
skyex: an R Package for Entity Linkage
Suela Isaj

Aalborg University
suela@cs.aau.dk

Torben Bach Pedersen
Aalborg University
tbp@cs.aau.dk

ABSTRACT
As the data is becoming bigger, more heterogeneous, and origi-
nating from different sources, the availability of the same infor-
mation in different forms leads to various entity linkage problems.
We demonstrate our skyex package, an R package that supports
all three steps of entity linkage: blocking, pairwise comparison,
and labeling. Thus, the user can solve the whole process using
skyex, but not necessarily; the skyex modules are independent,
meaning that the user can easily integrate them with other pack-
ages or even other environments. Additionally, we are the first
to provide the implementation of two skyline-based algorithms
(SkyEx-F and SkyEx-D) that can label the compared pairs with-
out the need for weights, scoring functions, etc. skyex supports
the typical workflow of entity linkage, using minimalist, user-
friendly function calls.

1 INTRODUCTION
The entity linkage problem, sometimes called data matching, en-
tity resolution, duplicate detection, reconciliation, etc., detects dif-
ferent records that belong to the same entity. Even though the
process varies in different domains, the main steps are the same:
blocking, pairwise comparison, and labeling the pairs (Fig.1). The
entity linkage process starts with a set of entities that might
contain duplicates. First, a blocking method is used to group en-
tities that show a certain level of similarity and are of interest to
compare further. Then, the pairwise comparison step compares
the entities in the same blocks, e.g., using similarity metrics of
the attributes of the entities or comparing the structure of their
connections. Finally, the labeling step decides whether a pair of
candidates belongs to the same entity or not. The entity linkage
process results in a set of labeled pairs.

We present an R package, skyex, that supports all three steps
of the entity linkage problem. In the labeling step, we provide
the novel SkyEx-F and SkyEx-D algorithms in [6, 8]. The R lan-
guage is in the top five languages of data science, and even more
importantly, R is the second most used software in data science
scientific papers, corresponding to 50,000 articles 1. Moreover, R
is used by different industries besides academia, such as health-
care, government, insurance, etc., where entity resolution is a
common obstacle 2. The current entity linkage tools [1–4, 9–11]
offer rule-based solutions with blocking and comparison func-
tions [3, 10], crowdsourcing solutions [4, 9], or machine learning

1http://r4stats.com/articles/popularity/
2https://stackoverflow.blog/2017/10/10/impressive-growth-r/

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: The entity linkage process

solutions [1, 2, 11]. In contrast to all the current tools, we con-
tribute with a Labeling module that implements two novel algo-
rithms (SkyEx-F and SkyEx-D) [6, 8], which can label the pairs
without the need of weights, scoring functions, or exhaustive
experiments. In order to support the full entity linkage workflow,
we provide functions to perform blocking based on text and spa-
tial attributes, and we offer a module for textual, spatial, semantic
pairwise comparison. Similarly to [2], we support analysis and
visualization functions that assist in the interpretation of the
results and assessing the quality of the labeling. Analogously to
[11] that uses Python, skyex uses the R ecosystem and can be
easily integrated with other packages, in contrast to the current
standalone tools. Finally, we demonstrate the different scenarios
that can be supported by our tool using three real-world datasets.
Overall, skyex solves the entity linkage problem with minimal
effort and background knowledge.

The remainder of the paper continues with the functionalities
covered by our skyex package in Section 2, a description of our
on-site demonstration in Section 3, and finally, concluding in
Section 4.

2 SKYEX PACKAGE FUNCTIONALITIES
The skyex package is composed of 17 functions corresponding
to four main modules: Blocking, Pairwise Comparison, Labeling,
and Analysis and Visualization. The workflow of using skyex is
illustrated in Fig. 2. The user starts with a dataframe (a common
data type for storing tables in R) of entities. In order to illustrate
the workflow and our functions, we will use a real-world dataset
of spatial entities extracted as in [5] and used in the experiments
of [8]. The dataset contains spatial entities in the North Denmark
region, originating from four sources, Google Places, Yelp, Krak
(online yellow pages in Denmark, www.krak.dk), and Foursquare.
We also introduce the running example of six records of entities
(entities) from this dataset in Fig. 2, which are identified by an
ID, by geographic coordinates latitude and longitude, categories
that explain the type of spatial entity, and the address.

Blocking module. After loading the data, we can use a block-
ing technique (textual or spatial) from the Blocking module. The
textual blocking is executed by the textual.blocking func-
tion, choosing a similarity metric among levenshtein, cosine, jac-
card, jaro-winker, and qgram, and setting a maximal distance al-
lowed. For example, textual.blocking on the attribute "name"
with levenshtein and maximal distance 4 will group the enti-
ties with names "Bilhuset Biersted A/S" and "Bilhuset Biersted"
(from entities in Fig. 2). Note that textual.blocking is accu-
rate but time-consuming. Alternatively, prefix.blocking and
suffix.blocking produce faster results. Besides, in some do-
mains, e.g., for species names, thesemethods can bemore relevant
than textual blocking. For spatial entities, being spatially close is
often a better indicator of block quality than the name. For exam-
ple, two records with the same name, e.g., Fakta supermarkets in
different cities, are two different entities. spatial.blocking cre-
ates blocks of entities that are at mostmax_distance meters apart.
The code snippets for these blocking methods are as follows:

Figure 2: skyex workflow

#Textual blocking using levenshtein distance and max_distance=4

blocks <-textual.blocking(data=entities , column = "name",

method = "levenshtein", max_distance = 4)

#Prefix blocking for the first 4 characters

blocks <-prefix.blocking(data=entities , column = "name", prefix_size = 4)

#Spatial blocking for entities at most 50 m apart

blocks <-spatial.blocking(data=entities , longitude = "long",

latitude = "lat", max_distance = 50)

Pairwise Comparison module. The Blocking module out-
puts a dataframe of pairs, which saves the user from the task of
having to create the pairs from each block. The Pairwise Compar-
ison module offers three functions that compare text syntactically
and semantically, as well as spatial attributes. Moreover, all three
functions output normalized values, which can be directly used
in the Labeling module. text.similarity calculates the simi-
larity of the pairs based on a text attribute using similarity met-
rics such as levenshtein, cosine, jaccard, jaro-winker. levenshtein
similarity is calculated using the formula in [7, 8] in order to
return a normalized value. spatial.similarity also requires
a maximal distance for the normalization. For example, for a
max_distance = 70, "Uno-X" and "Fakta" will have a similarity of
0.0, because their distance of 83 meters is beyond the threshold.
In the case of Bilhuset Biersted A/S and Bilhuset Biersted, this
distance is 63 meters, which translates to a similarity of 0.09.

Regarding the semantic similarity, our work in [8] uses the
Wu&Palmer metric fromWordnet. There exists a wordnet library
in R, but it does not provide the metrics. Moreover, Wu&Palmer
needs the whole path of both words that need to be compared,
which in R, it could be resolved only through recursive calls.
Through experimentation, this implementation turned out to be
non-efficient. Thus, we include two Python scripts in the skyex
package for two different metrics in Wordnet. These scripts are
wrapped in R functions; thus, the user only needs to have a
Python interpreter installed and give its path to the R function.
The code for the pairwise comparisons is as follows:
#Text similarity using cosine

blocks$SimName <-text.similarity(data=blocks , method = "cosine",

column1 = "name.x", column2 = "name.y")

#Spatial similarity with max_distance=70

blocks$SimSpatial <-spatial.similarity(data=blocks , lat1 = "lat.x",

long1 = "long.x", lat2 = "lat.y", long2 = "long.y",

max_distance = 70)

#Semantic similarity with Wu&Palmer

blocks$SimSemantic <-semantic.similarity(data=blocks ,

column1 = "categories.x", column2 = "categories.y",

pythonpath = "/Users /..", method = "wup")

Labeling module. After the pairs are compared, the user can
decide which similarities should go into the labeling process. Usu-
ally, he would select those similarities that are likely to indicate
a match, e.g., the similarity of the names of the entities. We will
consider the similarity of the name "SimName", the similarity
of the address "SimAddress", and the semantic similarity of the
categories "SimSemantic" as in [8]. Then, the user decides on the
preference function for the Pareto Optimality calculations. In our
case, we prefer a high value for each similarity. Depending on the
availability of the labels, the user can choose between running
skyexf or skyexd, corresponding to the threshold-based SkyEx-
F, or to the fully unsupervised SkyEx-D, respectively [6]. SkyEx-F
finds that skyline level k that separates best the classes and max-
imizes the F-measure. It starts with assigning the skyline to all
the points and then checking different cut-offs while measuring
precision, recall, and f-measure. Finally, it labels the data, and the
skyexf obj is returned, containing the classes, an analysis data
frame, the proposed cut-off k , and the corresponding f-measure.

For unlabeled data, SkyEx-D finds the skyline level k where
the mean distance of the points in the positive class starts to

drop, meaning that we are entering the denser area of the neg-
ative class. It starts by assigning the corresponding skyline to
each point; then, calculating the cumulative mean distance in the
positive class and its first derivative; later, finding where the first
derivative becomes negative for the first time. Finally, SkyEx-D
labels the data and wraps the classes, the analysis data frame, and
the proposed cut-off k in a skyexd obj. Detailed explanations
about both algorithms can be found in [6]. Our skyex package
hides all the details above from the user, meaning that the pro-
cesses inside the dotted line boxes (Fig. 2) are performed simply
by the skyexf and skyexd function calls. The script for running
both algorithms, storing the results of each labeling algorithm
in separate objects, and attaching the predicted classes to the
dataset is as follows:
#Define the preference

p<-high(SimName)*high(SimSemantic)*high(SimAddress)

#Call SkyEx -F algorithm and store the result in f.obj

f.obj <-skyexf(data=blocks , p=p, label="Class",posclass=1, negclass=0)

#Call SkyEx -D algorithm and store the result in d.obj

d.obj <-skyexd(data=blocks , p=p, simlist=c("SimName", "SimSemantic",

"SimAddress"), posclass=1, negclass=0, smooth.coefficient=5)

blocks$fpred <-f.obj$classes

blocks$dpred <-d.obj$classes

We thus provide a labeling procedure that can be used with
only two lines of code: defining the preference and calling the
labeling function. However, for a more knowledgeable user, we of-
fer the possibility to do analysis and visualize the results through
the Analysis and Visualization module.

Analysis and Visualization module. To illustrate the anal-
ysis of the labeling, we will use the 1500 manually-labeled pairs
in [8]. Additionally, this dataset is also available in our pack-
age under the name pairsManual and can be loaded simply
by data(pairsManual). The Analysis and Visualization mod-
ule needs the output of the Labeling module as input, which is
a skyexd or skyexf object. The raw analysis can be accessed
simply by calling the dataframe analysis from obj (inspect
obj$analysis in Fig. 2). In the case of a skyexf object, analysis
contains all the cut-offs, the size of the positive class, precision,
recall, and f-measure. In order to facilitate the exploration of
analysis, the user can call plot.skyexf.cutoffs, which pro-
duces graphs that monitor the evolution of the metrics when pass-
ing to the deeper skylines (see Fig. 2). plot.skyexf.cutoffs by
default plots the f-measure. However, it is possible to plot the pre-
cision and the recall separately, and also all metrics together. The
code snippets for plotting the f-measure (first two), the precision,
the recall, and all the metrics are as follows:
plot.skyexf.cutoffs(f.obj)

plot.skyexf.cutoffs(f.obj , "fmeasure")

plot.skyexf.cutoffs(f.obj , "precision")

plot.skyexf.cutoffs(f.obj , "recall")

plot.skyexf.cutoffs(f.obj , "all")

The resulting plots from the above script on pairsManual are
shown in Fig. 2 in the Analysis and Visualization module. Un-
derstandably, precision is high in the first skylines because it is
very likely that the pairs in the first skylines that we label as
positives are actual positives, but it degrades while moving in
deeper cut-offs. On the contrary, recall is always increasing, the
more we label as positive, the more likely it is to find an actual
positive. The F-measure gives the trade-off between both metrics.
All graphs show the suggested cut-off by f.obj in the red dotted
line. However, the user can explore different trade-offs for his
problem. In that case, plotting all metrics in a graph (the last
script) gives a better overview.

In the case of a skyexd object, analysis keeps the cut-offs, the
size of the positive class, the first derivative, and the smoothed

values. Similarly, plot.skyexd.cutoffs aids exploring the raw
analysis by plotting the smoothed first derivative function for
each cut-off. If the plot looks too "smoothed" or too "raw", it is
possible to play with different smoothing coefficients without
having to re-run skyexd again by calling plot.skyexd.smooth.
(see the code below). Fig. 2 shows the analysis of skyexd, which
was run with smooth.coefficient=5, and also the results of
plot.skyexd.smooth(d.obj, 10). The higher the smoothing
coefficient, the higher the cut-off k , since smoother values push
the cut-off towards deeper skylines.
#Plot the first derivative and the current cut -off k

plot.skyexd.cutoffs(d.obj)

#Smooth the first derivative with 10

plot.skyexd.smooth(d.obj , 10)

evaluate.skyex can also be called as in the code below, to mea-
sure precision, recall, and f-measure when the labels are available.
The values of these metrics will be printed in the console.
evaluate.skyex(prediction=d.obj$classes , labels=data$Class , posclass = 1)

Additionally, we offer user-friendly functions to plot the data
and the obj results. We offer 2D plots, 3D plots, and interactive
3D plots, where the user can play and move the dimensions while
looking at the data. The color of the points reflects if the pair
is a true positive TP (an actual positive labeled as positive), a
true negative TN (an actual negative labeled as negative), a false
positive FP (an actual negative labeled as positive), and a false
negative FN (an actual positive labeled as negative). The user can
decide to change the colors of the points based on his preference.
The code for these plots is as follows:
#Plot 2D using SimName and SimSemantic

plot.pairs2D(data=data , sim1="SimName", sim2="SimSemantic",

prediction=f.obj$classes , labels=data$Class , posclass = 1)

#Plot 3D using SimName , SimSemantic , and SimAddress

plot.pairs3D(data=data , sim1="SimName", sim2="SimSemantic",sim3="SimAddress",

prediction=f.obj$classes , labels=data$Class , posclass = 1)

#Plot 3D interactive plot using SimName , SimSemantic , and SimAddress

plot.pairs.interactive.3D(data=data , sim1="SimName", sim2="SimSemantic",

sim3="SimAddress", prediction=f.obj$classes ,

labels=data$Class , posclass = 1)

Fig. 2 shows the results of pairsManual with the three types
of plots. These graphs can also be considered as an analysis since
they show the problems with labeling and where to locate them.
For example, it is noticeable that we have a bigger problem with
the false positives then with the false negatives, thus if precision
is fundamental to the domain, we could go back to the analysis
and evaluation module and consider a smaller k for the cut-off.
The interactive 3D plot offers a better view of the data points
since it is possible to move and rotate the graph.

Summary. The workflow of skyex supports typical entity
linkage tasks, from blocking to evaluating the quality of the labels.
The Blocking, Pairwise Comparison, and Labeling modules are
completely independent, which means that the user can decide to
perform his own methods and still be able to connect to the work-
flow of skyex. The labeling task can be as simple as just calling
two lines of code to get the classes and as detailed as performing
analysis, playing with the parameters, visualizing the labels, and
highlighting the errors, etc. Moreover, the user can always go
back, choosing new similarities and new preferences until the re-
sults are satisfactory. The skyex package is dependent on rPref,
dplyr, fields, rgl, plot3D, smoother, fuzzyjoin, stringr,
stringdist, geosphere, reticulate, and pracma which sup-
port some basic functionalities in our functions. skyexf and
skyexd) scale relatively well for an R environment; e.g. they run
in less than a minute for 50,000 pairs, less than 15 minutes for
150,000 pairs, and around 1 hour for 300,000 pairs.

3 DEMONSTRATION OVERVIEW
In the on-site demonstration, the user can download skyex3,
which is publicly available in GitHub, by following the README
instructions, or use our pre-installed R environment. We will pro-
vide three datasets: entities (2814 spatial entities in the North
Denmark region with an ID, name, categories, and address) [8],
restaurants4 (a collection of 864 restaurant records with name,
address, city, and type), and pairsManual (1500 labeled pairs with
pre-compared similarities of the name, address, and categories)
[8]. Additionally, we have published a full video5 demonstrating
our functionalities for all three datasets, and a short video6 for the
restaurants dataset. We will provide example scripts, which the
user can adapt based on his preference. The user will start with
different blocking techniques on entities and restaurants,
discussing with us what would be a good blocking technique for
this dataset. Afterwards, he can play with different similarity met-
rics and different thresholds for the pairwise comparison. Later,
the user can decide either to continue with the dataset of pairs
he created so far from entities and restaurants, or move to
the pre-compared pairsManual and play with the labeling pa-
rameters. The user can try both algorithms and will be guided
by us through the Analysis and Visualization module. He can try
the visualizations (including the interactive plotting) in order to
detect problems with the labeling. Finally, he can discuss with us
the applicability of the method across domains and possibilities
for improvement.

4 CONCLUSIONS AND FUTUREWORK
We introduced the skyex package, a user-friendly R package
that supports all three steps of the entity linkage process. We
demonstrated the functions of skyex with scripts and sample
data, and supported the full workflow of the user. We showed
that our Labeling module could solve the labeling problem with
only two lines of code, but at the same time, offer the possibility
for deeper analysis for the knowledgeable user. As future work,
we intend to work on the scalability of our tool for big data, as
well as on a similar package in Python.

REFERENCES
[1] E. C. Dragut et al. 2016. ORLF: A flexible framework for online record linkage

and fusion. In ICDE. 1378–1381.
[2] A. Ebaid et al. 2019. EXPLAINER: Entity Resolution Explanations. In ICDE.

2000–2003.
[3] A. Elmagarmid et al. 2014. NADEEF/ER: Generic and interactive entity reso-

lution. In SIGMOD. 1071–1074.
[4] Y. Govind et al. 2018. Cloudmatcher: a hands-off cloud/crowd service for

entity matching. PVLDB 11, 12 (2018), 2042–2045.
[5] S. Isaj and T. B. Pedersen. 2019. Seed-Driven Geo-Social Data Extraction. In

SSTD. 11–20.
[6] S. Isaj, T. B. Pedersen, and E. Zimányi. 2019. Multi-Source Spatial Entity

Linkage. arXiv:1911.09016
[7] S. Isaj, N. B. Seghouani, and G. Quercini. 2019. Profile Reconciliation Through

Dynamic Activities Across Social Networks. In CAiSE. 126–141.
[8] S. Isaj, E. Zimányi, and T. B Pedersen. 2019. Multi-Source Spatial Entity

Linkage. In SSTD. 1–10.
[9] X. Ke et al. 2018. A demonstration of PERC: probabilistic entity resolution

with crowd errors. PVLDB 11, 12 (2018), 1922–1925.
[10] L. Kolb, A. Thor, and E. Rahm. 2012. Dedoop: Efficient deduplication with

hadoop. PVLDB 5, 12 (2012), 1878–1881.
[11] P. Konda et al. 2016. Magellan: toward building entity matching management

systems over data science stacks. PVLDB 9, 13 (2016), 1581–1584.

3https://github.com/suelai/skyex
4source: https://www.cs.utexas.edu/users/ml/riddle/data.html
5https://youtu.be/TdxVsUtKRjw
6https://youtu.be/Zn8FOOh_xwA

http://arxiv.org/abs/1911.09016

	Abstract
	1 Introduction
	2 SkyEx package functionalities
	3 Demonstration Overview
	4 Conclusions and Future Work
	References

