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Abstract: Due to the development and deployment of renewable DC power sources and their inherent
advantages for DC loads in applications, the DC nano-grid has attracted more and more research
attentions; especially the topologies of AC/DC converters are increasingly studied. When designing
an AC to DC converter for a DC nano-grid system, the grounding configuration, which determines
the costs, the efficiency as well as the safety, plays an important role. A three-terminal output AC
to DC converter based on united grounding configuration has been presented for DC nano-grid.
However, it has to be pointed out that the three-terminal output DC nano-grid is not as popular
as the two-terminal DC output one, due to the infrastructure consideration. This paper proposes
a new Buck-Boost AC to DC converter with two-terminal output voltage for DC nano-grid. The
operating principle, the steady-state analysis, and the small signal modelling for the proposed
converter working in continuous conduction mode are presented in detail. A 220 V/50 Hz/800 W
prototype was fabricated to verify the effectiveness of the proposed converter.

Keywords: buck-boost; converter; dc nano-grid; single inductor

1. Introduction

Due to the energy crisis and the environmental issues caused by the consumption of traditional
fossil fuels, a large number of renewable power conversion systems are connected to low voltage AC
distribution systems as distributed generators. Note that many renewable power sources generate
DC energies, while more and more power loads show DC characteristics. Therefore, the DC
nano-grids are put forward to be instead of the conventional AC microgrid due to the energy
efficiency consideration [1,2], and become more and more attentions [3–13].

In order to flexibly utilize the DC power generated by the renewable energy sources, a bi-directional
AC/DC converter is generally adopted as the interface between the DC nano-grid and the AC power
system. However, in some places, due to a large number of dc loads, the power generated by the
local renewable energy sources cannot meet the consumption of local DC loads, so the traditional AC
grid needs to provide power to DC nano-grid and the interface works like a power factor correction
rectifier [10].

Generally, for safety, household appliances need to be connected with ground line, whether in a
DC nano-grid or a low-voltage AC grid [12–15]. When selecting the power converter between the DC
nano-grid and the low-voltage AC grid, the grounding should be first addressed. Three basic types
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of the grounding configurations for the DC nano-grid have been summarized in [10], including the
united grounding, the virtual isolated grounding and the unidirectional grounding.

In [15–20], various AC to DC converters were reviewed and compared, but the suitable AC to
DC converters based on the united grounding configuration for DC nano-grid application were not
introduced. Thus, [10] introduced a dual Buck-Boost AC to DC converter for DC nano-grid based on
the principle of Two-Switch Buck-Boost (TSBB) converter, which is a simplified cascade connection of
the Buck and Boost converter. This transformerless Buck-Boost AC to DC converter has three-terminal
DC outputs and the AC system is common-ground with the DC system. Due to the application
of MOSFET switching devices, only one switch operates in the high frequency state at any time,
the switching losses of this converter can be reduced a lot. In order to solve the imbalance of the
three-terminal output voltages of the converter in [10], which may be due to the unbalanced loads, a
coupled-inductor-based Buck-Boost AC to DC converter was proposed in [12]. And to further improve
the efficiency of the converter in [12], a modified dual buck–boost AC/DC converter with self-balanced
DC output voltages in [13] was proposed. All these techniques have accelerated the application of DC
nano-grid. However, it has to be pointed out that the three-terminal output DC nano-grid is not as
popular as the two-terminal DC output one, due to the infrastructure consideration. Hence, exploring
a new topology of Buck–Boost AC to DC converter with only two-terminal DC output in DC nano-grid
applications is very important and valuable.

In this study, as shown in Figure 1, a new transformerless Buck–Boost AC to DC converter is
proposed by inserting an additional switched network into a TSBB converter. During the positive AC
grid voltage, the proposed AC to DC converter operates like a TSBB converter. During the negative
AC grid voltage, the proposed AC to DC converter operates like a single-switch Buck-Boost converter.
The main merit of the proposed Buck–Boost AC to DC converter is that two-terminal DC output can be
successfully achieved, while only a single DC inductor is required and its utilization factor is 100%,
resulting in the reduction of size and cost.
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Figure 1. Proposed AC to DC converter with an inductor.

The rest of this paper is organized as follows. In Section 2, the structure of the new transformerless
Buck–Boost AC to DC converter is proposed, while its operating principle is illustrated via the
equivalent circuits in three working states. The steady-state characteristics of the converter are
analyzed in Section 3. The small-signal model is derived, and control strategy of the proposed
converter is introduced in Section 4. In order to confirm the theoretical analysis as well as the operating
modes, an experimental prototype is developed, and the results are provided in Section 5. Finally, the
conclusions are given in Section 6.
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2. Proposed AC to DC Converter

2.1. Proposed Topology

Figure 1 shows the circuit configuration of the new transformerless Buck–Boost AC to DC
converter, which consists of three power switches (S1-3), five diodes (D1-5), one DC inductor (L), two
capacitors (filter capacitor Cf and electrolytic capacitor C) and one resistive load R. To facilitate the
operating principle of the proposed AC to DC converter, the circuit can be simplified to the structure
as shown in Figure 2.

Energies 2019, 12, x FOR PEER REVIEW 3 of 18 

 

operating principle of the proposed AC to DC converter, the circuit can be simplified to the structure 
as shown in Figure 2. 

L
RVoVg

Lg D5S3

S2D4Cf

C

S1

 
Figure 2. Simplified AC to DC converter with an inductor. 

2.2. Operating Principle Description 

According to the amplitude comparison between the output DC voltage of Vo and the AC grid 
voltage of Vg, as shown in Figure 3, the proposed converter has three working states in a line period. 
Since only one switch operates in high frequency state at any time, the switching power losses can be 
minimized. During the positive half period of AC grid voltage, the new Buck-Boost AC to DC 
converter is a TSBB converter. When Vo ≥ Vg, the system works in the “Boost” state. S1 is on, S3 is off, 
S2 works with high frequency and the equivalent circuits of the converter are depicted in Figure 4. 
When Vo < Vg, S1 works with high frequency and the rest of the switches are off. The converter works 
like a pure “Buck” converter, where the equivalent circuits can be depicted in Figure 5. 

0
t

|Vg|
Vo

S1

S2

S3

Boost Buck-Boost Buck Boost 

Positive half of line period Negative half of line period 

 
Figure 3. Operating states and gate signals of the proposed AC to DC converter. 

L
RVoVg

Lg D5S3

S2D4Cf

C

S1

 

L
RVoVg

Lg D5S3

S2D4Cf

C

S1

 
(a) (b) 

Figure 4. Equivalent circuits of the “Boost” state in the positive AC grid voltage: (a) Energy storing; 
(b) Energy releasing. 

Figure 2. Simplified AC to DC converter with an inductor.

2.2. Operating Principle Description

According to the amplitude comparison between the output DC voltage of Vo and the AC grid
voltage of Vg, as shown in Figure 3, the proposed converter has three working states in a line period.
Since only one switch operates in high frequency state at any time, the switching power losses can
be minimized. During the positive half period of AC grid voltage, the new Buck-Boost AC to DC
converter is a TSBB converter. When Vo ≥ Vg, the system works in the “Boost” state. S1 is on, S3 is off,
S2 works with high frequency and the equivalent circuits of the converter are depicted in Figure 4.
When Vo < Vg, S1 works with high frequency and the rest of the switches are off. The converter works
like a pure “Buck” converter, where the equivalent circuits can be depicted in Figure 5.
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During the negative AC grid voltage, the proposed Buck-Boost AC to DC converter is a
single-switch Buck-Boost converter. S1 and S2 are off, S3 operates in high frequency state and
the operating states are shown in Figure 6. When S3 is on, the AC Source supplies the power to the
DC inductor. When S3 is off, the power stored in the inductor will be released to R, where the whole
system works in the “Buck-Boost” state.
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3. Steady-State Characteristics

3.1. Grid Current

The proposed converter works like a power factor correction circuit and the objective of the
converter is to transfer the AC power to the DC load while synchronizing the input AC current with
the AC grid voltage in phase. Therefore, the grid current can be expressed as:

ig(t) = Ig_peak sin(ωt) (1)

where Ig_peak is the peak amplitude of grid current.

3.2. Low Frequency Voltage of the Filter Capacitor

Since the inductance of the grid inductor is very small (micro-henry scale), the voltage drop and
phase angle caused by the grid inductor are so small that they can be ignored. The voltage across the
filter capacitor VC_f is approximately equal to the grid voltage. It can be determined as:

vC_ f (t) ≈ vg(t) = Vg_peak sin(ωt) (2)

where Vg_peak is the peak amplitude of grid voltage,ω is the angular frequency of grid voltage.

3.3. Duty Ratio

Figures 4–6 show the operating principle of the proposed converter via the equivalent circuits.
The converter operates in “Boost” state, “Buck” state, and “Buck-Boost” state respectively. Thus, the
duty ratio D can be expressed by:

DBoost(t) =
vo−

∣∣∣vg(t)
∣∣∣

vo
(3)

DBuck(t) =
vo∣∣∣vg(t)

∣∣∣ (4)

DBuck−Boost(t) =
vo

vo+
∣∣∣vg(t)

∣∣∣ (5)

It can be seen that when the DC output voltage is constant, the duty cycle varies with the
grid voltage.

3.4. Low Frequency Current of the DC Inductor

When the converter works in “Boost” state, from Figure 4, it can be seen that the low frequency
DC inductor current is the same as the grid current. Thus, the low frequency DC inductor current can
be determined as:

iL(t) = ig(t) (6)

When the converter operates in “Buck” state, the low frequency DC inductor current can be
derived through the energy balance equation as:

iL(t) =
vg(t) · ig(t)

vo
(7)

When the converter operates in “Buck-Boost” state, as shown in Figure 6b, the energy stored in
the DC inductor is transferred to the DC loads during the energy-releasing period. Assuming that
the devices used in the converter are ideal, the relative power losses can be neglected. According to
the energy balance equation, the output power is equal to the input power in a switching cycle when
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the converter is operating in the steady state. Thus, the low frequency DC inductor current can be
derived as:

iL(t) =
vg(t) · ig(t)

vo(1−DBuck−Boost(t))
(8)

3.5. High Frequency Current Ripple of the DC Inductor

Assume that the converter works in continuous conduction mode (CCM), during the energy-storing
period, the current ripple of the DC inductor can be derived through the state equation, which can be
expressed as:

vL(t) = L
∆iL
TON

(9)

where vL(t) is the voltage across the DC inductor and TON is the turn-on time in a switching period.
Thus, the high frequency current ripple of the DC inductor can be expressed as:

∆iL(t) =
vL(t) ·D(t)

L · fSW
(10)

where D is the duty ratio, f SW is the switching frequency.
As shown in Figure 4a, when the AC to DC converter works in “Boost” state, vL(t) and vg(t) are

equal during the energy-storing period. The high frequency current ripple of the DC inductor can be
expressed as:

∆iL_Boost(t) =
vg(t)D_Boost(t)

L · fSW
(11)

According to the Equations (3) and (11), the DC inductor current ripple ∆iL_Boost(t) can be
achieved as:

∆iL_Boost(t) =
vg(t) · (vo−

∣∣∣vg(t)
∣∣∣)

L · fSW · vo
(12)

Similarly, when the proposed converter works in “Buck” and “Buck-Boost” state, the DC inductor
current ripple can be obtained as:

∆iL_Buck(t) =
(
∣∣∣vg(t)

∣∣∣−vo) · vo

L · fSW ·
∣∣∣vg(t)

∣∣∣ (13)

∆iL_Buck−Boost(t) =

∣∣∣vg(t)
∣∣∣·vo

L · fSW · (vo+
∣∣∣vg(t)

∣∣∣) (14)

It can be observed from Equations (12)–(14) that the amplitude of DC inductor current ripple is
time varying with the grid voltage.

3.6. High Frequency Voltage Ripple of the Filter Capacitor

When the converter works in “Boost” state, the high frequency voltage ripple of filter capacitor
can be neglected since the filter capacitor current is very small. When the converter works in “Buck”
state and “Buck-Boost” state, the voltage ripple of filter capacitor is caused by discharge from the grid
inductor. During the energy-releasing period, the current of the filter capacitor is equal to the grid
inductor current. In a short switching cycle, the grid current can be regarded as a constant current.
Therefore, the voltage ripple peak to peak value of the filter capacitor ∆vC_f(t) can be defined as:

iC_f(t) = C f
∆vC_f(t)

TOFF
(15)
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where iC_f is the current of filter capacitor.

∆vC_f(t) =
ig(t) · (1−D(t))

C f · fSW
(16)

By putting Equations (4) and (5) into Equation (16) respectively, the voltage ripple of the filter
capacitor can be obtained when the converter operates in “Buck” state and “Buck-Boost” state as:

∆vC_f_Buck(t) =
ig(t) · (

∣∣∣vg(t)
∣∣∣−vo)

C f · fSW ·
∣∣∣vg(t)

∣∣∣ (17)

∆vC_f_Buck−Boost(t) =
ig(t)·

∣∣∣vg(t)
∣∣∣

C f · fSW · (vo+
∣∣∣vg(t)

∣∣∣) (18)

From Equations (17) and (18), it can be seen that the value of high frequency voltage ripple of the
filter capacitor is time varying with the grid voltage and grid current.

4. Small Signal Modelling and Controller Design

According to the circuit analysis in Section 2, the working states of proposed AC to DC converter
include “Boost”, “Buck” and “Buck-Boost”. When the converter operates in “Boost” and “Buck” state,
the small signal modeling had been presented and analyzed in [12,21], and the control versus the
grid current transfer functions of “Boost”, and “Buck” stages are deduced as Equations (19) and (20)
respectively as:

îLg(s)

d̂(s)

∣∣∣∣∣∣∣ ∧vg(s) = 0
∧
vo(s) = 0

=
Vo

s3LgLC f + s(Lg + L)
(19)

îLg(s)

d̂(s)

∣∣∣∣∣∣∣ v̂g(s) = 0
∧
vo(s) = 0

=
sLIL + DVC_ f

s3LgLC f + s(DS1
2Lg + L)

(20)

where, DS1 is the duty cycle of the switch S1.
Thus, in this paper, the control analysis in the “Buck-Boost” stage will be focused on.
During the “Buck-Boost” state, the equivalent circuits have been depicted in Figure 6. To simplify

the analysis, the effects of the semiconductors have been ignored. Figure 6a,b show the equivalent
circuits when S3 is on during [t, t + DTs] and off during [t + DTs, t + Ts], respectively. The state equation
can be deduced as followings:

L 0 0
0 Lg 0
0 0 C f

 d
dt


iL(t)
ig(t)

vC_f(t)

 = Aon


iL(t)
ig(t)

vC_f(t)

+ Bon


vo(t)
vg(t)

0

 (21)

where, Aon =


0 0 1
0 0 −1
−1 1 0

, Bon =


0 0 0
0 1 0
0 0 0

.


L 0 0
0 Lg 0
0 0 C f

 d
dt


iL(t)
ig(t)

vC_f(t)

 = Ao f f


iL(t)
ig(t)

vC_f(t)

+ Bo f f


vo(t)
vg(t)

0

 (22)
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where, Ao f f =


0 0 0
0 0 −1
0 1 0

, Bo f f =


−1 0 0
0 1 0
0 0 0

.
Using the average state small signal modeling method and assuming that the AC grid source

brings no disturbance and the electrolytic capacitor C is large enough that the output voltage ripple
and fluctuation can be ignored during one switching period, the control versus grid current transfer
function can be derived as:

îLg(s)

d̂(s)

∣∣∣∣∣∣∣ v̂g(s) = 0
∧
vo(s) = 0

=
sLIL −DS3(VC_f + Vo)

s3LgLC f + s(DS3
2Lg + L)

(23)

where, DS3 is the duty cycle of the switch S3.
The control to grid current transfer functions in three operating states indicate that the proposed

converter is a typical third order system. The controller design of typical third order system has been
fully analyzed in [22–26], so more detailed control design will not be given in this paper.

Figure 7 depicts the whole control block diagram of proposed AC to DC converter, where the AD
sampling signals include the output DC voltage of Vo, the grid voltage of Vg and the grid current ig.
Double control loops with Proportional Integral (PI) controllers are adopted in the system, where the
outer loop is to control the output DC voltage and the inner loop is to make the grid inductor current
to track the sinusoidal waveform and synchronize with the AC grid voltage. Besides, the gate signals
of switches are obtained by comparison of modulated signals and carrier signal.
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5. Experimental Results

Experiments based a 220 V/800 W/50 Hz prototype have been carried out in the laboratory to
validate the effectiveness and performance of the proposed topology. The photograph of the prototype
is shown in Figure 8. The AC grid voltage is generated by a programmable AC source (Chroma 6530).
The efficiency of the converter is measured by a digital power meter. Table 1 shows the specification
and key parameters of the prototype. The selected devices used in the prototype are listed in Table 2.
Limited by the laboratory hardware resources, the core EE110 is adopted in DC inductor and grid
inductor. And the core material used in inductors is PC40.
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Table 1. Parameters of the proposed converter.

Parameters Value

Grid inductance Lg 0.6 mH
Filter capacitance Cf 2 µF

DC inductance L 1.2 mH
DC output capacitor C 5600 µF

Grid voltage Vg 220 V
Grid frequency f 0 50 Hz

DC output voltage Vo 200 V
Input power Pin 750 W

Switching frequency fsw 40 kHz

Table 2. Selected devices in the prototype.

Devices Type

Switches S1–S3 IPW65R041CFD
Diodes D1–D5 IDW30G65C5
Capacitor Cf IKC CBB22

Core of the inductors EE110

Figure 9 shows the gate signals of switches when the reference value of the DC output voltage
(Vo) is set to 200 V and the AC input grid voltage (Vg) is set to 220 V/50 Hz (Vg_peak = 311 V). When the
proposed converter works in “Boost”, “Buck” and “Buck-Boost” states, the gate signals of switches in
high frequency are shown in Figure 10 respectively. It can be seen that the states of switches meet with
the principle analyzed in Section 2.
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Figure 10. Measured Gate signals of MOSFETS when the proposed converter works in (a) Boost state;
(b) Buck state; (c) Buck-Boost state.

Figures 11 and 12 show the experimental results when the AC input peak voltage (Vg_peak) is
smaller than the DC output voltage (Vo), where the grid AC voltage is set to 110 V/50 Hz (Vg_peak = 155 V)
and the reference value of the DC output voltage Vo is set to 200 V. Figure 11 shows the measured AC
grid voltage (Vg(t)), the output DC voltage (Vo), and the grid inductor current (ig(t)). Figure 12 shows
the filter capacitor voltage (VC_f(t)) and the DC inductor current (iL(t)). During “Buck-Boost” operation,
the maximum filter capacitor voltage ripple is about 28 V, which is consistent with Equation (18).
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Figures 13 and 14 show the experimental results when the grid voltage is set to 220 V/50 Hz
(Vg_peak = 311 V) and the reference value of the DC output voltage Vo is set to 200 V. According to
Figure 14, when the proposed converter operates in “Buck” state and the “Buck-Boost” state, the
maximum filter capacitor voltage ripple is about 22 V and 37 V respectively, which is consistent with
Equations (17) and (18). Figure 15 shows the measured grid voltage (Vg(t)) and grid-injected current
(ig(t)) when the DC load changes from 154 Ω to 82 Ω. Figure 16 shows the dynamic response of
Vo when the grid voltage are increased from 130 V to 220 V. It can be observed that the DC output
voltage has a voltage fluctuation and the maximum DC voltage is about 210 V, which means that the
dynamic response of Vo can be further optimized by using a lower time constant PI compensator in
each controller.
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power losses distribution of semiconductor devices in “Boost”, “Buck” and “Buck-Boost” working 
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Figures 17 and 18 show the measured efficiency of the converter, when the AC grid voltages are
110 V and 220 V, respectively. In addition, the measured and calculated efficiency curves versus input
power of the proposed converter are plotted in Figure 19, under that the AC grid voltage is 220 V.
It can be seen that the measured efficiency curve and the calculated efficiency curve have the same
trend of change. Because of the additional decentralized power losses in the experiment, the calculated
efficiency is higher than the measured efficiency. Figure 20 shows the calculated power losses of main
devices, while Pin is 745 W versus the different output DC voltage Vo. It can be seen that the power
losses of S3 are larger than those of S1 or S2. Moreover, although DC inductor and grid inductor use the
same core EE110 and core material, the DC inductor operates at 40 kHz and the grid inductor operates
at 50 Hz. The core loss increases with increasing frequency under the same core, so, the core power loss
of grid inductor is much smaller than the DC inductor. In addition, there is little difference in copper
loss between the two inductors at the same power. So, as shown in Figure 20, the total power losses
of DC inductor are much higher than the total power losses of grid inductor and account for a large
proportion of the total proposed converter power losses. Figure 21 shows the power losses distribution
of semiconductor devices in “Boost”, “Buck” and “Buck-Boost” working states respectively when
Vg = 220 V, Vo = 200 V and Pin = 745 W. According to Equations (6)–(8), when the proposed converter
is operated in the Buck–Boost state with the same specification, the average DC inductor current of the
Buck–Boost state is larger than that of the Boost state or Buck state. Therefore, in the “Buck–Boost”’
state, the conduction and switching losses are higher compared to the “Buck” or “Boost” states.
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small volume of the system, the proposed AC to DC converter is an optional interface device between 
the AC low voltage grid and the DC nano-grid. 

Table 3. Comparison table of various Buck-Boost AC to DC converters based on united grounding 
configuration. 

Topology 
Converter 

in [10] 
Converter in [12] Converter in [13] Proposed Converter 

Switches 4 6 4 3 
Diodes 6 6 6 5 

Capacitor 3 3 3 2 
DC inductors 2 2 2 1 

Operating states Buck, Boost 
Buck, Boost, 

Flybuck, Flyback 
Buck, Boost, 

Flybuck, Flyback 
Buck, Boost, 
Buck-Boost 

Utilization factor of DC inductor 50% 50–100% 50–100% 100% 
Complexity of small-signal models Three-order 

Reference DC output voltage Vo_ref = 400 V Vo_ref = 200 V 
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Figure 21. Power losses distribution of semiconductor devices in different working states when
Vg = 220 V, Vo = 200 V, Pin = 745 W.

6. Discussion

A comparison of various features of the proposed scheme with existing Buck-Boost AC to DC
converters based on united grounding configuration has been performed and presented in Table 3.
It can be seen that the proposed Buck-Boost AC to DC converter has the advantage of low number
of passive elements and high utilization factor of DC inductor. Compared to the converter proposed
in [10], there is no problem of output-DC-voltage unbalance in the proposed AC to DC converter.
Compared to the converter proposed in [12,13], the proposed Buck-Boost AC to DC converter has
acceptable operating states and control strategy. Since the new AC to DC converter operates in
Buck-Boost state during the negative AC grid voltage, the efficiency of the whole system is lower than
the converters presented in [10,12,13]. Limited by the laboratory hardware resources, the core EE110 is
adopted in DC inductor. This is another factor that affects the efficiency of the proposed converter.
Using lower power losses semiconductor devices and using inductors with small core size and low
core losses can improve the efficiency of the whole system. Thus, when prioritizing the low cost and
small volume of the system, the proposed AC to DC converter is an optional interface device between
the AC low voltage grid and the DC nano-grid.

Table 3. Comparison table of various Buck-Boost AC to DC converters based on united grounding
configuration.

Topology Converter in
[10]

Converter in
[12]

Converter in
[13]

Proposed
Converter

Switches 4 6 4 3

Diodes 6 6 6 5

Capacitor 3 3 3 2

DC inductors 2 2 2 1

Operating states Buck, Boost
Buck, Boost,

Flybuck,
Flyback

Buck, Boost,
Flybuck,
Flyback

Buck, Boost,
Buck-Boost

Utilization factor of DC inductor 50% 50–100% 50–100% 100%

Complexity of small-signal models Three-order

Reference DC output voltage Vo_ref = 400 V Vo_ref = 200 V
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Table 3. Cont.

Topology Converter in
[10]

Converter in
[12]

Converter in
[13]

Proposed
Converter

Vg = 110V.

Loads RL1 = 144 Ω, RL2 = 94 Ω R = 110 Ω

Vo1 223.67 V 200.86 V 200.90 V
Vo = 200 V

Vo2 −176.43 V −198.69 V −198.61 V

Efficiency 95.45% 92.96% 93.37% 90.53%

Vg = 220V.

Loads RL1 = 72 Ω, RL2 = 52 Ω. R = 60 Ω

Vo1 221.08 V 203.33 V 202.94 V
Vo = 200 V

Vo2 −179.37 V −196.14 V −197.35 V

Efficiency 96.24% 96.22% 96.33% 92.15%

7. Conclusions

A new transformerless Buck-Boost AC to DC converter is adopted as an interface between the
AC low voltage grid and the DC nano-grid. The characteristics of this converter can be summarized
as following:

1. Similar to the Buck-Boost AC to DC converter presented in [10,12,13], the same ground line can
be used by the AC grid and DC nano-grid without any transformer isolation, which ensures the
earth-fault protection for a hybrid power system.

2. Different from the Buck-Boost AC to DC converter presented in [10,12,13], only a single DC
inductor and fewer switching devices are adopted, which can reduce the costs and volume of the
system. The utilization factor of DC inductor is 100%, but it should be noted that the efficiency of
the new AC to DC converter has been affected, since the new converter operates in Buck-Boost
state during the negative AC grid voltage.

The principle of proposed converter has been described through the equivalent circuits.
Experimental results obtained from a 220 V/50 Hz/800 W prototype have verified the feasibility
and effectiveness of the proposed AC to DC converter.

How to improve the efficiency of this converter should be focused on for next step research, for
example, replacing the diodes with the MOSFETs to reduce the conduction power losses or replacing
the material of the inductor core with low power loss to reduce the inductor power losses.
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Nomenclature

ig Grid current
Ig_peak Peak amplitude of grid current
vg Grid voltage
Vg_peak Peak amplitude of grid voltage
ω Angular frequency of grid
vC_ f Voltage across the filter capacitor
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vo DC output voltage
DBoost Duty ratio in “Boost” state
DBuck Duty ratio in “Buck” state
DBuck−Boost Duty ratio in “Buck-Boost” state
iL Low frequency DC inductor current
vL Voltage across the DC inductor
L Value of DC inductor
∆iL Current ripple of the DC inductor
TON Turn-on time in a switching period
TOFF Turn-off time in a switching period
fSW Switching frequency
∆iL_Boost DC inductor current ripple in “Buck” state
∆iL_Buck DC inductor current ripple in “Boost” state
∆iL_Buck−Boost DC inductor current ripple in “Buck-Boost” state
iC_f Current of filter capacitor
C f Value of filter capacitor
∆vC_f Voltage ripple peak to peak value of the filter capacitor
∆vC_f_Buck Voltage ripple peak to peak value of the filter capacitor in “Buck” state
∆vC_f_Buck−Boost Voltage ripple peak to peak value of the filter capacitor in “Buck-Boost” state
DS1 Duty cycle of the switch S1
DS3 Duty cycle of the switch S3
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