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ABSTRACT: Over the recent decade increased research efforts have been directed on the modeling of 
resilience of infrastructure systems in their context, i.e. as socio-technical systems. The present paper 
presents a generic resilience model framework for the support of design and integrity management of 
such systems. The starting point is the general system representation framework by JCSS (2008) with 
special consideration of the modeling of uncertainties and dependencies. Furthermore, the evolution of 
the performance, together with the expected value of benefits and losses, as well as the capacity of 
infrastructure systems over time is described. On this basis the resilience modeling is formulated 
considering the performances of and the interactions between infrastructure systems, the organization 
responsible for integrity management and regulations. Finally, an example is presented considering the 
modeling and analysis of the resilience of one wind turbine park for the purpose of optimizing resilience 
management. Parameter studies are presented illustrating how the resilience performance may be 
optimized by means of adjusting the reliability of subsystems as well as through allocation of income for 
coverage of costs of future inspections, maintenance and renewal works. Moreover, it is illustrated how 
performance relevant indicators such as the down time and the stock keeping of essential spare parts can 
be assessed through the proposed resilience analysis framework.

1. INTRODUCTION 
Resilience of systems has attained significant 
interest over the last 2-3 decades across the 
natural, social, human and engineering sciences, 
see e.g. Derissen, et al. (2011), Linkov, et al. 
(2014), Qin, et al. (2017) and Faber, et al. (2018). 
Whereas, within the different sciences, the 
systems of interest are of rather diverse 
characteristics, there is general agreement with 
respect to the concept. Resilience is commonly 
understood as an aggregate characterization of 
systems encompassing their ability to maintain 
their main modes and levels of services, to 
develop and mobilize resources to adapt to and 
sustain disturbances over time.  

Research on resilience within the engineering 
sciences has been focusing on the modeling of 
how engineered systems are able to sustain one 
given disturbance scenario, how, to which extent 
and by when the organizations managing them are 

able to reestablish their functionalities and not 
least the losses associated with disruptions and 
rehabilitations. Knowledge in this respect greatly 
facilitates the understanding of how engineered 
systems in their organizational context may be 
designed and managed optimally for given 
individual events of disturbances, such as 
historical earthquakes, flood and storm events. 
With this basis, the statistical characteristics of the 
mentioned system performances with respect to 
all relevant, and in principle unknown individual 
disturbance events, may be assessed by 
probabilistic modeling and analysis. 

In Faber, et al. (2017), system resilience is 
addressed from a more holistic perspective, 
addressing not only one (possibly random) event 
of a given disturbance scenario but rather all 
possible time histories of disturbance events over 
the lifetime of the systems, and thereby facilitates 
the modeling of the generation of the time-variant 
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net benefit provided by systems. This formulation 
in turn makes it possible to model the capacity of 
the systems over time and thus opens up to 
represent and assess resilience failure events from 
a probabilistic perspective. System resilience 
failure events are thus defined as the events where 
the available accumulated capacities of the system 
are exhausted by the demands associated with the 
disturbance events - where capacities and 
demands may relate to economy, human resources 
and environmental resources. 

In the present paper we build on the 
formulation of system resilience model from 
Faber, et al. (2017) and adapt this to address 
resilience informed performance assessment of 
infrastructure systems. In Section 2, the general 
framework of system modeling presented by 
JCSS (2008) is introduced first and the system 
representation of infrastructure systems will be 
introduced briefly considering uncertainties and 
dependencies. Section 3 outlines an analytical 
framework for the probabilistic modeling and 
analysis of resilience of infrastructure systems. It 
is assumed that the considered hierarchical system 
is managed by an owner/operator organization 
and the resilience of the system is modelled and 
assessed with respect to different decision 
alternatives; while the decision alternatives that 
satisfy the resilience requirements may be 
identified and based on which the performance of 
the infrastructure systems can be assessed. In 
Section 4, an example is provided to illustrate the 
resilience analysis and the subsequent 
performance assessment of a wind turbine park 
composed by ten wind turbines and the influences 
of the preparedness level, target design reliability 
and the accumulated capacity are investigated. 

2. PERFORMANCE OF INFRASTRUCTURE 
SYSTEMS 

A general system modeling framework is 
presented by the Joint Committee on Structural 
Safety (JCSS) (JCSS (2008)) in the context of risk 
assessment. In the framework, the system 
performance is changed by the exposure, while 
the consequence is divided into two categories, 
i.e. direct consequence and indirect consequence. 

Direct consequences comprise the losses directly 
caused by damage and failure states of the 
constituents of the system, while indirect 
consequences relate to the propagation failure 
events and functionality and service provision 
losses. 

Concerning the damage and failure state of 
the constituents of the system, Failure Mode and 
Effect Analysis (FEMA) or Failure Tree Analysis 
(FTA) might be applied to the assessment, see e.g. 
Tavner, et al. (2007) and Sørensen and Toft 
(2010); while in many cases, especially for the 
constituents of structural systems, the relevant 
failure modes and the failure event may be 
represented in a probabilistic analysis through 
unions and intersections of individual failure 
modes represented by limit state equations. At 
system level, as soon as the performance of the 
constituents are assessed, the dependencies 
between the performance necessitate to be 
addressed. For example, when a wind turbine park 
is considered, two levels of the dependencies may 
be taken into account, i.e. turbine level 
dependency (the dependency between the 
performances of individual wind turbines) and 
subsystem level dependency (the dependency 
between the performances of subsystems). Wind 
turbines located in the same wind turbine park, are 
generally subject to similar environmental loads 
and natural hazard events, e.g. similar intensities 
of wind, waves and wind waves for offshore wind 
turbines, while also operational demands on e.g. 
generators and gearboxes are dependent. 
Moreover, wind turbines within one wind turbine 
park are subject to the same general strategies 
with respect to monitoring, control, maintenance 
and renewals. At subsystem level, subsystems of 
one wind turbine work together and the change of 
the condition state of one or more subsystems may 
cause that of the other subsystems in a cascading 
manner. The scheme for the representation of 
systems of wind turbine parks considering two 
levels of dependency is shown briefly in Figure 1. 
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Figure 1: System representation of wind turbine 
parks considering two levels of dependency.  

3. RESILIENCE INFORMED 
PERFORMANCE ASSESSMENT OF 
INFRASTRUCTURE SYSTEMS 

The resilience of engineered systems is 
considered by Faber, et al. (2017) from a service 
life perspective and the evolution of service 
provision and associated benefit generation are 
modeled together with the capacities of the system 
(organizational, economic and/or ecological) over 
time. Resilience failure is defined as the event that 
one or more of the capacities are exceeded by 
demands and/or the consequences of 
disturbances. 

The resilience model presented in Faber, et al. 
(2017) proposes the economic capacity of a 
system to be generated by accumulating a fixed 
percentage  %  of the economic output (benefit) 

provided by the service provision of the system. It 
is assumed that a startup capacity is available at 
time 0t  . This is taken as  % of the expected 

value of the annually generated benefit 
considering all relevant disturbance events over 
the service life of the system. Disturbance events 
may cause damages to the system and 
correspondingly the benefit generation will be 
reduced for a period of time. The immediate drop 
in the benefit rate after a disturbance event may be 
noticed to relate directly to system reliability and 
robustness. The accumulated reserves will 
decrease to support the recovery activities. 

Following Faber, et al. (2017), the limit state 
function of the event of resilience failure at time 
t  could be expressed as: 

        RF , ,r rg t r t s t X a X a   (1) 

where rr  and rs  are functions representing the 

capacity and the demand of the system at time t , 
respectively. The demand is in principle any event 
with the potential to reduce the capacity of the 
system, typically referred to as disturbances. It 
should however, be noted that not only sudden 
and large consequence events are of relevance, 
but also effects of e.g. slowly evolving 
degradation and lack of efficiency in integrity 
management may be critically important.  tX  is 

a vector of random variables which in general 
depend on time and a  is a vector containing all 
decision alternatives which may affect the 
resilience performance of the system. The 
probability that this function RFg , for the first time 

during a considered reference period (service life), 
attains a negative value represents the probability 
of resilience failure of the system,   RF ,P tX a . 

 As soon as the probability RFP  is provided for 

all the possible vectors of decision alternatives a , 
the optimal decision may be identified 
correspondingly based on a minimization of the 
probability of resilience failure or even the 
maximization of the total benefit. Based on the 
identification of the optimal decision a , the 
performance of the infrastructure system, together 
with its consequences, can be assessed. 

In the following section, the resilience 
modeling introduced here is utilized to address the 
resilience analysis of wind turbine parks. The 
system representation of wind turbine parks is 
formulated as a two level hierarchy of systems as 
shown in Figure 1. It is assumed that the 
considered hierarchical system is managed by an 
owner/operator organization and the resilience 
performance of the system is modelled and 
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assessed with respect to different decision 
alternatives with respect to levels of design 
reliability and preparedness. The evolution of 
benefit and reserve with time represented here is 
applied for the modelling of individual wind 
turbines directly; while the evolution for the wind 
turbine park is provided, together with other 
different perspectives such as down time during 
the service life and the stock keeping of essential 
spare parts, based on that for the individual wind 
turbines. 

4. EXAMPLE 
In the following, resilience assessment of one 

wind turbine park with ten identical wind turbines, 
model GE 1.5 SLE, is considered. The 
configuration and operational data of this model 
can be found in Mendoza, et al. (2015). The 
service life for the individual wind turbines is set 
to be 30 years. For illustrational purpose, each 
wind turbine is composed by three different 
subsystems, namely the electrical subsystem 
(such as generator and electrical control), the 
mechanical subsystem (such as mechanical brake 
and gearbox) and the structural subsystem (such 
as main shaft and rotor blade). The structural 
subsystems are assumed to be exposed to 
environmental load disturbances such as wind and 
waves, HL . The capacity of a structural 

subsystem, in this regard, Hr , is modelled by a 

log-normal distribution random variable. The 
expected value and the coefficient of variation of 

Hr  are 1 and 0.3 respectively. The limit state 

function representing the failure event of 
individual structural subsystems with respect to 
the environmental load disturbances is: 
 1H H Hg z r L    (2) 

where z1 is design parameter calibrated to comply 
with the requirements to the target reliabilities of 
wind turbines. The occurrences of the 
environmental disturbance events are assumed to 
follow a Poisson process with annual rate 3H  . 
The intensities of disturbance events acting on 
each wind turbine within the wind turbine park is 

modelled by a random vector HI with constituents 
assumed to be Gumbel distributed. The intensities 
of the disturbance HI  acting on different wind 
turbines in this park at a given time are correlated 
with correlation coefficient I H

 as 0.8. The 

expected values and the coefficients of variation 
of the intensity HI , i.e.  HE I and  HCOV I , are 

equal to 1 and 0.4, respectively. The electrical 
subsystems and mechanical subsystems have their 
respective capacities to withstand the operational 
demands. It is assumed that the failure rate with 
respect to the operational load of the subsystems 
of all the wind turbines of this park, defined as the 
reciprocal of the mean time between failure 
(MTBF), lies on the constant part of a bathtub 
curve and remains constant over time. 
Furthermore, the performance of each subsystem 
is described by a homogeneous Poisson process 
(HPP) model, see e.g. Tavner, et al. (2007) and 
Sørensen and Toft (2010) for reference. That is, 
the long-term effect of the subsystem capacity 
such as fatigue is not considered in the present 
investigation. It is assumed that all the wind 
turbines in the wind turbine park are designed and 
built simultaneously. They are subject to the same 
demands and disturbances and managed in 
accordance with the same management strategy. 
It is further assumed that the failure of the 
electrical subsystem or the mechanical subsystem 
of one wind turbine may produce extra loads on 
its structural subsystem and make it fail also. 
Wind turbines with two different levels of target 
reliability are considered in the investigation here 
and the corresponding values of the relevant 
parameters relevant to the reliability of structural 
subsystems and the reliability of the other two 
types of subsystems are provided in Tables 1 and 
2respectively. The two groups of values of MTBF 
defined in Table 2are taken from Tavner, et al. 
(2007) corresponding to the statistical analysis of 
the 10-year data of the reliability of wind turbines 
in Denmark and Germany respectively.  

The benefit generated by the individual wind 
turbines is realized by their power generation. All 
the wind turbines in the park are the same model 
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and it is assumed that they have same power 
generation function, which describes the relation 
between the power generation and wind speed. 
Following the discussion in e.g. Jin and Tian 
(2010), Lydia, et al. (2014) and Royal Academy 
of Engineering (2014), the power generation G by 
individual wind turbine with uncertainties is 
considered as: 

 

in

2 3
in rated

rated rated out

out

0

1

2

0

p

v v

R C v v v v
G

G v v v

v v
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

    
  




  (3) 

where v is the wind speed, while inv , outv  and 

ratedv  represent the cut-in speed, cut-out speed and 

rated speed respectively. ratedG  is referred to as the 

rated power and treated as a constant for a 
specified model.   is the air density, R is the 
radius of the rotor and pC  is called as the power 

performance coefficient, which will vary with 
wind speed v. The variable   represents the 
uncertainty in the estimation of the power 
generation. The values of the radius of the rotor, 
the cut-in speed, the cut-out speed, the rated 
speed, the rated power of model GE 1.5 SLE, 
provided in the performance test report Mendoza, 
et al. (2015), are considered as constants in the 
investigation here. Also the air density   is 
considered as constant in the whole wind farm and 
it is set to be 1.00kg/m3, while the power 
performance coefficient pC , which varies with 

wind speed, takes the data directly from the onsite 
test presented in Mendoza, et al. (2015). It is 
assumed that the variable   follows a Normal 
distribution with mean value and standard 
deviation as 0 KW and 2 KW respectively as the 
suggestion by Jin and Tian (2010). For simplicity, 
it is further assumed that any two turbines in this 
park are separated far from each other and the 
interaction between them in the power generation 
is ignored. 
 

Table 1: Parameters relevant to the design reliability 
of structural subsystems with different target levels. 

Target 
level 

Reliability calibration to 
environmental load Conditional failure 

probability of the 
structural subsystem 
given the failure of 
the electrical or the 
mechanical 
subsystem of the 
same wind turbine 

Probability of failure 
due to 

environmental load 

Pr( 0)Hg   

z1 

Low 21.2 10  2.5 0.3 

High 31.1 10  3.5 0.1 

 
Table 2: Values of MTBF of electrical and mechanical 
subsystems with different target levels of design 
reliability (unit: hours). 

Target level Electrical subsystem Mechanical subsystem 

Low 25708 90472 
High 450643 1236712 

 
Table 3: Replacement cost for different type of 
subsystems. 

Type of subsystems Replacement cost 

Electrical subsystem 0.3 

Mechanical subsystem 0.2 

Structural subsystem 1 

 
In the following investigations, wind 

scenario 2 presented in Kusiak and Song (2010) is 
considered here as the random daily wind 
direction and maximal wind speed of the park. It 
is assumed that wind speed v (at a given location, 
height and direction) follows a Weibull 
distribution and wind speeds at different locations 
share the same Weibull distribution across this 
park. The wind turbines turn with the change of 
the wind direction so that the wind direction is 
considered to have no influence on the power 
generation but only the values of the parameters 
of Weibull distribution of wind speed. 
Given a disturbance event, each subsystem has two 
condition states, i.e. ‘survival’ and ‘failure’. Failure 
of any subsystem of one wind turbine implies total 
loss of service from that turbine. If one wind turbine 
performs well (no subsystem fails), it generates 
electricity in accordance with design specifications 
as its anticipated service. The benefit per unit time 
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(year) provided by one wind turbine is assumed to be 
equal to the ratio of the average power generation by 
the maximal daily wind speed during the year to its 
rated power, i.e. 1500KW for the model GE 1.5 SLE. 
It is assumed that the subsystems are replaced upon 
their failure and the replacement costs of different 
types of subsystems are given in  

Table 3. 

The evolution of the benefit generated from 
one wind turbine for a particular realization of a 
disturbance event is illustrated in Figure 2. The 
benefit generation is reduced to zero at the time of 
the disturbance. 1T  represents the period from 
the realization of the disturbance till the service of 
the wind turbine has been re-established and it is 
modelled by a log-normal distributed random 
variable. Two preparedness levels of the operator 
organisation to deal with the damage caused by 
the disturbance event are considered, i.e. low and 
high, which affect the rapidity of the recovery. 
The expected value  E   and the coefficient of 

variation  COV   of 1T  vary with the 

preparedness levels and the cause of the failure of 
the wind turbine, i.e. the failure of the subsystems 
leading to the loss of service of the wind turbine. 
A high preparedness level implies relatively small 
expected value of the recovery period and also 
low coefficient of variation; while a low 
preparedness level has the opposite effect. 
Replacement activities for the structural 
subsystems are generally rather involving and 
take a long time compared with other subsystems. 
Simultaneous failure of more than one subsystem 
may take place in which case the recovery period 
of the wind turbine is assumed to be equal to that 
of the subsystem with the longest recovery period. 
The probabilistic model for the recovery period is 
provided in Table 4. The evolution of the benefit 
from the entire wind turbine park is simply the 
sum of the benefits generated from the individual 
wind turbines. 

 

Figure 2: Illustration of the reorganization and 
recovery of the benefit of a wind turbine for a 
particular realization of a disturbance event. 

Table 4: Probabilistic	model	of	the	recovery	period	 1T 	
with	respect	to	the	type	of	subsystems	that	stops	the	
turbine	to	work	as	well	as	preparedness	level. 

Distribution 
Preparedness 

level 

Expected value 
(unit: month) 

COV 
Structural 
subsystem 

Electrical 
subsystem 

Mechanical 
subsystem 

Log-normal 
Low 1 1/3 1/3 0.2 
High 1/3 1/9 1/9 0.1 

 

 

Figure 3: Annual probability of resilience failure with 
the variation of the percentage   %. 

 

Figure 4: Expected down time of the park within the 
30-year service life. 

The economic capacity at the beginning of 
the service life is assumed equal to a percentage 
% of the expected value of the accumulated 
benefits over the service life of the park. In the 
following, resilience of the wind turbine park is 
analyzed to investigate the influence of the target 
level of the design reliability for environmental 
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load disturbances and the operational load, 
preparedness level and the percentage %. Two 
different target levels of design reliability of wind 
turbines and two different preparedness levels are 
considered here. The resilience is quantified by 
the probability of resilience failure (the 
exhaustion of the economic capacity accumulated 
by the system of time) within the service life in 
dependency of  %. 
Monte Carlo simulations are applied to assess the 
annual probability of resilience failure RFP . The 

annual probability for the case with low target 
design annual reliability of wind turbines for 
different values of  % is estimated, and the 

results are illustrated in Figure 3, each based on 
1x104 Monte Carlo simulations. The logarithm of 
the resilience failure probability falls with the 
increase of  %. As  % increase the difference 

between the resilience failure probabilities 
become more pronounced. For the case with high 
target design annual reliability, the resilience 
failure probability is only apparent when  % is 5% 

- in which case the annual probability of resilience 
failure is between 1x10-3 and 1x10-2. This case is 
not shown in Figure 3. 

The proposed resilience model may also be 
applied to assess the reliability of energy 
provision. In this respect, the down time during 
the service life and the probability distribution of 
the number of different types of subsystems in the 
failure state simultaneously are investigated with 
these four scenarios. The results of expected down 
time from 1x104 simulations are illustrated in 
Figure 4. It can be seen that both the increase of 
design reliability and the increase of preparedness 
level reduce the down time; while the effect of 
target level of design reliability is great compared 
with the preparedness level.  The complimentary 
cumulative distribution of the number of different 
types of subsystems in the failure state 
simultaneously is obtained also from 1x104 
numerical simulations to provide the basis for the 

stock keeping of essential spare parts and the 
results are provided in Figure 5. The interval with 
large number of subsystems is generally not 
covered by the curves because no failure of such 
number of subsystems is captured to have the 
failure state simultaneously in these simulations. 

5. CONCLUSIONS 
In the present paper, a previously developed 
framework for system resilience modelling and 
analysis is adapted to resilience informed 
performance assessment of infrastructure systems. 
Following Faber, et al. (2017), the resilience is 
modelled from a service life perspective to 
measure whether the capacity of infrastructure 
systems could sustain the damage by the 
disturbances and the subsequent repair activities. 
Based on the resilience model, the decision 
alternatives that could satisfy the resilience 
requirements would be identified and 
correspondingly, the performance of 
infrastructure systems would be assessed. 

The general idea of the approach is illustrated 
on the resilience analysis of one wind turbine park 
with ten wind turbines. The uncertainties 
associated with the performance of individual 
wind turbines, the different levels of dependency 
within the performance of the parks as well as the 
damage of different types of subsystem that cause 
the loss of production of wind turbines are 
captured in the analysis of the time evolution of 
benefit and losses of wind turbines over time. 
From the example, it is demonstrated that 
decisions on the target reliability of the design of 
individual wind turbine with respect to 
disturbance events and operational load may be 
assessed and optimized to reach requirements in 
terms of resilience. The framework allows 
decision making on how much of the utility 
generated by the system should be kept in reserve 
as well as what level of preparedness should be 
achieved to ensure sufficient capacity to recover 
from the potential disturbances during the service 
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life. Moreover, the performance relevant 
indicators of the park, such as the down time and 
the stock keeping of essential spare parts are 
readily quantified within the framework. 

The resilience modelling presented is general, 
however, for illustrational purpose, the system 

representation of wind turbine parks presented 
here is rather simplistic. Further detailing 
accounting for fatigue crack growth and corrosion 
as well as the measurement of the Value of 
Information (VoI) from the health monitoring of 
different part of subsystems can and should be 
included in further developments. 

       

(1) electrical subsystems                 (2) mechanical subsystems                 (3) structural subsystems 

Figure 5: Complimentary cumulative distribution of number of different types of subsystems in the failure state 
simultaneously. 
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