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Abstract:
Drag reducing surfactants can be applied to decrease pressure losses in closed 

circulation pipelines systems like district heating and cooling. This article represents 
empirical lab scale study of the two drag reducing products developed by AkzoNobel 
(Sweden) specifically for aqueous solutions for different temperature ranges. Two main 
issues stopped previous researches of drag reducing agents: heat transfer reduction in shell 
and tube heat exchanger and environmental concerns. Current shift to heat supply based 
on renewable energy sources and small-scale biogas CHP plants will no longer require such 
kind of heat exchangers. It opens opportunities for new surfactants and its application in 
district heating. This research outlines environmental properties of the two surfactants 
including its biodegradability rates. 

Keywords: district heating, drag reducing agent (DRA), surfactant, pressure drop.

1. Introduction
Low concentration of drag reducing agents in turbulent flows of aqueous solutions can 

cause significant pressure loss reduction. It was first discovered in 1948 by B.A. Toms. He 
found that the critical Reynolds number of the diluted polymer solution is higher than in water 
without the additive [1,2]. Sometimes such drag reduction is called “Toms effect”. However, 
tests that were conducted by Forrest and Grierson already in 1931 showed a reduction in 
pressure loss in turbulent flow of a wood pulp fiber suspension [3]. All drag reducing agents 
can be classified into three groups: fibers, polymers and surfactants. 

1. The fiber suspensions give significant drag reduction but they are not suitable 
for district heating because of possible clogging of the system[4]. 

2. The polymers are friction reducing agents that were extensively studied. The 
main disadvantage of polymers is that they cannot regenerate after mechanical 
or thermal degradation in the pipes [5]. 
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3. The surfactants were invented in the 80s. Their main advantage is the ability to 
reform after destruction what is necessary in closed circuits such as district 
heating and cooling [6].

First commercial application of drag reducing agents (DRA) namely polymers began in 
the petrochemical industry. Until nowadays, polymers are added to oil in long transmission 
pipes to reduce the pumping power. The most famous application is the Trans-Alaska 
Pipeline system, which is around 800 miles. DRAs are successfully used there to reduce the 
number of pumping stations [2,3]. Also polymers are supplemented to heated water that 
surrounds oil to keep it at higher temperature to decrease pressure losses [10,11]. 

Full scale applications of surfactant solution in district heating were done in Herning, 
Denmark in the transmission double pipes with diameter of 200 mm and length of 2,8 km 
[11,12]. Pipes were isolated from the rest of the system with two plate heat exchangers 
(PHE). Figure 1 shows the results of the study. Supply temperature and return temperature 
are equal to 80°C and 60-75°C respectively. Significant pressure loss reduction of 70-80% 
was achieved. Studies were stopped because of heat transfer reduction problem in shell 
and tube heat exchanger.
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Figure 1: Formation of wormlike micelles 
Also similar researches were carried out in Volklingen, Germany and Prague , Czech 

Republic [18,19]. Another area of application is district cooling where surfactant should be 
designed for temperature range 5-45°C. Large scale test was done in Japan where 
surfactant was supplemented to water in air conditioning system of the office building. 
Energy conservation reached 47% during cooling period [15]. Currently DRA application 
studies in district heating are focused on finding solutions to such problems as decreased 
heat transfer in heat exchangers by using different methods of stressing the flow over its 
path [12,13,14]. These tests also investigate different parameters that can help to find best 
operational ranges for drag reducers, i.e. critical concentrations and critical temperatures 
[15,16]. 
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2. Theory of drag reduction
Surfactant molecules are amphiphilic compounds, consisting of hydrophobic long tails 

and hydrophilic heads. There are different types of surfactants depending on the charge of 
the head-group and they could be either non-ionic, anionic, cationic or zwitterionic [21]. The 
zwitterionic surfactants have both negative and positive charges in the same molecule. 
Together with cationic surfactants, positively charged, they are the most useful surfactants 
as drag reducing agents. The most studied type is the cationic surfactant [7]. 

Micellization, the formation of surfactant aggregates, so-called micelles, is a 
consequence of the driving force to minimize contact between water and hydrophobic 
chains. Molecules gather in such way that hydrophilic heads form the surface of the micelle 
and the hydrophobic groups interact and hide in the core of the micelle [22]. The formation 
of long entangled chains of cylindrical micelles is following the concept of the Critical Packing 
Parameter (CPP). The most simple version was introduced by Israelachvili in 1976 [23]. It 
calculates the ratio of cross-sectional area of surfactant tail group to that of the head group. 
The CPP for cylindrical or worm-like micellar systems is typically 1/3 – 1/2.

The process and different stages of the formation of the worm-like micelles, designed 
with the packing parameter explained above, are represented in Figure 2. It starts with single 
molecules of the surfactants in aqueous solution which after reaching a critical concentration 
gather into the spherical micelles and after reaching a second critical concentration, 
wormlike micelles or long chained structures are created [7,8].

Figure 2: Formation of wormlike micelles
As a result, these chains serve as a buffer between the turbulent eddies and 

consequently decrease turbulence of the flow what leads to lower pressure losses and less 
pumping energy. Another factor of pressure loss reduction is viscous sublayer that is formed 
on the wall of the pipes and reduce friction between fluid and pipe. The dampening 
mechanism of the turbulent bursts are shown in Figure 3.
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Figure 3: Turbulence core change using DRA

Reformation of torn micelles after crossing the pump is illustrated in Figure 4. 
Figure 5 shows experimental friction factor asymptotes which were created by Virk 
for polymers and by Zakin for surfactants.

Figure 4: Rearrangement of broken micelles
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Figure 5: Asymptotes of friction factors for drag reducing agents. Re1 Reynolds 
number after which drag reduction is observed; Rec critical Reynolds number where 

micelles structure is torn and drag reduction decreases; Re2 Reynolds number when drag 
reduction disappears completely [14]

Virk’s asymptote 1
𝑓 = 19 ∙ lg (𝑅𝑒 ∙ 𝑓) ― 32.4 (1)

Zakin’s asymptote 𝑓 = 0.315 ∙ 𝑅𝑒 ―0.55 (2)

𝑅𝑒 =
𝜌 ∙ 𝑣 ∙ 𝑑

𝜇
(3)

𝐷𝑅 =
fo ― f

fo

(4)

3. Methods
Working fluids
Beraid DR-IW 616 and 618 are drag reducing agents, developed by AkzoNobel for 

aqueous solutions. Beraids consist of two surfactants zwitterionic and anionic. Such types 
combination was first studied by Martin Hellsten and Ian Harwigsson in 1996 [26]. Both 
products include same type of surfactants with different design to meet different temperature 
requirements. Beraids were diluted in deionized water with sodium nitrite concentration of 
1g/l.

Test facility
Tests were carried out independently at AkzoNobel plant in Sweden, where Beraid DR-

IW 616 was tested. Beraid DR-IW 618 was investigated at Aalborg University. Experimental 
setups are shown in the Figure 6 and Figure 7. Both test rigs are similar in main components: 
centrifugal pump (flow regulation performed by frequency controller), water tank, expansion 
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tanks and straight sections of pipes, where pressure drop is measured. Setup in Sweden 
has two loops of 8 mm and 10 mm and three intervals of measuring pressure drop at each 
loop. First pressure tap located 1 meter from 180° turn. Two variable area flowmeters were 
used for measuring water flow with deviation of measurement of ±5%. Pressure measured 
by differential pressure gauge with uncertainty of ±2%. System of valves was used to 
measure pressure drop of different pipe sections with one sensor.

Beraid DR-IW 618 was tested in ¾’’ pipeline at Aalborg University. Ultrasonic flowmeter 
was used to measure the flow. Deviation was ±1,5% of measuring value. Pressure drop was 
measured by piezoresistive differential pressure sensor where the uncertainty was ±2%. 
National Instrument data acquisition system was used to collect data from sensors. 

Validation of the test rigs was done by comparing theoretical pressure loss and 
experimental results of pure water. Deviation of maximum 5% was achieved.

P

Diff pressure sensor

DAQ

Pump

Flowmeter

2,75 m 0,4 m

2 m4 m0,3 m

Tank

Figure 6: Test setup at Aalborg University  
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Figure 7: Test setup at Akzo-Nobel

4. Results
Figures 8-9 illustrate Moody’s friction factor of Beraid DR-IW 616 solution at 25°C and 

40°C respectively. Drag reduction from 60% to 80% is achieved for a flow from 0,5 m/s to 
3,5 m/s with concentration of 1250 ppm at 25°C. Pressure loss decrease of 70% - from 
0,25 m/s to 2,25 m/s at 40°C 1000 ppm. Lambda O1, O2, O3 represent drag reduction at 
different sections of pipes. 

Figure 8: Beraid DR-IW 616 at 25°C 
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4

Figure 9: Beraid DR-IW 616 at 40°C 

Figure 10 displays comparison of Fanning friction factor between pure water, Zakin’s 
asymptote and surfactant solution of Beraid DR-IW 618 at different temperatures. Drag 
reduction disappears at certain flow velocity when critical shear stress is reached and 
structures are torn and cannot form new micelles. Beraid DR-IW 618 did not show any 
drag reduction at 60°C. Obviously, effect disappears between 55°C and 60°C. This was 
also proven by beaker test (developed by Akzo Nobel), where absence of vortex formation 
of 0,1% surfactant solution in 40 ml beaker, during stirring, indicated loss of a drag 
reduction properties.
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Figure 10: Friction factors of Beraid solution at different temperatures
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Pressure loss saving of Beraid DR-IW 618 solution are presented in the Figure 11. 
Higher effects are reached at temperature range from 40°C to 55°C where drag reduction 
60-74% was obtained.
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Figure 11: Drag reduction of Beraid solution at different temperatures
According to the conducted experiments, Beraid DR-IW 616 has a higher maximum drag 

reduction of 70-80% when Beraid DR-IW 618 has 60-75%. These studies were carried out 
in pipes of different diameter. Lower effect of Beraid DR-IW 618 partially can be explained 
by difference in pipe size, which can cause change in pressure loss reduction [27].

5. Environmental aspects
The environmental impact of surfactants is often divided into toxicity, biodegradation 

and bioaccumulation. The type of surfactant, its surface activity and specific adsorption 
determines the effect in the environment. The most important and noticeable action of 
surfactants is the adsorption to biological surfaces of aquatic living organisms causing toxic 
effects to algae, daphnia and fish. Another important factor in minimizing the effect of 
surfactants is the ability to degrade in the environment. Biodegradation is dependent on the 
structure of the hydrophobic and hydrophilic moiety of the surfactant which has to be 
designed so it can be cleaved and biodegraded under aerobic and preferably also under 
anaerobic conditions. 

In the early development of DRA cationic surfactants were the dominating type in the 
research for commercial drag reducing surfactants. Cationic additives together with anionic 
counter ion like salicylate showed good ability to form thread-like micelles and gave a good 
degree of drag-reduction. However, the cationic surfactants carrying a permanent cationic 
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charge are toxic to aquatic organisms due to the high degree of adsorption onto the 
membranes and tissues of water living organisms. High toxicity in combination with limited 
biodegradation confined the use of cationic surfactants in district heating and cooling water 
applications. 

The zwitterionic acylamidopropylbetaine surfactant, which was used in Beraid DR-IW 
616 and in Beraid DR-IW 618, has improved environmental properties compared to cationic 
surfactants. Zwitterionic surfactants like the acylamidopropyl betaine is a very common 
ingredient in liquid soaps, hair shampoos and shower gels. They show less toxicity to aquatic 
life compared to cationic surfactants and they have high degree of biodegradation. The 
zwitterionic component in the Beraid DR-IW 616 is easily biodegradable in fresh water, 
reaching 93% in 28 days according to OECD method 301 D. It was also found to be readily 
biodegradable in a seawater, 70 % was biodegraded in 28 days according to closed bottle 
test OECD 306. The anionic surfactant in Beraid DR-IW 616 is a fatty alcohol sulphate. This 
surfactant belongs to the oldest surfactant type, which has also found widespread use in 
liquid detergents, hair shampoos and shower creams. Alkyl sulphates are easily 
biodegradable in both seawater and fresh water. They are also degraded under anaerobic 
conditions. The biodegradation of the zwitterionic surfactant of Beraid DR-IW 618 is 
expected to be similar to Beraid DR-IW 616, meaning readily biodegradable in fresh and 
seawater. 

The favourable ecotoxicology properties of the surfactant components in Beraid drag 
reducers make them useful for district heating and cooling applications. In the Herning trials 
in the late 90’s similar surfactant components were used and approved by Danish 
authorities.

6. Discussion
Achieved results, which were presented in previous chapters, show huge potential of 

possible application of Beraid products. Beraid DR-IW 618 demonstrated drag reduction 
properties from 20°C to 55°C, which is suitable for low-temperature district heating where 
supply temperature is 50°C and return is 25-30°C. Beraid DR-IW 616 should be tested at 
lower temperatures to prove expected abilities of drag reduction appropriate for district 
cooling with operating temperature range 5-45°C.

Possible ways of application of drag reducing surfactants:
 Direct pump energy saving.
 Increase of a flowrate remaining pumping energy on previous level. Low-

temperature district heating is a key area for such application where maintaining 
heat supply on the level of 3rd generation district heating could demand higher 
flowrates.

 Attachment of more customers without additional pumping stations and 
rearranging district heating grid and heat source.

 Smaller pipe diameters for newly designed networks. 
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Disadvantages that stopped implementation of surfactant to real district heating and 
cooling networks:

 Environmental concerns stopped further development during some of previous 
studies. High biodegradability of Beraid products should increase chances of 
acceptance of the product by authorities.

 Heat transfer reduction in heat exchangers. In order to fulfil Denmark’s goal of 
heat supply based on renewable energy sources, more heat pumps, electric 
boilers, thermal storages and biogas CHP plants will be used. Also increasing 
insulation and reconstruction of buildings will decrease demand of heat energy 
[26, 27]. This all will lead to lower number of large scale CHP plants in Denmark 
where mainly shell and tube heat exchangers are used. Such type showed 
highest heat transfer reduction rates, which was one of the main reasons to turn 
down further implementation of surfactants. Though DRAs performed 
significantly better in plate heat exchangers. Beraid products are expected to 
have even smaller heat transfer reduction in PHE because of smaller critical 
shear stress, which will help to stop drag reduction and eventually heat transfer 
reduction in plate heat exchangers.

7. Conclusion
Drag reduction properties of two commercially available surfactants, produced by 

AkcoNobel (Sweden), were investigated. Maximum drag reduction of 60-75% for Beraid DR-
IW 618 and 70-80% for Beraid DR-IW 616 were achieved after broad testing for different 
temperatures and velocities. Operating temperature range for Beraid DR-IW 618 is from 
20°C to 55°C and expected range for Beraid 616 is from 5°C to 45°C. The different 
surfactant systems always cover a specific temperature range and if higher temperature 
requirements are of interest, the surfactant formulation can be tuned to accomplish 
temperatures up to 120°C.

Both Beraids are fast biodegradable aerobically and anaerobically and have high 
potential for acceptance by environmental authorities. Issue of heat transfer reduction in 
shell and tube heat exchanger may disappear because of shift to smaller CHP plants with 
alternative fuels, solar plants, heat pumps, where plate heat exchanger can be used. This 
gives an opportunity to achieve critical shear stress easier to break the bonds between 
surfactants and get water-like behaviour of the solution.

Future studies should focus on heat transfer reduction problem, possible environmental 
impact and economic analysis including additional costs for heat transfer enhancement 
measures.
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