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Abstract: A drone is desirable to perform various flying missions with different loads while
always guaranteeing optimal flying performance. In this paper, an integral reinforcement learning
algorithm is developed for a drone such that it can learn optimal control policy online. The drone
is described by an underactuated nonlinear model and the inner-outer loop control strategy is
applied for the navigation control. In the outer loop an optimal controller is designed to minimize
a cost function with input saturation, and a policy iteration based integral reinforcement learning
(IRL) algorithm is proposed. Critic-actor neural networks (NNs) are further applied for online
implementation of the IRL algorithm. In the inner loop a quaternion based feedback attitude
controller is designed to guarantee system stability. A simulation study is finally provided to
demonstrate the effectiveness of the proposed IRL algorithm.

Keywords: Reinforcement learning, optimal control, neural network, inner-outer loop control.

1. INTRODUCTION

Drones have been widely employed in a number of ap-
plications such as surveillance, aerial inspection, goods
delivery, and so on (Kaleem et al. (2018); Seo et al.
(2018)). A good navigation control is necessary to guaran-
tee flying performance of drones during various missions.
Many feedback control approaches have been developed
for navigation of drones with underactuated dynamics,
e.g., (Sun and Cheng (2017); Viswanathan et al. (2018);
Naldi et al. (2017)), just to name a few. However, the
aforementioned control approaches are not designed for
control performance optimization.

Recently, for the importance of energy efficiency in flying
control of drones, optimal navigation control of drones has
attracted much attention. Gandolfo et al. (2017) proposed
a state feedback controller to minimize energy consump-
tion during trajectory tracking. Although this paper sug-
gests a way to lower energy consumption by well selecting
a desired velocity, the proposed method is conservative
and not optimal. Linear-Quadratic Regulation (LQR) is
a mature technique for optimal control of drones. Alaimo
et al. (2016) designed an LQR-PID controller for optimal
tracking performance using the linearization model of a
drone. Saha and Wadoo (2017) studied the control perfor-
mance of LQG (Linear-Quadratic-Gaussian) based opti-
mal control for a drone. However, LQR approach requires
to linearize the nonlinear dynamics of drones and is not
easy to handle input saturation directly. Hernandez et al.
(2014) and Dentler et al. (2016) proposed a model pre-
dictive controller to achieve trajectory tracking of drones
without overshoot, but they only considered drones mod-
eled by linear dynamics without input saturation. More
recently, as the fast development of machine learning tech-

niques for optimal control, reinforcement learning as a
typical machine learning has been appeared for drones
to learn unknown environment and get better adaption,
e.g., (Vankadari et al. (2018); Loquercio et al. (2018)). The
salient feature of the studies in (Vankadari et al. (2018);
Loquercio et al. (2018)) is that algorithm training can be
model-free, but it is off-line and retraining is necessary
once the dynamics of the drones have been changed.

In this paper, a policy iteration based integral reinforce-
ment learning (IRL) algorithm is developed to optimize
control performance of drones online. General underactu-
ated nonlinear dynamics of drones and input saturation
constraint are considered in this work. Critic-actor NNs
are designed to implement the IRL algorithm online. The
salient features of the proposed approach are: 1) a sta-
bilizable controller is exerted on the drone to generate
training data such that the learning process is on-line; and
2) an extra advantage is that the proposed approach can
be extended to solve the optimal control problem of drones
with time-varying mass because the optimal process is
model-free. It is noted that the translational model of the
drone is only used to determine the throttle control force.

The remainder of the paper is organized as follows: Section
2 describes the nonlinear system model of a drone. Sec-
tion 3 presents the policy iteration based IRL algorithm.
Section 4 provides a simulation example to demonstrate
the effectiveness of the proposed algorithm and Section 5
concludes the paper.

2. SYSTEM DESCRIPTION

Through this paper, {I} and {B} are used to denote the
inertial reference frame fixed to the earth surface and the
reference coordinate frame attached to the drone’s gravity
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center, respectively. The drone is a Vertical Take-Off and
Landing (VTOL) aerial vehicle and can be described by
the following underactuated dynamic model (Naldi et al.
(2017)):

ṗ= v (1)

mv̇ = ufΩe3 −mge3 (2)

Ω̇ = ΩS(ω) (3)

Jω̇ = S(Jω)ω + uτ (4)

where p = [x, y, z]T ∈ R3 and v = [vx, vy, vz]
T ∈ R3

are the position and velocity of the drone in {I} frame,
respectively, ω = [ωx, ωy, ωz]

T is the angular velocity
of the drone in {B} frame, m > 0 ∈ R is the mass,
J = JT > 0 ∈ �3×3 is the inertia matrix, g = 9.8N/Kg
is the acceleration of gravity, e3 = [0, 0, 1]T , uf ∈ R is
the throttle control force, uτ ∈ R3 is the attitude control
torque, S(ω) ∈ R3×3 is a skew symmetric matrix for a
vector ω = [ω1, ω2, ω3]

T ∈ R3:

S(ω) =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]
, (5)

and Ω defined in equation (6) with φ, θ and ψ being the
Euler angles is the rotation matrix from frame {B} to {I}.
It is noted that (6) follows the “x− y − z” convention.

Equations (1) and (2) describe the translational motion
while equations (3) and (4) describe the attitude control
of the drone. In Engineering, a unit quaternion is usually
used to describe the attitude of drones, denoted as q =
[η, εT ]T ∈ S3, where η is a scalar, ε ∈ R3 is a vector, and
S3 := {x ∈ R4 : |x| = 1} is an 3-dimensional unit sphere.
Applying the Rodrigues formula (Shuster (1993)):

Ω(q) = I3 + 2ηS(ε) + 2S(ε)2, (7)

equation (3) can be rewritten in the quaternion form as

q̇ =
1

2
q ⊗ ν(ω) =

1

2

[
−εT

ηI3 + S(ε)

]
ω, (8)

where ν(ω) =
[
0 ωT

]T
and ⊗ is an operator defined on

two quaternions qi =
[
ηi εTi

]T
, i = 1, 2, as follows:

q1 ⊗ q2 =

[
η1 −εT1
ε1 η1I3 + S(ε1)

] [
η2
ε2

]
. (9)

3. INTEGRAL REINFORCEMENT LEARNING
BASED CONTROL DESIGN

An optimal control is always desirable for a drone to track
a desired trajectory while minimizing power consumption.
However, as the change of load, the traditional control laws
(Naldi et al. (2017); Zhao et al. (2015)) with fixed con-
trol parameters cannot always guarantee optimal control
performance. Towards this end, in this paper an optimal
control law based on reinforcement learning is developed
aiming at tuning the control parameters of the control law
online to achieve optimal tracking performance whenever
the change of load.

In this section, an inner-outer loop control strategy is
applied to design the trajectory tracking controller of the
drone, where the position control system (1)-(2) and the
attitude control system (3)-(4) are the outer loop and inner
loop, respectively. For the outer loop control, an integral
reinforcement learning (IRL) algorithm will be presented
such that the control force uf can be tuned to be optimal
automatically. Then, an attitude controller is designed for
the inner loop to guarantee system stability.

3.1 Optimal Outer Loop Control

The objective of this paper is to find an optimal control
policy u∗

f such that the drone can track a desired reference

trajectory pd(t) while minimizing a given cost function. It
is assumed that ṗd and p̈d are known.

Let p̃ = p− pd and ṽ = v− ṗd. Now, we can formulate the
trajectory tracking problem as follows:{

˙̃p = ṽ
m ˙̃v = ufΩe3 −mge3 −mp̈d

(10)

It is noted that system (10) does not satisfy the standard
form of IRL as stated in (Lewis et al. (2012)). Towards
this end, a virtual controller uc in the form of

uc = ufΩe3 −mge3 −mp̈d (11)

is defined. It is noted that such design follows the vectored-
thrust control paradigm (Hua et al. (2013)). The control
force can be calculated by

uf = ‖mge3 +mp̈d + uc‖, (12)

where ‖ · ‖ denotes the Euclidean norm. Then, the desired

Euler angles γd
�
= [φd, θd, ψd]

T for the inner loop can be
determined by

Ωde3 =
mge3 +mp̈d + uc

uf
, (13)

To avoid singularity of (13), it is assumed that ‖mge3 +
mp̈d‖ > m and ‖uc‖ ≤ κ̄ with κ̄ < m such that

‖mge3 +mp̈d + uc‖ ≥ m− κ̄ > 0.

Therefore, it is naturally define a saturation constraint for
the virtual controller uc. Towards this end, we define a cost
function as follows with respect to ξ(t) = [p̃(t)T , ṽ(t)T ]T :

V (ξ(t)) =

∫ ∞

t

(
ξ(τ)TQξ(τ) + U(uc(τ))

)
dτ, (14)

where Q ∈ R6×6 > 0, and U(uc(t)) is a positive-definite
integrand function defined as

U(uc) = 2

∫ uc

0

(κ tanh−1(χ/κ))TRdχ, (15)

where κ is the saturation bound of uc, i.e. ‖uc‖ ≤ κ, and
R ∈ R3×3 > 0 is assumed to be a diagonal matrix for
simplicity of analysis. Then, the control problem is to find
an optimal control u∗

c to minimize cost function (14).

Definition 1. (Admissible Controller). A control policy
uc(ξ(t)) is said to be admissible with respect to (14) if
uc(ξ(t)) is continuous, uc(0) = 0, uc(ξ(t)) stabilizes the
error system (10), and V (ξ(t)) is finite.

Ω =

[
cos(θ) cos(ψ) − cos(θ) sin(ψ) sin(θ)

cos(φ) sin(ψ) + cos(ψ) sin(φ) sin(θ) cos(φ) cos(ψ)− sin(φ) sin(θ) sin(ψ) − cos(θ) sin(φ)
sin(φ) sin(ψ)− cos(φ) cos(ψ) sin(θ) cos(ψ) sin(φ) + cos(φ) sin(θ) sin(ψ) cos(φ) cos(θ)

]
(6)
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In the following, the design process of the reinforcement
learning control will be described.

Differentiating V (ξ(t)) along the error system (10) gives
the following Bellman equation:

H(ξ, uc,∇V ) := ξTQξ + U(uc) +∇V T (Aξ +Buc) = 0.
(16)

where ∇V = ∂V/∂ξ, and

A =

[
O3 I3
O3 O3

]
, B = m−1

[
O3

I3

]
, (17)

where O3 is an 3rd-order square zero matrix and I3 is an
3rd-order identity matrix.

The optimal solution V ∗ of (16) satisfies the following
Hamilton-Jacobi-Bellman (HJB) equation:

min
uc

(
ξTQξ + U(uc) +∇V T (Aξ +Buc)

)
= 0. (18)

Differentiating the HJB equation with respect to uc, one
can obtain the optimal controller as follows:

u∗
c = −κ tanh

(
1

2κ
R−1BT∇V

)
. (19)

Substituting (19) back into (18) gives

ξTQξ + U(u∗
c) +∇V T (Aξ +Bu∗

c) = 0, (20)

which is an equation with respect to ∇V . If ∇V can be
solved, the optimal controller u∗

c described by (19) can be
determined. However, the HJB equation (20) is nonlinear
and is difficult to obtain analytical solution. Thus we
develop an integral reinforcement learning algorithm to
solve the nonlinear HJB equation (20).

Remark 1. It is noted that the cost function V in (14) is
actually a Lyapunov function for uc. If u

∗
c solves the HJB

equation (20), we have V̇ = −ξTQξ − U(u∗
c) ≤ 0, i.e., u∗

c
stabilizes the error system (10).

3.2 Policy Iteration Based IRL Algorithm

In this subsection, a policy iteration based IRL algorithm
is developed to solve the nonlinear HJB equation (20).

We define an updating policy uj
c and rewrite the error

system (10) as

ξ̇ = Aξ +Buj
c +B(uc − uj

c), (21)

where uc is an admissible control policy called as behav-
ior policy which is continuously exerted on the drone to
generate data and uj

c learns from the data to update its pa-
rameters towards optimal control policy. The superscript
j denotes the iteration number of the updating policy.

Keeping (16) in mind and differentiating the cost function
V j+1 corresponding to (j + 1)th iteration along system
(21), one can obtain that

V̇ j+1 = (∇V j+1)T
(
Aξ +Buj

c +B(uc − uj
c)
)

= −ξTQξ − U(uj
c) + (∇V j+1)TB(uc − uj

c)
(22)

Based on (22), we can give the following IRL algorithm for
solving the nonlinear HJB equation (20).

It is noted that equation (23) is obtained by integrating
(22) over the time interval [t, t + T ] with T being the
reinforcement learning time interval. Then, we can obtain
Theorem 1.

Algorithm 1: IRL Algorithm

1. Initialization: Fix a stabilizing control policy uc and
select any admissible control policy u0

c . Do for j = 0, 1, · · ·
until convergence.
2. Policy evaluation step: Solve for V j+1(ξ(t)) using

V j+1(ξ(t+ T ))− V j+1(ξ(t))

=

∫ t+T

t

(
−ξTQξ − U(uj

c) + (∇V j+1)TB(uc − uj
c)
)
dτ

(23)
3. Policy is updated by

uj+1
c = −κ tanh

(
1

2κ
R−1BT∇V j+1

)
. (24)

Theorem 1. For any admissible control policy uj
c, the

updated policy uj+1
c is still an admissible policy for system

(10). Moreover, uj
c converges to the optimal control policy

u∗
c as j → ∞.

Proof: Differentiating V j+1 along the system ξ̇ = Aξ +
Buj+1

c yields

V̇ j+1(ξ, uj+1
c ) = (∇V j+1)T

(
Aξ +Buj+1

c

)
. (25)

According to the HJB equation (20), one has

∇(V j+1)TAξ = −ξTQξ − U(uj
c)− (V j+1)TBuj

c. (26)

The updating policy (24) implies

∇(V j+1)TB = −2κ(tanh−1(uj+1
c /κ))TR. (27)

Substituting (26) and (27) into (25) yields

V̇ j+1 (ξ, uj+1
c ) = −ξTQξ − U(uj

c)
+2κ

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
)
.

(28)

Applying mean value theorem to U(uj
c), there exists a

ūc ∈ (0, uj
c) such that U(uj

c) = 2κ tanh−1(ūc/κ)
TRuj

c.
Then, the following inequality always holds:

2κ
(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
)
− U(uj

c)
= 2κ

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
− tanh−1(ūc/κ)

TRuj
c

)
≤ 0

(29)

due to the fact that tanh−1(·) is an monotone and odd

function. Therefore, one has V̇ j+1(ξ, uj+1
c ) < 0 for any

ξ �= 0. According to Definition 1, uj+1
c is also an admissible

control policy.

Next, we prove that uj
c converges to the optimal control

policy u∗
c , which minimizes the cost function. Consider the

following equation along the trajectory ξ̇ = Aξ +Buj+1
c .

V j+1 (ξ)− V j(ξ)

=−
∫ ∞

0

(
(∇V j+1 −∇V j)T (Aξ +Buj+1

c )
)
dτ

= 2κ

∫ ∞

0

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )

+

∫ uj+1
c

uj
c

(
tanh−1(χ/κ)TRdχ

) )
dτ

(30)

Applying mean value theorem, there exists a ûc ∈
(uj

c, u
j+1
c ) such that
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In the following, the design process of the reinforcement
learning control will be described.

Differentiating V (ξ(t)) along the error system (10) gives
the following Bellman equation:

H(ξ, uc,∇V ) := ξTQξ + U(uc) +∇V T (Aξ +Buc) = 0.
(16)

where ∇V = ∂V/∂ξ, and

A =

[
O3 I3
O3 O3

]
, B = m−1

[
O3

I3

]
, (17)

where O3 is an 3rd-order square zero matrix and I3 is an
3rd-order identity matrix.

The optimal solution V ∗ of (16) satisfies the following
Hamilton-Jacobi-Bellman (HJB) equation:

min
uc

(
ξTQξ + U(uc) +∇V T (Aξ +Buc)

)
= 0. (18)

Differentiating the HJB equation with respect to uc, one
can obtain the optimal controller as follows:

u∗
c = −κ tanh

(
1

2κ
R−1BT∇V

)
. (19)

Substituting (19) back into (18) gives

ξTQξ + U(u∗
c) +∇V T (Aξ +Bu∗

c) = 0, (20)

which is an equation with respect to ∇V . If ∇V can be
solved, the optimal controller u∗

c described by (19) can be
determined. However, the HJB equation (20) is nonlinear
and is difficult to obtain analytical solution. Thus we
develop an integral reinforcement learning algorithm to
solve the nonlinear HJB equation (20).

Remark 1. It is noted that the cost function V in (14) is
actually a Lyapunov function for uc. If u

∗
c solves the HJB

equation (20), we have V̇ = −ξTQξ − U(u∗
c) ≤ 0, i.e., u∗

c
stabilizes the error system (10).

3.2 Policy Iteration Based IRL Algorithm

In this subsection, a policy iteration based IRL algorithm
is developed to solve the nonlinear HJB equation (20).

We define an updating policy uj
c and rewrite the error

system (10) as

ξ̇ = Aξ +Buj
c +B(uc − uj

c), (21)

where uc is an admissible control policy called as behav-
ior policy which is continuously exerted on the drone to
generate data and uj

c learns from the data to update its pa-
rameters towards optimal control policy. The superscript
j denotes the iteration number of the updating policy.

Keeping (16) in mind and differentiating the cost function
V j+1 corresponding to (j + 1)th iteration along system
(21), one can obtain that

V̇ j+1 = (∇V j+1)T
(
Aξ +Buj

c +B(uc − uj
c)
)

= −ξTQξ − U(uj
c) + (∇V j+1)TB(uc − uj

c)
(22)

Based on (22), we can give the following IRL algorithm for
solving the nonlinear HJB equation (20).

It is noted that equation (23) is obtained by integrating
(22) over the time interval [t, t + T ] with T being the
reinforcement learning time interval. Then, we can obtain
Theorem 1.

Algorithm 1: IRL Algorithm

1. Initialization: Fix a stabilizing control policy uc and
select any admissible control policy u0

c . Do for j = 0, 1, · · ·
until convergence.
2. Policy evaluation step: Solve for V j+1(ξ(t)) using

V j+1(ξ(t+ T ))− V j+1(ξ(t))

=

∫ t+T

t

(
−ξTQξ − U(uj

c) + (∇V j+1)TB(uc − uj
c)
)
dτ

(23)
3. Policy is updated by

uj+1
c = −κ tanh

(
1

2κ
R−1BT∇V j+1

)
. (24)

Theorem 1. For any admissible control policy uj
c, the

updated policy uj+1
c is still an admissible policy for system

(10). Moreover, uj
c converges to the optimal control policy

u∗
c as j → ∞.

Proof: Differentiating V j+1 along the system ξ̇ = Aξ +
Buj+1

c yields

V̇ j+1(ξ, uj+1
c ) = (∇V j+1)T

(
Aξ +Buj+1

c

)
. (25)

According to the HJB equation (20), one has

∇(V j+1)TAξ = −ξTQξ − U(uj
c)− (V j+1)TBuj

c. (26)

The updating policy (24) implies

∇(V j+1)TB = −2κ(tanh−1(uj+1
c /κ))TR. (27)

Substituting (26) and (27) into (25) yields

V̇ j+1 (ξ, uj+1
c ) = −ξTQξ − U(uj

c)
+2κ

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
)
.

(28)

Applying mean value theorem to U(uj
c), there exists a

ūc ∈ (0, uj
c) such that U(uj

c) = 2κ tanh−1(ūc/κ)
TRuj

c.
Then, the following inequality always holds:

2κ
(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
)
− U(uj

c)
= 2κ

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )
− tanh−1(ūc/κ)

TRuj
c

)
≤ 0

(29)

due to the fact that tanh−1(·) is an monotone and odd

function. Therefore, one has V̇ j+1(ξ, uj+1
c ) < 0 for any

ξ �= 0. According to Definition 1, uj+1
c is also an admissible

control policy.

Next, we prove that uj
c converges to the optimal control

policy u∗
c , which minimizes the cost function. Consider the

following equation along the trajectory ξ̇ = Aξ +Buj+1
c .

V j+1 (ξ)− V j(ξ)

=−
∫ ∞

0

(
(∇V j+1 −∇V j)T (Aξ +Buj+1

c )
)
dτ

= 2κ

∫ ∞

0

(
tanh−1(uj+1

c /κ)TR(uj
c − uj+1

c )

+

∫ uj+1
c

uj
c

(
tanh−1(χ/κ)TRdχ

) )
dτ

(30)

Applying mean value theorem, there exists a ûc ∈
(uj

c, u
j+1
c ) such that
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tanh−1(uj+1
c /κ)TR(uj

c − uj+1
c ) +

∫ u
j+1
c

u
j
c

(
tanh−1(χ/κ)TRdχ

)

= tanh−1(uj+1
c /κ)TR(uj

c − uj+1
c )

− tanh−1(ûc/κ)
TR(uj

c − uj+1
c ) ≤ 0

,

(31)

which implies that V j+1(ξ) ≤ V j(ξ). It is noted that
V j+1(ξ) = V j(ξ) holds for ξ �= 0 if and only if uj

c =
uj+1
c = u∗. Therefore, uj

c will converge to the optimal
control policy u∗

c . The proof is thus completed. �

Remark 2. It is noted from (30) that V j+1(ξ) = V j(ξ)
holds if ξ = 0, as a result, uj

c will stop converging to the
optimal control policy. Therefore, a probing noise should
be added into the control loop to guarantee persistence of
excitation. The persistent excitation (PE) condition can
refer to Theorem 3 in (Modares and Lewis (2014)).

Remark 3. It is noted from Algorithm 1 that the actual
controller is uc during the reinforcement learning process
and the updating policy uj

c does not affect the control
loop before it converges to the optimal control policy.
Therefore, Algorithm 1 has the following two properties for
system control: 1) even if the initially admissible control
policy u0

c is bad for control performance, it will not exert
any influence to the closed-loop control; 2) uc is replaced
by uj

c only when uj
c reaches optimal.

Remark 4. It is worth mentioning that the learning pro-
cess could continue to be implemented to monitor if the
obtained policy is optimal. When the obtained policy de-
viates from the learning results due to parameter changes,
e.g., mass of the drone, a new optimal control policy can be
obtained by implementing Algorithm 1 using the obtained
control policy as the initial control policy.

3.3 Online Implementation of Algorithm 1

In this subsection, critic-actor NNs are developed to im-
plement Algorithm 1 online. The cost function V j+1 is
approximated by a critic NN as follows:

V j+1(ξ) = (Ŵ j+1
1 )Tϕ1(ξ) (32)

where Ŵ j+1
1 ∈ Rl is the weight matrix and ϕ1(ξ) ∈ Rl is

the activation function.

Define Dj+1 = 1
2κR

−1BT∇V j+1, which is approximated
by an actor NN as follows:

Dj+1
i (ξ) = (Ŵ j+1

2i )Tϕ2i(ξ), (33)

where i = 1, 2, 3 is the index of the elements of Dj+1,
Ŵ j+1

2i ∈ Rl and ϕ2i(ξ) ∈ Rl.

Substituting (32) and (33) into (23), one has

ej+1 �
= (Ŵ j+1

1 )T (ϕ1(ξ(t))− ϕ1(ξ(t+ T )))

+2κri

3∑
i=1

∫ t+T

t

(
((Ŵ j+1

2i )Tϕ2i(ξ))
TR(uci − uj

ci)
)
dτ

−
∫ t+T

t

(
ξTQξ + U(uj

c)
)
dτ

,

(34)
where ri, i = 1, · · · , 3, is the ith diagonal element of R, and
uci and uj

ci are the ith element of uc and uj
c, respectively.

Denote

Ŵ j+1 =
[
(Ŵ j+1

1 )T , (Ŵ j+1
21 )T , (Ŵ j+1

22 )T , (Ŵ j+1
23 )T

]T

(35)

Φ(t) =




ϕ1(ξ(t))− ϕ1(ξ(t+ T ))

2κr1

∫ t+T

t

ϕ21(ξ)(uc1 − uj
c1)dτ

2κr2

∫ t+T

t

ϕ22(ξ)(uc2 − uj
c2)dτ

2κr3

∫ t+T

t

ϕ23(ξ)(uc3 − uj
c3)dτ




(36)

Y (t) =

∫ t+T

t

(
ξTQξ + U(uj

c)
)
dτ (37)

Then, (34) can be rewritten as follows

ej+1(t) = (Ŵ j+1)TΦ(t)− Y (t). (38)

Based on gradient descent approach, the weight matrix
Ŵ j+1 is updated by

˙̂
W j+1 = −Γ

Φ(t)

(1 + ΦT (t)Φ(t))2

(
(Ŵ j+1)TΦ(t)− Y (t)

)
,

(39)
where Γ > 0 is the learning rate matrix and (1 +
ΦT (t)Φ(t))2 is used for normalization. Therefore, in each
iteration, the control policy in (24) is updated by

uj+1
c = −κ tanh((Ŵ j+1

2 )Tϕ(ξ(t))), (40)

where Ŵ j+1
2 = [(Ŵ j+1

21 )T , (Ŵ j+1
22 )T , (Ŵ j+1

23 )T ]T .

3.4 Inner Loop Control

For simplicity, the left side of (13) is described by a vector
[νx, νy, νz]

T . According to the definition of rotation matrix
(6), the desired Euler angles can be determined by

φd(t) = arctan(
−νy
νz

), θd(t) = arcsin(νx). (41)

It is noted that Ωde3 has nothing to do with ψd, which
implies ψd can be selected randomly.

Now, we have the desired Euler angles γd = [φd, θd, ψd]
T .

We further need the higher-order information of the de-
sired Euler angles, but they can hardly be obtained
through differentiating (13) directly because of the un-
known higher-order derivatives of uc. Considering that
γd is always bounded, we apply an high-gain observer to
estimate the higher-order derivatives of γd as follows:{

δπ̇1 = π2

δπ̇2 = −λ1π2 − π1 + γd
. (42)

where δ is any small positive constant, π1,2 are the observer
states, and λ1 is a constant satisfying that the polynomial
s2 + λ1s + 1 is Hurwitz. According to Lemma 6.4 of (Ge
et al. (2013)), one can directly obtain

π1 − γd = −δε1,
π2

δ
− ωd = −δε2, (43)

where ωd is the desired angular velocity, and εk, k =
1, 2, are the bounded estimation errors. Then, there exist
constants t∗ and bk, only depending on εk, k = 1, 2, δ and
λ1 such that for all t > t∗,

‖ε1‖ ≤ b1, ‖ε2‖ ≤ b2. (44)

Therefore, we can define the estimation of the desired
Euler angles and its derivatives as follows:

γ̂d = π1, ω̂d =
π2

δ
, ˙̂ωd =

π̇2

δ
. (45)
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The estimated Euler angles γ̂d can be described by a
quaternion qd. Then, we can define the following attitude
errors:

q̃ = q−1
d ⊗ q (46)

ω̃ = ω − ω̄d, (47)

where ω̄d = Ω(q̃)T ω̂d. According to (8), the error attitude
dynamics can be described by

˙̃q =
1

2
q̃ ⊗

[
0
ω̃

]
, (48)

J ˙̃ω = Σ(ω̃, ω̄d)ω̃ + S(Jω̄d)ω̄d − JΩ(q̃)T ω̇d + uτ . (49)

where

Σ(ω̃, ω̄d) = S(Jω̃) + S(Jω̄d)− S(ω̄d)J − JS(ω̄d). (50)

We refer the attitude controller design proposed in (Naldi
et al. (2017)) and use the following attitude controller:

uτ = −kpε̃− kdω̃ − S(Jω̄d)ω̄d − JΩ(q̃)T ω̇d. (51)

4. SIMULATION STUDIES

In this section, a simulation example is provided to demon-
strate the effectiveness of the proposed algorithm. The
drone’s mass is m = 1.121 kg and the inertial matrix is

J =

[
0.01 0 0
0 0.0082 0
0 0 0.0148

]
.

Positive definite matrices Q and R of the cost function are
chosen to be identical matrices. Let κ = 10, T = 0.1s and
the learning rate for Ŵ j+1 is Γ = diag{50I9, 5I15}. The
optimal outer-loop control policy is automatically learned
using Algorithm 1. The drone is driven to track an “8”
shaped trajectory described by
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For inner-loop control, choose δ = 20, λ1 = 2, kp = 4,
kd = 0.5.

The simulation results are shown in Figs. 1-5. During the
first 100s, a fixed control law uc = −p̃ − ṽ is exerted on
the drone for data generation and probing noise (53) is
added to guarantee persistence of excitation. From Figs.
1-2, one can observe that the drone tracks the reference
trajectory with some small bounds which is induced by
the added probing noise. From Fig. 3, one can observe
that the weights of the critic-actor NNs converge to some
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constants at 100s, which means the learning process is
almost completed. Then, at 100s the probing noises is
turned off while the fixed control law uc is replaced by
the obtained control law uj

c. One can further observe
that the drone perfectly tracks the reference trajectory.
Fig. 4 intuitively shows the trajectory tracking of the
drone. Further to show the effectiveness of the proposed
reinforcement learning based algorithm, we compare the
control performance between the initial control law uc,
the updated control law uj

c and the optimal control law
without considering input saturation as shown in Fig. 5. It
is shown that the updated control law significantly reduces
the cost value comparing with the initial control law uc and
is very close to the cost value of the optimal control law.
It is worth mentioning that the error between the updated
control law and the optimal control law is induced by the
approximation errors of the critic-actor NNs and the high-
gain observer (42).
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Fig. 4 intuitively shows the trajectory tracking of the
drone. Further to show the effectiveness of the proposed
reinforcement learning based algorithm, we compare the
control performance between the initial control law uc,
the updated control law uj

c and the optimal control law
without considering input saturation as shown in Fig. 5. It
is shown that the updated control law significantly reduces
the cost value comparing with the initial control law uc and
is very close to the cost value of the optimal control law.
It is worth mentioning that the error between the updated
control law and the optimal control law is induced by the
approximation errors of the critic-actor NNs and the high-
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W W

Fig. 3. The weights of the critic NN and actor NN.

Fig. 4. The tracking trajectory of the drone.

Fig. 5. Comparison of cost functions using initial, optimal
and obtained control policies.

outer loop control strategy is applied to design naviga-
tion control algorithm, where in the outer loop an policy
iteration based IRL algorithm is developed to tune the
controller towards minimizing a given cost function and
in the inner loop a quaternion based feedback control is
adopted to design attitude controller. The salient feature
of the proposed IRL algorithm is that the updating policy
is independent of the closed-loop control. In the future,
it would be very interesting to develop a value iteration
based IRL algorithm, which is totally model-free and does
not require admissible initial updating policy.
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