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Comparing Visible–Near-Infrared 
Spectroscopy and a Pedotransfer 
Function for Predicting the Dry Region 
of the Soil-Water Retention Curve
Zampela Pittaki-Chrysodonta,* Emmanuel Arthur, 
Per Moldrup, Maria Knadel, Trine Norgaard, Bo V. Iversen, 
and Lis Wollesen de Jonge

The soil-water retention curve (SWRC) at the dry end, also known as soil water 
vapor sorption isotherms, is essential for the modeling of water vapor transport, 
microbial activity, and biological processes such as plant water uptake in the 
vadose zone. Measurement of detailed soil water vapor sorption isotherms (WSIs) 
can be time consuming. Therefore, we propose rapid, inexpensive methodolo-
gies (visible–near-infrared spectroscopy  [vis–NIRS] and a pedotransfer function 
[PTF]) to predict the Campbell–Shiozawa (CS) model parameters to obtain the 
WSIs. Water vapor sorption isotherms were measured on 144 soil samples with 
a vapor sorption analyzer. The CS semi-logarithmic-linear function anchored at 
a soil-water matric potential of −106 cm H2O (log|−106| = pF 6) was fitted to the 
measured data because it accurately characterizes the WSIs. Thereafter, a vis–
NIRS calibration model and a PTF, based on clay and organic C contents, were 
developed and used to predict the two reference CS model parameters (a and 
W6). Both parameters were predicted with a reasonable degree of accuracy using 
vis–NIRS and the PTF (for a, RMSE values of 0.0041 and 0.0025, and for W6, RMSE 
values of 0.0042 and 0.0034 for vis–NIRS and the PTF, respectively). Based on the 
predicted a and W6 values, the predicted WSIs compared closely with the mea-
sured isotherms for individual soil samples from each field. At the field scale, the 
vis–NIRS model performed marginally better than the PTF. Thus, it is evident that 
the use of vis–NIRS or PTFs provides a relatively inexpensive approach to predict-
ing soil water sorption isotherms.

Abbreviations: CS, Campbell–Shiozawa; NIR, near-infrared; OC, organic carbon; PLS, partial least squares; 
PTF, pedotransfer function; RMSEC, root mean square error of calibration; RMSECV, root mean square 
error of cross-validation; RPIQ, ratio of performance to interquartile distance; SWRC, soil-water retention 
curve; vis–NIRS, visible near-infrared spectroscopy; WSI, water vapor sorption isotherm.

The dry end of a soil-water retention curve (SWRC), which describes the water con-

tent at low matric potentials (less than −10 MPa) is important for understanding and 

modeling water transport and biochemical processes in the vadose zone. Several mecha-

nistic and empirical models have been proposed in the literature to accurately describe 

the SWRC under wet and dry conditions (Brunauer et al., 1938; Oswin, 1946; van 

Genuchten, 1980; van den Berg and Bruin, 1981; Campbell and Shiozawa, 1992; Peleg, 

1993; Rossi and Nimmo, 1994; Or and Tuller, 1999; Tuller and Or, 2005). Furthermore, 

Khlosi et al. (2008) evaluated eight SWRC functions that characterize the SWRC 

between saturation and oven dryness. Ciocca et al. (2014) studied the effects of infi-

nitely negative matric potentials at residual water content on the negative atmospheric 

f luxes from arid soils and emphasized how a more sufficient experimental characteriza-

tion of water retention close to and below the residual water content will be valuable. 

However, the simplest among these models is the semi-logarithmic Campbell–Shiozawa 

(Campbell and Shiozawa, 1992) (denoted hereafter as the CS function), which requires 

only knowledge of the dimensionless slope of the curve (a) and the matric potential 

at oven dryness (Y0). The intercept (pF0 = log10|Y0|) of the CS function has a narrow 
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range, and many researchers consider it as constant (?6.7–7.1) 

(Groenevelt and Grant, 2004; Schneider and Goss, 2012; Arthur 

et al., 2013). However, other studies have shown that it can be 

variable depending on the clay mineralogy (Lu and Khorshidi, 

2015; Karup et al., 2017). Measuring the dry end of the SWRC 

is a time-consuming process, and thus a fast method is needed for 

easy predictions within an acceptable range of errors. A detailed 

dry-end SWRC at various matric potentials can be achieved 

using instruments that are based on chilled mirror dew point 

technology (e.g., WP4-T potentiometer, and the fully automated 

vapor sorption analyzer) (Arthur et al., 2014a).

During the last decades, many researchers have developed 

functions to predict the dry-end SWRC using basic soil proper-

ties (e.g., clay content). Karup et al. (2017) predicted the water 

content at −106 cm H2O (log10|−106| = pF 6) using the clay con-

tent, organic matter, and silt fraction as well as the bulk density 

coupled with the assumption of linearity between pF 4.2 and pF 

6.9. Schneider and Goss (2012), based on 18 samples, showed that 

the dry end of the SWRC can be successfully predicted from a 

PTF based on clay content. Utilization of PTFs is an easy method 

to estimate the SWRC, but the required data (e.g., clay, organic C, 

silt, etc.) are still expensive and tedious to acquire.

Visible near-infrared spectroscopy (vis–NIRS) is a fast, non-

destructive method that has received increasing attention during 

the last few decades, mainly due to its simplicity and low cost. It 

is a spectroscopic method that uses the visible and near-infrared 

regions of the electromagnetic spectrum (400–2500 nm). The 

radiation causes individual molecular bonds in the soil to vibrate 

and absorb light with a specific energy quantum (Stenberg et al., 

2010). Visible-NIRS has been applied to predict different soil 

properties including basic soil properties such as soil organic C, 

clay, and water content (Stenberg et al., 2010). However, more 

recently the capability of the method to successfully predict 

other soil properties was also tested in studies on particle size 

distribution (Hermansen et al., 2017), soil structure (Katuwal 

et al., 2017), soil binding capacities (Paradelo et al., 2016), and 

water repellency (Knadel et al., 2016). Furthermore, vis–NIRS 

models have been developed to predict the wet end of the soil 

water retention curve (Santra et al., 2009; Babaeian et al., 2015; 

Pittaki-Chrysodonta et al., 2018). Despite the potential of vis–

NIRS to predict direct or indirect soil properties and processes, 

there is no existing research that attempts to predict the dry end 

of a SWRC using vis–NIRS.

The objective of this study was to examine whether vis–NIRS 

can be used as a tool for predicting the SWRC at the dry end 

equally well as a classical PTF.

 6Material and Methods
Soil Samples

Bulk soil samples (144) from different countries with dif-

ferent textures were used in this study (Fig. 1a). The soils were 

sampled from the 0- to 20-cm depth (topsoils) in Denmark (DK), 

Germany (DE), and the United States (USA). Specifically, the 

soil samples from Denmark were sampled in Silstrup (60 soil 

samples), Estrup (41), Jyndevad (6), Lerbjerg (5), Aarup (5), Saeby 

(5), and Riso (4). The sites of Silstrup (56°55¢ N, 8°38¢ E), Estrup 

(56°29¢ N, 9°4¢ E) and Jyndevad (54°53¢ N, 9°7¢ E) are part of 

the Danish Pesticide Leaching Assessment Program and are rep-

resentative sites covering a variety of soil types in Denmark. The 

sampling at these sites was performed on a 15- by 15-m grid to 

capture across-field variations. More information about the soils 

from Silstrup, Estrup, and Jyndevad can be found in Norgaard 

et al. (2013), Paradelo et al. (2015), and Masís-Meléndez et al. 

(2014), respectively. Six soil samples were obtained from Bad 

Lauchstädt (BadL) (51°24¢ N, 11°53¢E) in the central part of 

Germany. Detailed information for that site was described by 

Eden et al. (2012). The soil samples from the United States orig-

inated from the Long-Term Research on Agricultural Systems 

(LTRAS) project at the University of California, Davis, and from 

the University of Delaware (six and five soils, respectively). Both 

sites were described by Vendelboe et al. (2012).

Fig. 1. (a) Distribution of the soil samples in the USDA soil texture 
triangle, and (b) organic C (OC) content as a function of clay con-
tent for all soil samples. Dexter n indicates the ratio of clay content 
to OC.
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Measurements
All the measurements were performed on air-dried soil 

samples sieved to 2 mm. The particle-size fractions (USDA soil 

textural classification) were determined using a combination 

of wet sieving and the hydrometer method (Gee and Or, 2002). 

Total organic C (OC) was determined with a Flash 2000 organic 

elemental analyzer coupled with a thermal conductivity detector 

(Thermo Scientific) and converted to organic matter (OM) by 

multiplying by 1.72.

Soil water vapor desorption isotherms were measured for the 

water activity (aw) range from 0.03 to 0.93 with a 0.02 resolution 

at a temperature of 25°C with a fully automated AquaLab vapor 

sorption analyzer (METER). The vapor sorption analyzer dries or 

wets an air-dry soil sample with a chilled-mirror dew-point tech-

nique and simultaneously records the change in sample mass with 

a high-precision magnetic balance. Approximately 3 to 5 g of the 

2-mm sieved and air-dried sample of each soil was used without any 

pretreatment. A more detailed description of the measurements was 

provided by Arthur et al. (2014b). The values of aw were converted 

to soil water potentials using the well-known Kelvin equation:

( )w w
w

ln
RT

a
M

Y =   [1]

where Yw is the soil water potential, R is the universal gas constant 

(8.314 J mol−1 K−1), T is temperature (298.15 K or 25°C), and Mw is 

the molecular mass of water (0.018 kg mol−1). Since none of the sam-

ples contained significant amounts of salts, the osmotic potential was 

negligible and the soil water potential equals the matric potential.

The vis–NIRS (400–2500 nm) measurements with a 0.5-nm 

spectral interval were performed using approximately 50 g of the 

representative soil sample. The soil sample was placed in a 60-mm 

sampling cup and the ref lectance in the vis–NIRS range was 

measured using a NIRS DS2500 spectrometer (FOSS) in a tem-

perature- and humidity-controlled NIR laboratory (23°C and 48%, 

respectively). The instrument has two detectors: silicon (400–1100 

nm) and lead sulfide (1100–2500 nm). The measurements of the 

reflectance were taken in seven positions of the sampling cup, and 

the averaged spectrum was extracted for each soil. Reflectance 

measurements were transformed to apparent absorbance by 

log(reflectance−1).

Campbell–Shiozawa Function Anchored at pF 6
The CS function is a simple semi-linear equation that predicts 

the logarithm of the soil water matric potential (log10|−y| = pF) 

at a given soil water content (W), and therefore it is called the log-

linear CS function:

0pF pF W= -a   [2]

or

( )1
0pF pFW -=a -   [3]

where W is the gravimetric water content (g g−1), pF is the loga-

rithm of the soil water matric potential, pF0 is the logarithm of 

the soil water matric potential under oven-dry conditions (W = 

0) being equal to the intercept of the log-linear function, and a is 

the negative slope (dimensionless) of the log-linear scale (log10|−y| 

vs. W system).

A number of studies used a constant value at pF0 (W = 0, pF0) 

of 6.7 to 7.1 (Ross et al., 1991; Rossi and Nimmo, 1994; Fayer 

and Simmons, 1995; Webb, 2000; Groenevelt and Grant, 2004; 

Schneider and Goss, 2012; Arthur et al., 2013). Since studies have 

shown that pF0 can be variable depending on the clay mineralogy 

or cation exchange capacity (Lu and Khorshidi, 2015; Karup et 

al., 2017), we anchored the CS function instead at the gravimetric 

soil water content at −106 cm H2O (W6, pF = 6). Consequently, 

the two parameters in the CS function became W6 and a , and 

therefore, the modified CS function can be expressed as

( )1
6 6 pFW W -= +a -   [4]

or

( )6pF 6W W=a - +   [5]

The equation is in a linear form and thus the measurements 

of soil water desorption isotherms on a log-linear scale should 

produce a straight line. However, this linearity was observed to 

be valid for the aw range from 0.1 to 0.8 (or pF 6.5–5.5), and 

therefore the analysis includes only measurements in that range. 

Additionally, the desorption isotherms were measured initially by 

adsorption followed by desorption with a range of 0.03 to 0.93. As 

a consequence, the ends of the isotherm branches bend and lose lin-

earity due to the measurement settings. Therefore, in the selected 

range (0.1–0.8), the problem of nonlinearity of the measurements 

is avoided. Hysteresis phenomena exist for water vapor sorption–

desorption isotherms (Arthur et al., 2015; Lu and Khorshidi, 2015) 

and, as we considered only desorption isotherms, our results may 

not be applicable to adsorption isotherms.

Figure 2 depicts measurements of WSI for a soil (Estrup) and 

schematically illustrates the calculation of the reference param-

eters a , W6, and pF0 in the CS functions (original and anchored). 

Furthermore, it shows an example of the fitting of the original CS 

function as well as the anchored CS function to the measured data.

Multivariate Data Analysis
The two reference parameters of the CS function (a and W6) 

for each soil sample were correlated with the spectral measure-

ments using partial least squares (PLS) regression analysis with 

the straight forward implementation of a statistically inspired 

modification of the PLS (SIMPLS) algorithm (de Jong, 1993). 

The PLS regression method compresses the predictors (indepen-

dent variables) into a set of factors (or latent variables) and applies 

least square regression on these factors. The SIMPLS algorithm 

directly calculates the PLS factors as linear combinations of the 

original variables (de Jong, 1993). The analysis was performed 

using the software PLS Toolbox 8.6.1 (Eigenvector Research). The 

vis–NIRS models were validated using the venetian blind cross-

validation method with 10 split groups and one sample per split 
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(Snee, 1977). The most desirable way of validating the models is 

using an independent data set. However, due to the geographic 

origin of the investigated soils, it was not possible to split the data 

set into calibration and validation subsets. The soils originated 

from fields or from point samples (individual soils sampled in a 

small area) at different locations, representing very different geol-

ogy. As previously reported, the validation procedure performed 

using soils of a different geographic origin and geology than of 

those used in the calibration is problematic and leads to increased 

errors and bias (Reeves et al., 1999; Brown et al., 2005).

To improve the spectra quality and to find the best correla-

tion among spectral measurements and reference data (a and W6), 

different preprocessing techniques were applied, i.e., derivatives 

(Savitzky and Golay, 1964; Norris, 2001) and standard normal 

variate transformation and detrending (Barnes et al., 1989).

The quality of the vis–NIRS models was examined via the 

following statistical parameters: R2, which is the square of the 

Pearson correlation coefficient, RMSE of calibration (RMSEC), 

RMSE of cross-validation (RMSECV), and the ratio of per-

formance to interquartile distance (RPIQ). The RMSEC and 

RMSECV are defined as

( )2
1

1
ˆRMSE

N
i ii
y y

N =
= -å   [6]

where N is the number of samples, ˆiy  is the predicted values and 

yi is the measured value. When the predicted values are derived 

from the calibration and cross-validations data, then the RMSE 

corresponds to the RMSEC and RMSECV, respectively.

The RPIQ is an index based on the interquartile range (IQ = 

Q3–Q1) and therefore represents the spread of the dataset regard-

less of its distribution (Bellon-Maurel et al., 2010). The Q1 is the 

first quartile, which is the median of the lower half of the dataset, 

and Q3 is the third quartile, which is the median of the upper half 

of the dataset:

IQ
RPIQ

SEP
=   [7]

where IQ is a measure of statistical dispersion around the median 

and SEP is the standard error (SE) of prediction, which was 

replaced by RMSECV in this study.

The optimum number of factors was identified as the local 

minimum value of the RMSEC and RMSECV where the slope did 

not decrease significantly (Gowen et al., 2011). It is important that 

the number of factors is not too significantly higher or lower than 

the optimum because that will lead to an over- or underestimation, 

respectively, of the models.

Pedotransfer Function
Several PTFs have been developed to predict the SWRC 

(wet or dry part) or water content at a given matric potential 

from soil properties such as clay content, organic matter, and 

bulk density (Campbell and Shiozawa, 1992; Schneider and 

Goss, 2012; Wuddivira et al., 2012; Arthur et al., 2013, 2015; 

Chen et al., 2014; Karup et al., 2017). The studies of Arthur 

et al. (2013) and Schneider and Goss (2012) provided PTFs 

for estimating the inverse of the CS slope with only the clay 

content. Both studies considered the intercept (pF0) of the log-

linear CS function as constant. Jensen et al. (2015) correlated 

the volumetric water content at −106 cm H2O (pF 6) with clay 

content, OM, silt, and bulk density. The PTF of Wuddivira et 

al. (2012) predicted clay content using water content at a rela-

tive humidity of 0.5, which corresponds to a matric potential of 

−106 cm H2O. To predict the reference slope of the CS function, 

the inverse of a was used because previous studies correlated 

it to the soil properties (Schneider and Goss, 2012; Arthur et 

al., 2013). To develop PTFs for the two reference parameters, a 

and W6, in the current study, the following regression models 

were used:

Fig. 2. Schematic illustration of the calculation of the 
two reference parameters a and W6 for a soil sample, 
as well as the fitting of the original and anchored 
Campbell–Shiozawa (CS) functions at the selected 
range (relative humidity 0.1–0.8), where a is the slope 
of the log-linear Campbell–Shiozawa function, W6 is 
the gravimetric water content at −106 cm H2O, and 
aw is the water activity.
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1 Clay OMA B-a = ´ + ´   [8]

6 Clay OMW C D= ´ + ´   [9]

where Clay is the clay content (kg kg−1), OM is organic matter 

(kg kg−1), and A, B, C, and D are the regression coefficients. The 

evaluation of both PTFs was performed using the R2, RMSE, and 

RPIQ indices.

Comparison of Visible–Near-Infrared 
Spectroscopy and Pedotransfer Function

The statistical evaluations of the two methods were compared 

to examine the overall model accuracy and to examine if vis–NIRS 

can predict the SWRC at the dry end. Additionally, the predicted 

parameters were inserted into the anchored log-linear CS function 

and the dry-end SWRCs of individual soil samples were predicted 

using either the vis–NIRS calibration models or the PTF. The 

ability to predict the dry-end SWRC on a field scale was also tested 

using the two available fields (Silstrup and Estrup).

 6Results and Discussion
Soil Properties and 
Water Vapor Sorption Isotherms

The soil samples used in this study covered a wide textural 

range (11 USDA soil texture classes) as illustrated in Fig. 1a. The 

mean values (with range in parentheses) of R2 and RMSE of the 

fits of the anchored CS model to the measured water desorp-

tion isotherms, WSIs (0.1–0.8 aw), were 0.998 (0.980–1.000) 

and 0.012 (0.0004–0.039) g g−1, respectively. The descriptive 

statistics of the clay content, OC, and the two reference param-

eters of the anchored log-linear CS function (a and W6) of all 

10 datasets are presented in Table 1. The clay content and OC 

ranged from 0.04 to 0.46 and 0.009 to 0.084 kg kg−1, respec-

tively. The reference slope (a) and the gravimetric water content 

at pF6 (W6) varied from 16.71 to 165.54 (dimensionless) and 

0.009 to 0.060 g g−1, respectively. Higher absolute values of the 

reference a indicate sandier soils, while lower values indicate 

more clayey soils.

The soil samples from Silstrup varied from sandy loam to 

loam, with a narrow textural distribution, while the samples from 

Estrup ranged from loamy sand to sandy loam. All samples from 

Jyndevad were characterized as sands. The soil samples from 

Lerbjerg, Aarup, Saeby, and Riso had a wide textural range 

covering six classes (sandy loam, loam, clay loam, sandy clay 

loam, sandy clay, and clay). Samples from Germany (BadL) were 

characterized as silt loam, while soil samples from the United 

States (LTRAS and Delaware) had a wide textural distribution 

across the soil texture triangle (Fig. 1a), covering five classes (clay 

loam, silty clay loam, and silty clay for LTRAS and loam and silty 

loam for Delaware).

The reference a values for the Silstrup samples varied 

between 42.60 and 59.86 (narrow distribution), while for Estrup 

it was 35.80 and 105.45, with average values of 51.05 and 63.10, 

respectively, for the two fields. The W6 values ranged from 0.015 

to 0.023 ( 6W  = 0.020) and 0.009 to 0.031 ( 6W  = 0.016) g g−1 

for Silstrup and Estrup, respectively.

Table 1. Statistical characteristics of clay content, organic C (OC), and 
the two reference parameters, the inverse of the slope of the Campbell–
Shiozawa function (a−1) and the gravimetric water content at −106 cm 
H2O (W6), of the anchored Campbell–Shiozawa (CS) model of each 
dataset.

Dataset Statistic† Clay OC a W6

——— kg kg−1 ——— g g−1

Silstrup (DK) 
(N = 60)

mean 0.16 0.020 51.05 0.020

median 0.16 0.020 51.68 0.020

Q1 0.15 0.019 49.33 0.019

Q3 0.17 0.020 53.61 0.021

s 0.01 0.001 3.40 0.002

range 0.15–0.20 0.017–0.022 42.60–59.86 0.015–0.023

Estrup (DK) 
(N = 41)

mean 0.11 0.033 63.10 0.016

median 0.11 0.027 63.92 0.015

Q1 0.10 0.022 55.32 0.013

Q3 0.13 0.037 70.43 0.018

s 0.02 0.016 13.87 0.005

range 0.06–0.15 0.018–0.084 35.80–
105.45

0.009–0.031

Jyndevad (DK) 
(N = 6)

mean 0.04 0.019 136.48 0.011

median 0.04 0.020 133.23 0.012

Q1 0.04 0.018 116.84 0.010

Q3 0.05 0.020 156.52 0.012

s 0.00 0.002 23.61 0.002

range 0.04–0.05 0.016–0.021 111.19–
165.54

0.009–0.013

Lerbjerg (DK) 
(N = 6)

mean 0.29 0.016 40.95 0.032

median 0.29 0.016 34.89 0.029

Q1 0.21 0.016 24.15 0.021

Q3 0.37 0.016 47.46 0.041

s 0.13 0.001 25.62 0.017

range 0.12–0.46 0.014–0.017 16.71–87.02 0.013–0.060

Aarup (DK) 
(N = 5)

mean 0.16 0.017 80.31 0.016

median 0.15 0.019 77.18 0.015

Q1 0.11 0.013 54.78 0.011

Q3 0.20 0.020 107.58 0.021

s 0.06 0.004 28.39 0.006

range 0.10–0.23 0.013–0.022 50.86–111.17 0.011–0.023

Saeby (DK) 
(N = 5)

mean 0.28 0.013 44.04 0.024

median 0.26 0.012 41.91 0.022

Q1 0.22 0.011 28.69 0.020

Q3 0.36 0.013 46.54 0.029

s 0.11 0.003 20.75 0.009

range 0.13–0.42 0.009–0.018 25.40–77.64 0.012–0.035

  continued on next page.
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Figure 1b represents the variations in OC for all soils. The soil 

samples are grouped in two categories based on the ratio of clay 

content to OC (n), with a threshold value of n = 10 as suggested 

by Dexter et al. (2008). The n value can be used for grouping soils 

because it determines the amount of complexed clay controlling 

the physical properties and processes (de Jonge et al., 2009).

Examples of eight WSIs are depicted in Fig. 3. Two soil sam-

ples from each subplot are presented for (a) a sandy loam (Estrup) 

and sand-textured (Jyndevad) sample, (b) soils from the same 

dataset (BadL) with the same clay content (0.26 kg kg−1) but with 

different OC contents (0.024 and 0.015 kg kg−1), (c) soils derived 

from the same dataset (LTRAS) with equal contents of OC (0.014 

kg kg−1) but with different clay contents (0.42 and 0.30 kg kg−1), 

and (d) soils with similar contents of OC (0.015 and 0.016 kg kg−1) 

and almost twice the clay content (0.38 and 0.20 kg kg−1). Thus, 

higher values of clay content and OC indicated higher values of 

desorbed soil water content, as the water molecules are retained on 

the surfaces, and clay content and OC are the largest contributors 

to the soil-specific surface area.

Visible–Near-Infrared Spectroscopy 
Measurements

Figure 4 illustrates the spectral behavior of four different soil 

samples, two samples with high and low reference a values and 

two samples with high and low reference W6 values. The sandy 

soil from Jyndevad with the higher a value had clay and OC con-

tents of 0.04 and 0.020 kg kg−1, respectively, while the silty clay 

soil from LTRAS with lower a value had the respective contents 

equal to 0.42 and 0.014 kg kg−1. The loamy sand soil from Estrup 

with the lower value of W6 had clay and OC contents of 0.06 and 

0.021 kg kg−1, respectively, and the clayey Lerbjerg soil with a high 

value of W6 had clay and OC contents of 0.46 and 0.016 kg kg−1. 

Therefore the soil samples with high a and low W6 represent low 

fine minerals and showed higher absorbance throughout the vis–

NIRS range. Also, these two soil samples had the highest OC 

contents among the four selected soils and for that reason higher 

absorbance in the visible range compared with other two soil sam-

ples. Based on Galvão and Vitorello (1998), higher values of OC 

would lead to higher absorbance in the range from 600 to 750 nm. 

The peak around 1400 nm could be due to the first overtone of 

O–H stretch, while the peak near 1900 nm from OH bonds is due 

to a combination of vibrations of water bound in the interlayer lat-

tice. The peak at 2200 nm could be assigned to the combination of 

OH stretch with the fundamental Al–OH bending mode (Hunt, 

1977). The peaks related to OH bonds are the most pronounced 

for the Lerbjerg soil due to the high clay content.

Partial Least Squares Regression Analysis
The pretreatment method that resulted in the best calibrated 

models for both reference parameters (a−1 and W6) was the gap 

segment (Norris, 2001) first derivative among the tested pre-

treatment methods. In the gap segment method, the derivative 

is calculated using multiple points in each segment, and the seg-

ments are separated by a number of points (non-zero values). The 

number of segments is defined by the order of the derivative (e.g., 

first derivative). Figure 5 illustrates the RMSEC, RMSECV, and 

the cumulative Y variance captured as a function of the number 

of factors in the PLS regression. The optimum number of factors 

was set to five for both vis–NIRS models. The R2 of the calibrated 

models (R2Cal), R2 of the cross-validation (R2CV), the RMSECV, 

and RPIQ are presented in Table 2. The R2Cal, R2CV, RMSECV, 

and RPIQ were 0.76, 0.72, 0.0041, and 0.93, respectively, for vis–

NIRS-predicted a−1 and 0.76, 0.74, 0.0042, and 0.92, respectively, 

for W6. The vis–NIRS-predicted values of a−1 and W6 from the 

cross-validation are illustrated in Fig. 6. In Table 3, the statistical 

characteristics of the two vis–NIRS-predicted parameters for the 

  Table 1. continued from previous page.

Dataset Statistic† Clay OC a W6

——— kg kg−1 ——— g g−1

Riso (DK) 
(N = 4)

mean 0.17 0.021 55.11 0.016

median 0.17 0.020 54.89 0.016

Q1 0.16 0.020 54.69 0.016

Q3 0.17 0.021 55.31 0.016

s 0.01 0.001 0.86 0.001

range 0.16–0.17 0.020–0.023 54.33–56.34 0.015–0.06

BadL (DE) 
(N = 6)

mean 0.26 0.020 36.51 0.029

median 0.26 0.021 36.53 0.028

Q1 0.26 0.019 35.33 0.028

Q3 0.27 0.022 37.43 0.030

s 0.00 0.003 1.34 0.001

range 0.26–0.27 0.015–0.024 35.03–38.30 0.027–0.030

LTRAS (USA) 
(N = 6)

mean 0.35 0.013 25.35 0.043

median 0.34 0.014 25.86 0.043

Q1 0.30 0.011 24.00 0.041

Q3 0.38 0.014 26.74 0.045

s 0.05 0.002 1.91 0.004

range 0.30–0.42 0.010–0.015 22.61–27.32 0.039–0.049

Delaware (USA) 
(N = 5)

mean 0.22 0.017 58.14 0.016

median 0.23 0.013 57.26 0.014

Q1 0.22 0.012 52.10 0.014

Q3 0.24 0.014 62.33 0.016

s 0.03 0.011 12.88 0.005

range 0.16–0.24 0.009–0.035 42.12–76.90 0.012–0.024

Total 
(N = 144)

mean 0.17 0.023 57.08 0.020

median 0.15 0.020 52.73 0.019

Q1 0.12 0.018 47.20 0.015

Q3 0.18 0.022 61.46 0.022

s 0.08 0.011 22.95 0.008

range 0.04–0.46 0.009–0.084 16.71–165.54 0.009–0.060

†  Q1, first quartile of the dataset; Q3, third quartile of the dataset; s, standard 
deviation of the dataset.
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Fig. 3. Measured water vapor desorption isotherms for eight different soil samples: (a) a loamy sand (Estrup) and a sand ( Jyndevad), and two soil 
samples from the same area but with different (b) organic C (OC) contents (BadL) and (c,d) clay (CF) contents (LTRAS and Lerbjerg, respectively).

Fig. 4. Visible–near-infrared spectra of selected soil 
samples and the possible spectrally active components 
for a sand and a silty clay sample with high and low 
values of the reference slope (a) of the Campbell–
Shiozawa function and for a loamy sand sample and 
a clay sample with low and high values of reference 
gravimetric water content at −106 cm H2O (W6), 
respectively; OM is organic matter.
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entire database are presented. The mean measured value of a was 

57.08 and the predicted value was 55.04, while the median, Q1, 

and Q3 values were approximately the same. The reference and 

predicted values of a ranged from 16.71 to 165.54 (s = 22.95) 

and 19.47 to 178.72 (s = 18.24), respectively. The statistical char-

acteristics between the reference and predicted values of W6 were 

almost identical and ranged from 0.009 to 0.060 and 0.008 to 

0.052 g g−1, respectively.

Fig. 5. Root mean square error of the calibration with the blue line (RMSEC) and cross-validation with the blue line (RMSECV) and cumulative Y 
variance captured as a function of the number of factors in the partial least squares (PLS) regression. The arrow indicates the selected number of factors 
used in the models: (a) for the inverse of the slope of the Campbell–Shiozawa function (a−1) and (b) for the gravimetric water content at −106 cm 
H2O (W6).

Fig. 6. Scatterplot of cross-validated visible–near-infrared spectros-
copy (CV vis–NIRS) predicted and reference values of (a) inverse of 
the slope of the Campbell–Shiozawa function (a−1) and (b) gravimet-
ric water content at −106 cm H2O (W6). Also given are the number of 
factors, R2 of the cross-validation (R2CV), and the root mean square 
error of cross-validation (RMSECV).

Fig. 7. Linear regression analyses of (a) the inverse of the slope of the 
Campbell–Shiozawa function (a−1) and (b) the gravimetric water 
content at −106 cm H2O (W6) as a function of the clay content and 
organic matter (OM). Also given are the R2 and RMSE between mea-
sured and predicted values.



VZJ | Advancing Critical Zone Science p. 9 of 13

Looking at Fig. 5 and 6 and the fact that the statistical evalu-

ations of a and W6 in Table 2 were very similar, we examined 

the relationship between them. The value of W6 as a function of 

a−1 had a strong linear relationship because both parameters are 

strongly related to the clay content. The linear regression analysis 

showed a−1 = 1 ´ W6 with R2 = 0.95, p < 0.001, and standard 

error of the estimate equal to 0.006. Thus, the anchored log-linear 

CS function can be transformed into a one-parameter function 

instead of two parameters:

( )6 pF 5W W= +   [10]

Comparison of this study with the literature is limited since 

there are no other studies that have attempted to predict the 

dry end of the SWRC using NIRS. However, a few studies have 

attempted to predict the SWRC at the wet end using vis–NIRS 

(Santra et al., 2009; Babaeian et al., 2015; Pittaki-Chrysodonta 

et al., 2018). Pittaki-Chrysodonta et al. (2018) predicted the 

Campbell soil-water retention function. In that study, they had 

anchored the original Campbell SWRC at pF 3 and developed 

vis–NIRS models to predict the Campbell b (pore-size distribu-

tion index) and the volumetric water content at pF 3 with R2CV 

and RMSE equal to 0.86 and 0.92 and to 1.52 and 0.022 cm3 cm−3, 

respectively. Babaeian et al. (2015) developed point and paramet-

ric spectral transfer functions to predict soil-water content at 

specific matric potentials as well as the van Genuchten param-

eters (aVG and nVG) and the Brooks and Corey shape parameters 

(aBC and lBC). The volumetric water content at the lowest matric 

potential that they predicted was at pF 4.2 with R2 = 0.63 and 

RMSE = 0.0126 cm3 cm−3.

Table 2. The results of partial least squares (PLS) regression analysis of visible–near-infrared (vis–NIR) spectra and linear regression analysis based 
pedotransfer function (PTF).

Model Parameter† R2Cal‡ R2CV§ RMSECV¶ RPIQ# Factors or equation

Vis–NIRS a−1 0.76 0.72 0.0041 0.93 5

W6 (g g−1) 0.76 0.73 0.0042 0.92 5

PTF a−1 0.89 – 0.0025 1.66 a−1 = 0.102(0.94Clay + OM)

W6 (g g−1) 0.82 – 0.0034 1.15 W6 = 0.113(0.84Clay + OM)

† a , slope of the log-linear Campbell–Shiozawa function; W6, water content at pF 6.
‡ R2Cal, R2 of the calibration dataset for the vis-NIRS model and R2 of the equation for the PTF.
§ R2CV, R2 of the cross-validation dataset.
¶ RMSECV, root mean square error of the cross-validation dataset for the vis-NIRS model and root mean square error of the predicted parameters for the PTF.
# RPIQ, ratio of performance to interquartile distance.

Table 3. Statistical characteristics for the slope of the log-linear Campbell–Shiozawa function (a) and the gravimetric water content at pF 6 (W6) for 
the whole dataset using visible–near-infrared spectroscopy (vis–NIRS) or pedotransfer function (PTF) based models.

Parameter Model Mean Median Q1 Q3 s Range

a vis–NIRS 55.04 52.92 48.44 59.49 18.24 19.47–178.72

PTF 55.71 53.71 47.41 59.01 20.70 21.304–136.0

W6 (g g−1) vis–NIRS 0.020 0.019 0.017 0.020 0.007 0.008–0.052

PTF 0.020 0.019 0.017 0.021 0.007 0.008–0.047

Fig. 8. Average RMSE values for predicted water vapor desorption 
isotherms from pF 5.5 to 6.5 (pF = log|y|) as a function of the clay 
content for (a) the visible–near-infrared spectroscopy (vis–NIRS) 
based model and (b) the pedotransfer function (PTF).
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Pedotransfer Analysis
The linear regression analysis (Fig. 7a and b) showed that 

both parameters were linearly correlated with the clay and organic 

matter contents. High values of R2 (0.89) and low values of the 

RMSE (0.0025) for predicting a−1 indicated a fairly good model 

development (Table 2). Arthur et al. (2013) predicted a−1 based 

only on knowledge of the clay content for 21 samples, with R2 = 

0.88. In this study, gradient soils (soils with approximately the 

same organic C contents but variable clay contents) were included 

and, for that reason, a PTF based only on the clay content would 

lead to poorer results (R2 = 0.81, RMSE = 0.004). Schneider and 

Goss (2012) also correlated the inverse of the slope (a−1) with the 

clay content using only 18 soil samples, with R2 = 0.96.

The results from the prediction of W6 using a PTF showed 

that it is also linearly related to the clay content and OM, with 

R2 = 0.82 and RMSE = 0.0034 g g−1, and this linearity can be 

observed in Fig. 7b. Jensen et al. (2015) correlated the volumetric 

water content at pF 6 with clay content (R2 = 0.87). Furthermore, 

they found that including OM, silt, and bulk density increased 

the explained variation of the volumetric water content at pF 6 

(R2 = 0.95).

The statistical characteristics for the predicted parameters 

are given in Table 3. The PTF-predicted inverse of a and W6 

presented similar statistical characteristics to the reference except 

the maximum value of a−1, which was underpredicted (136.00 

instead of 165.54).

Fig. 9. Examples of the predictive performance of the water desorption isotherms (WSI) using visible–near-infrared spectroscopy (vis–NIRS) and 
pedotransfer function (PTF) models for eight soil samples with different clay and organic C (OC) contents: (a) Saeby (loam) and Jyndevad (sand), 
(b) Delaware (loam) and LTRAS (silty clay loam), (c) LTRAS (silty clay loam) and Silstrup (sandy loam), (d) Estrup (sandy loam) and Lerbjerg (sandy 
clay), (e) Lerbjerg (sandy loam) and Aarup (loam) and (f ) Riso (sandy loam) and BadL (silty loam).
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Comparison of Visible–Near-Infrared 
Spectroscopy Model and Pedotransfer Function

The two predicted parameters (a and W6) from the vis–NIRS 

and PTF were inserted into the anchored log-linear CS function, 

and the entire dry end of the SWRC was predicted. Figure 8 shows 

the RMSE for gravimetric soil water content when predicting the 

SWRC from pF 5.5 to 6.5 as a function of clay content for both 

vis–NIRS and PTF models and the weak correlation between the 

clay content and the two models (R2 0.07 and 0.20 for vis–NIRS 

and PTF, respectively).

To obtain the water desorption isotherms (WSIs), the pre-

dicted parameters a and W6 using both methods (PTF and 

vis–NIRS) were inserted into the log-linear CS function anchored 

at pF 6. Thereafter, matric potentials (pF) at various gravimet-

ric water contents were obtained using Eq. [5]. Afterward, the pF 

values were converted into water activity (aw) using Eq. [1].

Examples of the predictive performance of 12 WSIs are 

depicted in Fig. 9, including at least one soil sample from each 

dataset. The two methods had similar prediction accuracy for soil 

samples from Silstrup, Aarup, Riso, and BadL. The vis–NIRS 

method had better accuracy for soil samples from LTRAS and 

Delaware, while the PTF was better for the Saeby, Estrup, and 

Jyndevad soils.

To evaluate the ability to predict the WSI across-field varia-

tions, the two fields from Estrup and Silstrup were used. The 

average predicted values of parameters for both methods (vis–

NIRS and PTF) were inserted into the anchored log-linear CS 

function and the results are illustrated in Fig. 10. Both methods 

predicted well the WSI, with the vis–NIRS having slightly better 

accuracy based on the RMSE.

 6Conclusions
We examined whether vis–NIRS can predict the dry end 

of the SWRC equally well as a developed pedotransfer function. 

The log-linear CS function anchored at pF 6 was used, and its 

two parameters (a and W6) were predicted using both methods 

(vis–NIRS and PTF).

Based on the R2, RMSE, and RPIQ, the two CS parameters 

were best predicted using the PTF. The two predicted parameters 

were inserted into the anchored CS function and the predicted 

SWRC compared closely with the measurements for the majority 

of the soil samples. The ability to predict SWRC not only on indi-

vidual soil samples but on the field scale was tested as well. Both 

methods predicted the SWRC with an acceptable accuracy for 

the two selected fields, with vis–NIRS performing slightly better.

Although this study included soil samples collected across 

Denmark, Germany, and the United States covering a wide tex-

tural distribution, more soil samples should be included from 

different geographical locations to test the applicability of vis–

NIRS to an even wider range of soil types and to additionally 

enable an independent validation.

In further perspective, a tool to predict the entire SWRC 

from wet to hyper-dry from, e.g., a single vis–NIRS measurement 

would be highly useful for estimating plant-available water and 

improved simulations of water and chemical transport in variably 

saturated soil. This could be achieved by combining the dry-end 

concept of this study with a recent, analog concept for obtaining 

the wet end from vis–NIRS or PTF predicted parameters based on 

the Campbell (1974) retention model (Pittaki-Chrysodonta et al., 

2018). Finally, a full-range SWRC model, e.g., that by Lu (2016), 

could be fitted to water retention from the wet end (Pittaki-

Chrysodonta et al., 2018) and from the dry end (this study). Such 

an approach will be tested and independently validated in an 

upcoming study.
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Fig. 10. Comparison between averaged measurements of water vapor 
sorption isotherms (WSI) (with vertical error bars) and the predicted 
WSI using visible–near-infrared spectroscopy (vis–NIRS) and pedo-
transfer function (PTF) models for the two fields: (a) Silstrup and (b) 
Estrup. Also given are the average RMSE values when predicting the 
vapor desorption isotherms using vis-NIRS and PTF based predic-
tion models. Red and blue dashed lines indicate the possible predicted 
range (average ± s). Gray dashed lines illustrate the predictions of 
WSI outside of the used range.
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