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On self-adjointness of singular Floquet Hamiltonians

Pierre Duclos‡ and Arne Jensen
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DK-9220 Aalborg Ø, Denmark
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Abstract. Schrödinger equations with time-dependent interactions are studied. We
investigate how to define the Floquet Hamiltonian as a self-adjoint operator, when the
interaction is singular in time or space. Using these results we establish the existence
of a bounded propagator, by applying a result due to J. Howland.

PACS numbers: 02.30.Sa, 02.30.Tb, 03.65.Db

1. Introduction

We consider the Floquet operator approach to Schrödinger equations with time-

dependent interactions. We describe a method for proving that the Floquet operator is

self-adjoint, when the time-dependent interaction has some singularities. This method

is based on results by Kato [1] and Howland [2, 3]. For a survey on time-periodic

Schrödinger equations, we refer to [4] and references therein.

To understand why self-adjointness of the Floquet Hamiltonian is important,

we recall some terminology and results concerning Schrödinger equations with time-

dependent interactions.

Let H(t) be a family of self-adjoint operators on H. Consider the problem

i
dψ(t)

dt
= H(t)ψ(t), ψ(s) = ψ0. (1)

Under some additional conditions the solution is given by

ψ(t) = U(t, s)ψ0. (2)

The family of bounded operators U(t, s) is called the propagator. It has the properties

U(t, t) = 1 and U(t, r)U(r, s) = U(t, s). (3)

In [2] a method for Schrödinger equations analogous to the procedure in classical

mechanics for treating time-dependent interactions is introduced. It is based on the

Floquet Hamiltonian. Let D denote the self-adjoint operator obtained from −i∂t, acting

on the Hilbert space L2(R), or acting on the Hilbert space L2(S1), in the latter case

‡ Pierre Duclos died in January 2010. The manuscript was prepared for publication by the second
author
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with periodic boundary conditions. The Floquet Hamiltonian is the operator formally

given by

K = D ⊗ 1 +

∫ ⊕
H(t)dt

on K = L2(R)⊗H ∼= L2(R,H, dt) or K = L2(S1)⊗H ∼= L2(S1,H, dt).
The connection between the propagator and the Floquet Hamiltonian is

e−iσKψ(t) = U(t, t− σ)ψ(t− σ), (4)

see [2, (1.2)].

We are interested in obtaining a bounded propagator U(t, s). Using [2] the first,

and usually most difficult, step is to prove that the Floquet Hamiltonian is self-adjoint.

Once this step has been accomplished, one more condition has to be satisfied.

We recall the results from [2]. For φ ∈ C1
0(R) we denote the operator of

multiplication with φ(t) on K by M(φ). We let φ̇ = dφ/dt. The result [2, Theorem 2]

states that if we have M(φ) domK ⊆ domK and

KM(φ)−M(φ)K ⊂ iM(φ̇) (5)

for all φ ∈ C1
0(R), then we get a bounded propagator U(t, s) from (4), if additionally

K is self-adjoint. In [2, Theorem 3] the commutator condition above is replaced by the

same commutator condition for the resolvent G(z) = (K − z)−1, i.e.

G(z)M(φ)−M(φ)G(z) = iG(z)M(φ̇)G(z) (6)

for all z with Im z 6= 0.

We now return to the question of self-adjointness of the Floquet Hamiltonian. We

consider a perturbative framework. Let H0 be a self-adjoint operator in a Hilbert space

H, the unperturbed operator. Then K0 = D ⊗ 1 + 1⊗H0 is essentially self-adjoint on

the domain domD ⊗ domH0.

The problem we consider concerns the self-adjointness of K = K0+V on the domain

domK0, where V is a perturbation. If V is bounded relative to K0 with relative bound

less than one, then it is well known that K is self-adjoint on domK0 and essentially

self-adjoint on domD ⊗ domH0.

Problems arise, when one tries to define K for perturbations V that are not

relatively bounded. Two classic examples are the formal perturbations

V (t, x) = f(t)δ(x) and V (t, x) = δ(t)g(x) (7)

in the case, where H0 = −∆ on H = L2(R), and f and g are functions on R. The

perturbations are too singular to be covered by the usual existence theorems for bounded

propagators, see the results and references in [4].

Let us briefly outline the contents of the paper. In section 2 we introduce the

method of defining a self-adjoint operator based on factored perturbations and a factored

second resolvent equation. We also give some simple examples of applications of the

method. In section 3 we consider in detail kicked systems, and in particular the one

kick model. In section 4 we summarize the results obtained on existence of bounded

propagators, based on the results in the previous sections.
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2. The Howland-Kato method

We discuss a method for defining a self-adjoint operator through its resolvent, see [5,

VIII§1.1]. This method was used effectively in the fundamental paper [1]. We recall the

result.

Proposition 2.1 ([5, VIII§1.1]). Let O ⊂ C be an open set. Assume that R:O → B(H)

is a family of operators satisfying the first resolvent equation

R(z1)−R(z2) = (z1 − z2)R(z1)R(z2), z1, z2 ∈ O.

Assume that there exists z0 ∈ O, such that kerR(z0) = {0}. Then there exists a closed

operator T on H, such that R(z) = (T −z)−1 for all z ∈ O. If O = O and R(z)∗ = R(z)

for all z ∈ O, then T is self-adjoint.

The problem with using this result is that it can be difficult to characterize the

domain, other than as domT = ranR(z), z ∈ O.

2.1. Main theorem

The following result is obtained from [2, §§3,4], which relies on the method in [1].

Let K0 = D ⊗ 1 + 1⊗H0, as defined in section 1, and let

G0(z) = (K0 − z)−1.

We then introduce the following assumption.

Assumption 2.2. Let L be a Hilbert space. Let O ⊂ C be an open set, such that

O = O. Assume that there exist closed operators A and B from H to L with the

following properties:

(i) domK0 ⊂ domA and domK0 ⊂ domB.

(ii) There exists c < 1 such that

‖AG0(z)B∗u‖ ≤ c‖u‖ (8)

for all z ∈ O and all u ∈ domB∗.

(iii) For all u, v ∈ domA ∩ domB we have

〈Au,Bv〉 = 〈Bu,Av〉. (9)

Note that the assumptions imply that AG0(z) and BG0(z) are bounded operator,

and that the operator AG0(z)B∗ extends to a bounded operator on L with norm less

than or equal to c < 1. This extension is denoted by Q(z). The assumption implies

that 1 + Q(z) is invertible for all z ∈ O. One can replace the assumption (ii) by the

assumption that AG0(z)B∗ extends to a bounded operator on L, denoted by Q(z), and

that 1 +Q(z) is invertible for all z ∈ O.
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Theorem 2.3 ([1]). Let Assumption 2.2 be satisfied. Define for z ∈ O
G(z) = G0(z)− (BG0(z))∗(1 +Q(z))−1AG0(z). (10)

Then there exists a self-adjoint operator K, such that G(z) = (K − z)−1 for all z ∈ O.

The papers [1] and [2] have some further assumptions on A and B, but they are

not needed in order to define the operator K. Let us note that Assumption 2.2(iii) is

needed to get a self-adjoint operator.

Remark 2.4. As stated in [1] the factorization technique, i.e. considering perturbations

formally of the form B∗A, gives a natural additive structure on the set of perturbations.

More precisely, assume that Aj and Bj satisfy the conditions in Assumption 2.2 with

auxiliary Hilbert spaces Lj, j = 1, 2. Then if we take L = L1 ⊕ L2, A = A1 ⊕ A2,

and B = B1 ⊕ B2, we have B∗A = B∗1A1 + B∗2A2, and the conditions (i) and (iii)

Assumption 2.2 are again satisfied. Condition (ii) must be imposed additionally. A

sufficient condition is the existence of a c < 1 such that

‖A1G0(z)B∗1u1‖+ ‖A2G0(z)B∗1u1‖
+‖A1G0(z)B∗2u2‖+ ‖A2G0(z)B∗2u2‖ ≤ c(‖u1‖2 + ‖u2‖2)1/2

for all u1 ∈ domB∗1 , u2 ∈ domB∗2 , and z ∈ O.

2.2. Examples

We now give some examples showing what kind of singularity can be handled by

Theorem 2.3.

2.2.1. Singularity in time We take a perturbation formally given as V = f ⊗ g, where

f is a real-valued function and g is a bounded self-adjoint operator on H. We define

a(t) = |f(t)|1/2 and b(t) = sign(f(t))a(t). We then define

A = a⊗ g and B = b⊗ 1

and take L = K. We have the following result.

Proposition 2.5. Assume that f ∈ L1(R), and real-valued. Then Assumption 2.2 holds

for the operators A and B defined above.

Proof. The assumption implies that we have a, b ∈ L2(R). We take dom a = {u ∈
L2(R) | au ∈ L2(R)}, i.e. the maximal domain. Then a is self-adjoint in L2(R) on this

domain. It follows that A is an essentially self-adjoint operator on dom a⊗H. A similar

argument applies to B. We write the spectral decomposition of H0 as H0 =
∫
R
EdPE.

Then we have for Im z 6= 0

‖AG0(z)‖ = ‖
∫

R

A(D + E − z)−1 ⊗ 1d(1⊗ PE)‖

= ‖(1⊗ g)

∫
R

a(D + E − z)−1 ⊗ 1d(1⊗ PE)‖
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≤ ‖g‖ sup
E∈σ(H0)

‖a(D + E − z)−1‖

= ‖g‖‖a(D − z)−1‖, (11)

since a(D + E − z)−1 = e−iEta(D − z)−1eiEt.

Define

F (t) =

∫ t

0

|f(s)|ds

Since f ∈ L1(R), F is a bounded function. A simple integration by parts argument

gives for v ∈ C∞0 (R) the estimate

‖av‖2 =

∫
R

|f(s)|v(s)v(s)ds ≤ 2‖F‖L∞‖v‖‖v′‖ ≤ ‖F‖L∞(‖v‖2 + ‖Dv‖2).

Since C∞0 (R) is a core for D, it follows that a(D−z)−1 is a bounded operator. Analogous

arguments can be used for B. Thus part (i) of the Assumption 2.2 has been verified.

To verify part (ii) we show that there exists a c0 > 0 and a c < 1, such that

‖g‖‖a(D + E − z)−1b∗‖ ≤ c

for all E ∈ R and for all z satisfying |Im z| > c0.

We write q = a(D+E− z)−1b∗ and recall that this operator has the integral kernel

q(t, s) = a(t)χ(−∞,t)(s) exp(i(z − E)(t− s))b(s), Im z > 0.

Then we have∫
R

∫
R

|q(t, s)|2dsdt =

∫
R

|a(t)|2
∫ t

−∞
exp(−2 Im z(t−s))|b(s)|2dsdt ≤ ‖a‖2‖b‖2 = ‖f‖2L1 .

Thus q is a Hilbert-Schmidt operator, and an application of the Lebesgue dominated

convergence theorem shows that its Hilbert-Schmidt norm tends to zero as Im z →∞.

The same result holds for Im z < 0.

It is easy to see that the condition (iii) in Assumption 2.2 is satisfied. If we take

O = {z | |Im z| > c0} for c0 sufficiently large, then all conditions in Assumption 2.2 are

satisfied.

We note that an analogous result holds for the periodic case. Here one assumes

f ∈ L1(S1) and real-valued.

Furthermore, due to Remark 2.4, the result also holds for perturbations

V =
N∑
j=1

fj ⊗ gj,

where fj ∈ L1(R) or fj ∈ L1(S1), real-valued, and gj bounded and self-adjoint.
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2.2.2. Singularity in space We take again a perturbation of the form V = f ⊗ g. This

time we assume that f ∈ L∞(R) and that g = y∗x, where x and y are closed operators

from H to another Hilbert spaceM, such that domH0 ⊂ domx, domH0 ⊂ y, and such

that

‖x(H0 − z)−1y∗u‖ ≤ c‖u‖ < 1 (12)

for all u ∈ dom y∗ and for all z satisfying |Im z| > c0 for some c0 > 0. Using the

spectral decomposition of D the arguments above can be repeated. To satisfy the

symmetry condition (iii) in Assumption 2.2 we assume that f is real-valued, and that

〈xu, yv〉 = 〈yu, xv〉 for all u, v ∈ domx ∩ dom y.

Let us give a few examples of g satisfying these conditions. First we takeH = L2(R)

and H0 = −∆. As g we take the Dirac delta δ. We can write δ = τ ∗τ , where

τ :H1(R) → C is given by τu = u(0). We take M = C. The operator τ(H0 − z)−1τ ∗

is multiplication by the number i/(2
√
z), such that (12) is satisfied for c0 sufficiently

large. The symmetry conditon is trivially satisfied.

We can also consider the derivative of the Dirac delta δ′ as a perturbation. Thus

we take g = δ′ and M = C. This time we factor as g = τ̃ ∗τ̃ , where

τ̃ :H1((−∞, 0])⊕H1([0,∞))→ C

is given by

τ̃u = u(0+)− u(0−).

Also in this case the operator τ̃(H0 − z)−1τ̃ ∗ is multiplication by i/(2
√
z) on M.

We refer to [6] for further information on point interactions and extensive references

to the literature.

3. Kicked systems

We now consider a class of problems often called kicked systems, where the perturbation

is a point interaction in time. We continue to let D = −i∂t on L2(R), with domain the

Sobolev space H1(R). We introduce the shorthand notation

H1
+ = H1([0,∞)) and H1

− = H1((−∞, 0]).

The space H1([0,∞)) is defined as the closure of C∞0 ([0,∞)) in H1(R). We also write

L2
+ = L2([0,∞)) and L2

− = L2((−∞, 0]). In this case it does not matter, whether the

point zero is included or not. Let a ∈ C, |a| = 1. Define the operator

Ua:L
2
− ⊕ L2

+ → L2
− ⊕ L2

+ as Uau− ⊕ u+ = u− ⊕ au+.

Then Ua is a unitary operator. We then define an operator Dκ(a) as follows.

domDκ(a) = UaH
1(R) = {u ∈ H1

− ⊕H1
+ |u(0+) = au(0−)}
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and Dκ(a)u = −i(u′ ⊕ u′). Stated differently, we have Dκ(a) = UaDU
−1
a . It follows that

Dκ(a) is a self-adjoint operator.

We now use some results from [7]. We define the two linear maps

τ±:H1
± → C, τ±u = u(0±).

Now let u ∈ domD and v ∈ domDκ(a). A simple computation shows that

〈u,Dκ(a)〉 − 〈Du, v〉 = −iu(0)(v(0−)− v(0+))

= i
a− 1

a+ 1
u(0)(v(0−) + v(0+))

= i
a− 1

a+ 1

(
u(0−)v(0−) + u(0+)v(0+)

)
, (13)

where we use that u(0) = u(0−) = u(0+). We introduce the function κ(a) =

i(a− 1)/(a+ 1). Note that κ(a) is real-valued for |a| = 1. For a = −1 we interpret the

value as ∞. This computation allows us to formally write

Dκ(a) = D + κ(a)(τ ∗−τ− + τ ∗+τ+).

We will now write the resolvent of Dκ(a) in the form (10), in order to give an example

of the self-adjoint extension provided by the approach using (10).

We introduce the operator

T :H1
− ⊕H1

+ → C2, Tu =

[
u(0−)

u(0+)

]
. (14)

We write Gκ(a)(z) = (Dκ(a)− z)−1 and G0(z) = (D− z)−1. In (13) we take for Im z 6= 0

u = G0(z)u1 and v = Gκ(a)(z)v1 for arbitrary u1, v1 ∈ L2(R). Thus we get

〈G0(z)u1, v1〉 = 〈u1, Gκ(a)(z)v1〉+ κ(a)〈TG0(z)u1, TGκ(a)(z)v1〉.

Since u1 and v1 are arbitrary, we conclude that

Gκ(a)(z) = G0(z)− κ(a)(TG0(z))∗TGκ(a)(z). (15)

We apply T on the left and rewrite to get

[1 + κ(a)T (TG0(z))∗]TGκ(a)(z) = TG0(z).

We will show below that the operator 1 + κ(a)T (TG0(z))∗ is invertible. Thus using the

resulting expression for TGκ(a)(z) in (15) we finally get

Gκ(a)(z) = G0(z)− κ(a)(TG0(z))∗[1 + κ(a)T (TG0(z))∗]−1TG0(z). (16)

Thus if we take

A = T, B = κ(a)T, and L = C2,

we have verified the formula (10).

The important obervation is the following: In (16) the resolvent obtained from the

right hand side is the resolvent of the operator Dκ(a) with an explicitly known action
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and domain, whereas the operator obtained from (10) via Theorem 2.3 is not known

that explicitly.

We return to the question concerning the invertibility of the operator 1 +

κ(a)T (TG0(z))∗. We consider the case Im z > 0. Using the explicit kernel of G0(z)

a simple computation yields

(TG0(z))∗
[
ζ1
ζ2

]
(t) = iχ0,∞)(t)e

itz(ζ1 + ζ2),

such that T (TG0(z))∗ is given by the matrix[
0 0

i i

]
.

Let

X = 1 + κ(a)T (TG0(z))∗ =

[
1 0

iκ(a) 1 + iκ(a)

]
(17)

This matrix is invertible for all a, since κ(a) is real. We have

X−1 =

 1 0
−iκ(a)

1 + iκ(a)

1

1 + iκ(a)

 .
Using this result, we can simplify (16) to the following expression:

Gκ(a)(z) = G0(z)− κ(a)

1 + iκ(a)
(TG0(z))∗TG0(z). (18)

We apply these results to the one kick model. We take as our Hilbert space

K = L2(R, dt)⊗ L2(R, dx) ∼= L2(R, L2(R, dt), dx).

Let V (x) be a bounded real-valued function. We let

K0 = D ⊗ 1 + 1⊗H0, D = −i∂t, H0 = −∂2
x.

and

K =

∫ ⊕
R

DV (x)dx+ 1⊗H0,

where we now have taken κ(a) = V (x). The resolventG(z) = (K−z)−1 can be computed

as above. We now let G0(z) = (K0 − z)−1. The result can be stated as follows.

Theorem 3.1. For the resolvent defined above we have for Im z > 0

G(z) = G0(z)− (TG0(z))∗
V

1 + iV
TG0(z). (19)
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Proof. We continue to use the notation T introduced in (14). We then define L =

L2(R, dx)⊕ L2(R, dx), and A,B:K → L by the closure of

A1 = T ⊗ 1 and B1 = T ⊗ V,
where we take

domA1 = domB1 = (H1
− ⊕H1

+)⊗ L2(R, dx)

With these definitions the computations above can be repeated and lead to the result

stated in the theorem.

Remark 3.2. As shown above the matrix given by (17) is invertible. We note that

the operator T (TG0(z))∗ is not (quasi)nilpotent, which is the case for the perturbations

considered in [2]. In [2] the author considers a multiplicative potential q(t, x), which

satisfies the following conditions. Let

vp(t) =

(∫
Rn

|q(t, x)|pdx
)1/p

for some p > n/2, such that vp ∈ Lr−ε(R) ∩ Lr+ε(R) for some ε > 0, where

r = 2p/(2p − n). For the case p = ∞ one assumes v∞ ∈ L1(R) ∩ L1+ε(R). Thus

the conditions considered above and in section 2 allow a wider class of interactions.

Note that we do not consider the question of existence and completeness of the wave

operators, which is one of the main results in [2].

4. Bounded propagators

In section 2 we have obtained self-adjointness of the Floquet Hamiltonian, defined

through using the Howland-Kato method, for the case K = L2(R)⊗L2(R) and formally

K = D ⊗ 1 + 1⊗ (−∆) + V,

where we have considered perturbations of the form

V = f ⊗ g.
In Proposition 2.5 we have assumed f ∈ L1(R), real-valued, and g a bounded self-

adjoint operator on L2(R). To use the results from [2] it remains to verify one of the

commutator conditions (5) and (6). This is straightforward, so we omit the details.

In section 2.2.2 we have considered f ∈ L∞(R), real-valued, and g a factored

perturbation. The example included point interactions. Again, the commutator

condition is straightforward to verify.

Thus in these cases the results in [2] associate a bounded propagator with the formal

problem. What cannot be obtained in general with this approach is a definition of the

family H(t) as a self-adjoint family.

In section 3 we considered in particular the one kick model. Again, the commutator

condition is straightforward to verify, so also for this model we get a bounded propagator.

Thus we have shown that it is possible to associate a bounded propagator with

time-dependent singular perturbations of the free Schrödinger operator.
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