). The comparison 

of the PTF developed in this study and Vis–NIRS in predicting 
CEC is shown in Fig. 5a and 5b. The European samples (com-
posed primarily of illite or a mixture of different clay minerals) and 
samples with CEC <40 cmolc kg−1 were well-estimated by the PTF. 
Conversely, samples with CEC >40 cmolc kg−1 were consistently 
underestimated, and some African samples (dominated by kaolin-
ite mineral) with the lowest CEC were overestimated by PTF and 
well estimated by Vis–NIR. The Vis–NIRS CEC prediction 
performance was significantly better (R2 = 0.94 and RPIQ = 4.5, 
and RMSE = 5.01 cmolc kg−1) than that of the PTF (R2 = 0.79, 
RPIQ = 2.2, and RMSE = 11.5 cmolc kg−1) and showed good 
predictions for all the samples regardless of the magnitude of CEC 
or origin.

 6Conclusions
Visible–NIRS was successfully used to predict CEC using 

a set of soil samples from different geographic regions. The esti-
mated CEC was in good agreement with the measured values 
(RMSE of 5.01 cmolc kg−1). A successful independent CEC valida-
tion was achieved (RPIQ = 4.5) and was better than the estimation 
of clay and OC contents (RPIQ of 3.9 and 2.0, respectively). It was 
attributed to a high correlation of CEC to C and clay contents, as 
well as to mineralogy, and was well reflected in the CEC regression 
coefficient indicating the joint contribution of both the organic 
and mineral composition in predicting the CEC values.

Evaluation of a newly developed PTF to estimate CEC 
revealed fair estimations, though the estimations were affected by 
the range of CEC. The Vis–NIRS approach was superior to that 
of PTF and was not affected by the sample origin or range of CEC 
values. Thus, it can be inferred that Vis–NIRS could be used as a 
fast alternative method for estimating CEC for variable soils with 
a wide range of CEC and originating from different geographic 
areas, whereas PTFs may be better for local scale estimations.

Supplemental Material
The supplemental material includes information regarding geographical origin, 
clay, silt, sand, organic C, and CEC of the investigated soil samples. Additionally, 
it contains the CEC calibration models for use and validation by other researchers.
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