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Abstract

Recent advances in blockchain technology suggest that the technology has potential for use in applications in a variety of new
domains including spatio-temporal data management. The reliability and immutability of blockchains combined with the support
for decentralized, trustless data processing offer new opportunities for applications in such domains. However, current blockchain
proposals do not support spatio-temporal data processing, and the block-based sequential access in blockchain hinders efficient
query processing. We propose spatio-temporal blockchain technology that supports fast query processing. More specifically, we
propose blockchain technology that records time and location attributes for the transactions, maintains data integrity, and supports
fast spatial queries by the introduction of a cryptographically signed tree data structure, the Merkle Block Space Index (BSI),
which is a modification of the Merkle KD-tree. We consider Bitcoin-like near-uniform block generation, and we process temporal
queries by means of a block-DAG data structure, called Temporal Graph Search (TGS), without the need for temporal indexes. To
enable the experiments, we propose a random graph model to generate a block-DAG topology for an abstract peer-to-peer network.
We perform a comprehensive evaluation to offer insight into the applicability and effectiveness of the proposed technology. The
evaluation indicates that TGS-BSI is a promising solution for efficient spatio-temporal query processing on blockchains.

Keywords: Blockchains, spatio-temporal data, authenticated data-structure, block-DAG

1. Introduction

Blockchain as a transformative technology has found early
use in the financial domain [1], but has recently found appli-
cation in a variety of other domains. A blockchain is a dis-
tributed, decentralized, and trustless ledger that supports the re-
liable and secure recording of transactions. Blockchain tech-
nology has demonstrated its applicability to business solutions
in sectors such as finance, healthcare, and education [1, 2, 3].
Consider, for instance, a supply chain scenario where an ob-
ject is tracked as it is undergoing transportation. The tracking
mechanism requires not only that the spatio-temporal informa-
tion is updated continuously, but that queries regarding the ob-
ject’s time-varying location are also supported. Typical queries
include, for example, ‘list all objects at location l at time t,’ or
‘list all objects that moved within radius r of location l during
time interval [t1, t2].’ The support for such queries is desirable,
for example, for logistic decisions or product monitoring. How-
ever, a blockchain implementation of such a business scenario
is challenging. For example, spatio-temporal data grows at a
higher rate than does the transaction data currently supported
by financial blockchain systems. Further, consensus protocols
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for spatio-temporal data require proof-of-location processing.
Also, the sequential access mechanism in blockchains does not
support efficient query processing.

The value proposition of blockchains over traditional databases
is the data integrity through cryptographically signed histori-
cal data. For example, financial institutions require a signed
‘append-only’ data structure that is auditable and traceable [1,
4]. Large enterprise service providers such as Google or Ama-
zon require spatio-temporal analytics on user data for providing
continuous services in given time and space [5]. Therefore, a
spatio-temporal blockchain system design should take into ac-
count two considerations, (i) the scale at which such a system
is to be used, and (ii) the kind of query support that is required
of the system.

It is not straightforward to directly adapt database concepts
to a blockchain system. A spatio-temporal blockchain system
design should consider secure data storage and efficient query
processing simultaneously. This work provides a conceptual
block design for efficient queries in block directed acyclic graphs
(Block-DAG). Block-DAG is the blockchain alternative that makes
possible to achieve high throughput by way of fast block cre-
ation.

More specifically, we consider spatio-temporal data pro-
cessing in a blockchain setting and enable querying of blockchains
without expensive local indexing. We integrate the Merkle-
tree [6] with the spatial indexing such that spatio-temporal queries
are supported without the need for additional indexes. Also,
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we include additional timestamp information in block headers
that enables temporal queries directly on blocks. We assume
a spatio-temporal blockchain with an abstract consensus such
that the credibility of the data is maintained by the consensus
algorithm. We assume that a typical transaction has the fol-
lowing attributes: timestamp, longitude, latitude, and hashed
account identifier. Overall, we enable blockchain for efficient
query processing without the requirement of additional local
indexes.

To summarize, data about moving objects can be stored in
a spatio-temporal blockchain. Location services such as ob-
ject tracking can enable many real-life tasks such as finding
lost items [7], enabling autonomous delivery vehicles [8], and
providing a foundation for next generation supply chains [9].
The advantages of distributed ledger technology are, however,
often blocked by the technology’s limitations in relation to real-
life application domain requirements. One key such limitation
is the lack of support for efficient queries directly on spatio-
temporal blockchains. To the best of our knowledge, this work
is the first attempt to enable efficient queries on spatio-temporal
blockchains following the preliminary study [10].

We make the following specific contributions.

1. We propose the concept of block-DAG with pair-wise
block order for spatio-temporal data storage that offers
advantages over sequential blockchain access. We also
propose improved block header organization that supports
efficient spatio-temporal queries.

2. We introduce the Block Space Index (BSI) for blocks in
order to maintain the integrity of a block’s body. We pro-
pose a variant of the Merkle Patricia tree to maintain the
global current position change per account and also pro-
pose the TGS-BSI algorithm to enable spatio-temporal
queries on DAG-chains directly by traversing block head-
ers.

3. We also propose simplified current position verification
on mobile clients that facilitates tracking of a product
associated with a particular account. We use a Merkle-
Patricia-trie on the peer side and local block header in-
formation on the client side to authorize peer responses.

4. We propose a random-graph model to generate a block-
DAG topology for an abstract peer-to-peer network and
demonstrate the effectiveness of the solution with the help
of a detailed experimental study.

The rest of the paper is organized as follows. Section 2 cov-
ers related concepts, and Section 3 provides an overview of the
proposed approach. Details about block construction and au-
thenticated spatial indexing are presented in Section 4. Spatio-
temporal query processing is covered in Section 5. A detailed
empirical evaluation is presented in Section 6, and Section 7
concludes.

2. Preliminaries

Usecases of blockchain technology are motivated by busi-
ness requirements. The initial considerations for crypto-currencies

were based on requirements such as decentralized authority,
pseudo-anonymity, censorship-resistance, and reduced transac-
tion fees. The resulting blockchain technology offers many ben-
efits to users. These include, to inspect the quality of products
and services [11], to obtain efficient and tamper-resistant digital
content services [12], to realize tamper-resistant real-time sup-
ply chains [13], to secure IoT devices [3, 14, 15], and to enable
privacy preserving behavior analytics [16].

The problem of indexing multi-dimensional data is well stud-
ied in the database community, but lacks consideration in the
context of blockchain systems. An existing study [17] offers a
detailed coverage of spatio-temporal query processing. In this
section, we briefly describe location encoding systems, spatio-
temporal indexing, and authenticated spatial indexes. We also
comment on the advantages of block-DAG for spatio-temporal
blockchain data management.

2.1. Location Encoding Systems

Location information is encoded in a variety of ways to en-
able location sharing. In geographic coordinate systems, lati-
tude and longitude are typically used to capture a point loca-
tion. As latitude is an angular distance between −90◦ and 90◦

and represents a location South or North of Earth’s equator. A
longitude angular distance ranges between −180◦ and 180◦ and
represents a location East or West of an imaginary line through
Greenwich. An alternative representation is to use a space fill-
ing curve. The idea is to discretize space into cells, typically
by means of a uniform grid. Then the cells are numbered by
means of a curve that traverses all cells. A location is then rep-
resented by the number of the cell that it belongs to. A different
approach, Geohash [18], encodes latitude-longitude pairs in a
hierarchical data structure as unique strings.

2.2. Spatial Indexes

Spatial indexes typically store spatial locatons into a hierar-
chical data structure [19, 20, 21]. For example, the R-tree [22]
and its variants, including the RT-tree [23] and the 3D R-tree
[24] is a popular spatial index. The kd-tree performs better un-
der the assumption of an initial bulk load and no subsequent
data changes. This property makes it best suited for cases where
the data is static. The kd-tree exhibits many favorable properties
and has proven to be efficient in practice for low-dimensional
data [25].

Another important aspect of data processing is data verifi-
cation. Many authenticated data structures have been proposed
for indexing spatial and spatio-temporal data to support ver-
ifiable queries such as range queries, k-NN queries, reverse
k-NN queries, and skyline queries [26]. Authenticated ver-
sions of spatial indexes include the Merkle kd-tree [27] and the
Merkle R-tree [28]. Proposals also exist for k-NN-based spatial
queries [29].

2.3. NoSQL Multi-dimensional Indexing

Spatio-temporal indexing structures enable efficient query
processing by maximizing the de-normalization capabilities [30].

2



Full-text search based database solutions are used widely to en-
able spatio-temporal analytics. Data storage is by way of spe-
cialized data structures similar to Bkd-trees [31]. GeoMesa [32]
is an open-source distributed database system that supports spatio-
temporal indexing using the Z-order curve to index space and
time. Fox et al. [30] enable spatio-temporal indexing in NoSQL
solutions where the data is de-normalized by way of column
families and qualifiers that are implemented in the Accumulo
NoSQL solution.

2.4. Blockchain Cryptography and Authenticated Index Basics

A collision-resistant hash functionH maps a string s to a bit
vector of a fixed-length such that H(s) is fast to compute and
it is computationally infeasible to find a collision as H(s1) =

H(s2) if s1 , s2 [33]. The Merkle Hash Tree (MHT) has
proven to be a general base for a varity of authenticated DAG
structures [34]. The MHT hierarchically organizes hashes to
verify the integrity and validity of blocks by way of providing a
tiny number of hashes or Verification Objects (VOs) [6]. These
properties facilitate the applicability of MHT in blockchain sys-
tems [35] with use case specific adaptations. For example, Ethereum [36]
uses a Merkle Patricia trie to maintain the integrity of the global
key-value states where the key is a 32-byte account identifier
and the value is the account’s state.

2.5. Blockchain for location

Location data has also been considered using the Blockchain
technology. FOAM, as described by the authors [37], is a proto-
col for decentralized geo-spatial data markets designed to em-
power users to build a consensus-driven map of the world that
can be trusted by applications. Another interesting example is
ChainSQL that integrates blockchain and database technology,
thus enabling support for SQL in a blockchain setting [2]. The
study [15] proposes a spatio-temporal protocal to prove the lo-
cations in the setting of blockchain.

2.6. Blockchain and block-DAG

Bitcoin [1] and Ethereum [36] are well-known blockchain
systems where transactions are publicly accessible in an anony-
mous way. The transaction accuracy is driven by the fact that
consensus creates truth. However, throughput in blockchain
systems is a bottleneck as the transaction confirmation times
are not comparable with those in database systems. Blockchain
performance is strongly coupled with the lying consensus pro-
tocol and hard-coded limitations on computations per block.
The concept of block-DAG [4] is based on the idea of multi-
ple references from every block to its predecessor blocks with
possible conflicting transactions. As a consequence, this leads
to changed transaction acceptance rules, where the graph topol-
ogy is used directly as ‘votes’ that help identify a robust sub-
set of a block-DAG with no conflicting transactions. A block
references all the blocks that its miner was aware at the time
of block creation. Thus, the blocks that take a long time to
propagate are prone to be rejected by the system. A block is
considered valid only if all of its predecessors are valid and are
known by the node. Thus, if a block Bi references some block

Table 1: Frequently used notation

Symbol Meaning
B Block; Bheader: block header; Bsize: block size
D Dataset D = {x|x ∈ Rd}; d: dimensionality
D Network delay
G(V, E) Topology of a block-DAG; V: set of blocks;

E: set of references
H Crypto graphic Hash function
HR Merkle hash root function
T Transaction; Tr: Transaction rate per second;

Tn: Total transactions
gT Cryptographically signed T by user’s PRIVKEY
k Answer points in k-NN and bounded k-NN
q Hyper-rectangle space range q = [x, y] or

point q = {x} where x, y ∈ D
r Radius; rb: bounding radius
α Standard deviation s.t. N(Tr, α

2)
β Time range s.t. [β.start time, β.end time]
σ Deterministic search procedure

σβ: Time range search on G(V, E) by β
σq: Range search; σq,rb : Ball-point search
σk,q: k-NN search; σk,q,rb : Bounded k-NN

(φ, λ) (Latitude, Longitude)

B j, there is no need to reference the predecessors of B j; this
is implied. To ensure the stable working of block-DAG based
systems, miners (i) must reference the valid points of the DAG,
and (ii) should quickly broadcast blocks they create or receive.
In a block-DAG, there is no assumption that all miners share
the exact same view of the DAG at all times.

3. Problem Formulation

In this section, we present related concepts, definitions, and
assumptions. We rely on the block-DAG paradigm as an alter-
native to blockchain and propose a block header that aims to
allow efficient spatio-temporal query processing. Table 1 pro-
vides an overview of frequently used notation.

3.1. Related Concepts

We first formalize concepts including transaction, block,
and block header.

Transaction. A transaction, formally T , is a set of attributes
including longitude, latitude, timestamp (t), and hashed ac-
count identifier (uid) or the public-key of the transaction cre-
ator. We assume that the system records only spatio-temporal
information. A transaction is a single instruction that is veri-
fied through a cryptographic-signature of the transaction hash
gT = Enc(H(T )) while the block formation is on peer side. To
include T to Bbody a peer receives from a user the transaction
data, the digital signature of the transaction gT , and the user’s
public key PUBKEY.
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Figure 1: In a block-DAG, each block references all blocks to which its miner was aware at the time of its creation. The blocks, that take a long time to propagate
(conflicting transactions) are ignored (red color).

Block. A block, formally B = (Bheader, Bbody), includes a block
header Bheader and an associated list of transactions Bbody or-
dered w.r.t. the leaves in Merkle kd-tree that is organized by a
bulk load algorithm which is applied to Bbody.

Block header. A block header, formally Bheader, contains in-
formation related to transactions and a set of hashes of other
block headers. The block header maintains a spatial index per
block. For the spatial indexes per block, following properties
should hold: (i) header must be authenticated to guarantee that
every other ledger holder has the similarly built index structure,
(ii) spatial query support similar to range query, nearest neigh-
bor query, ball query, etc., and (iii) fast access and verifica-
tion from the last position of a particular item that is associated
with its hashed account identifier. To avoid additional index-
ing of the whole block-DAG, we use Merkle kd-tree for its bi-
functionality, i.e., block integrity verification similar to Bitcoin
and fast spatial queries on a block. For simplified current posi-
tion verification, we use Merkle-Patricia-trie and location root
hash value from a particular block header. The block header
contains the following information:

blockID: a unique identifierH(Bheader).

orphanHashes: a list of hashes of referenced block headers.

locationRoot: a 256-bit hash of the root node of the Merkle
patricia trie populated with all the account identifiers and as-
sociated with the most recent location, time and number of
records per account.

merkleSpaceRoot: a 256-bit hash of the root node of the
Merkle kd-tree populated with each transaction of the block.

startTime: a scalar value equal to ∀T ∈ Bbody : min(T .t).
endTime: a scalar value equal to ∀T ∈ Bbody : max(T .t).
timestamp: is the time of block creation.

nonce: a 64-bit hash which proves that sufficient amount of
computation has been carried during block creation.

3.2. Definitions

We formally denote block-DAG as G. G enforces a causal
relation among blocks which states that if block Bi includes
the hash of block B j, then Bi must have been created after B j.
Although, block-DAG supports fast block creation and short
transaction confirmation time, a highly conflicting environment
reduces the speed of transaction to be securely confirmed in a
local image of G for a particular ledger holder. The SPECTRE
protocol introduces GetRobustAccepted(G) that is a function
over G and it returns a subset of securely accepted transactions.

Definition 1 (input). A subset of confirmed transactions in G
are the input of T and belong to the owner of T .

Definition 2 (conflict). Transactions T1 and T2 are conflicting
transactions iff T1.uid = T2.uid and T1.t = T2.t.

Property 1 (Adjusted Consistency). T1 is accepted iff ∀Ti ∈
input(T ) : Ti ∈ GetRobustAccepted(G), all con f licts are re-
jected and the time-stamp of transaction T is not more than
δ-away from current time-stamp. δ is system defined.

The Adjusted Consistency property ensures a real system
clock as the time-stamp in user transactions is user-defined and
the system accepts transactions satisfied by δ only.

Property 2 (Weak Liveness). If transaction Ti is published
in G and no conflicting T j is published, then it is included in
GetRobustAccepted(G).

Property 3 (Pairwise ordering). Once block B is published in
G, the system guarantees that G contains blocks published be-
fore or exactly after B.

Property 4 (Result Completeness). A response set for a user
query must not have any missing results.

Property 5 (Block Soundness). No modification takes place in
the Bbody, neither by adding non-existence transactions nor by
modifying existing ones.

A miner is expected to maintain the SPECTRE voting pro-
tocol to reveal the real order between each pair of blocks on
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the local image of G. The protocol holds these properties and
states for fast block creation (at least five blocks per second).
The aforementioned properties and a fast block creation rate al-
low the temporal queries to proceed over block-DAG topology
without additional temporal indexes. Note that we also consider
the case of a Light Node such as a mobile client which does not
store the entire block-DAG [1].

Remark. The spatio-temporal block-DAG does not require a
linear order among all the transactions because the tracking ac-
tions of an account don’t affect other account actions. The lin-
ear ordering limits throughput in a blockchain and results in
low block creation rate. This is a concern as the spatio-temporal
data grows massively as a tracking object reports spatio-temporal
information on a regular basis. Block-DAG is an alternative that
makes possible to handle high throughput by implementing a
fast block creation scheme. For the rest of this work, we use
the terms blockchain and block-DAG, interchangeably. In this
work, we assume that the transactions associated with an object
have a linear order.

4. Enabling Block-DAG for Spatio-Temporal Queries

A transaction typically includes geodesic coordinates, lati-
tude φ and longitude λ, to represent a location.

4.1. Geo-spatial Representation and Spatial Index

For queries such as k-NN, range, and ball-point queries, we
need a Cartesian coordinate system represented by orthogonal
axis. For the purpose, ‘map projection’ is used to convert the
geodesic system to two-dimensional coordinates on the map.
Nonetheless, it does not matter which coordinate system or ge-
ographic standard is used, as it is not possible to make a projec-
tion from a sphere onto a rectangle, i.e., a two-axis system, and
save all data, i.e., angles and distances, simultaneously.

Example. Haversine is a measure to get approximate distance
on a sphere. To use it on Earth with an approximate radius
re = 6371km, consider three reference points A = {50◦, 50◦},
B = {50◦, 51◦}, and C = {51◦, 50◦}. For points A, B, and C,
2D coordinate system tells that they are equidistant based on
Euclidean distance. But given latitudinal difference δφ = φ2 −
φ1, and the longitudinal difference δλ = λ2 − λ1 for pairs (A, B)
and (A,C) according to Haversine (Eq. 1), the distance from
point A to B is 111.19 km, but the distance from A to C is 71.47
km. That is why taking latitude and longitude values directly
to a kd-tree is incorrect as it fails to compute k-NN and range
queries by using euclidean distance. We compute Haversine
distance as follows:

distharv = 2 re arcsin
(
min

[
1,

√
sin2(

δφ

2
) + cosφicosφ jsin2(

δλ

2
)
])

(1)
For the k-NN and bounded k-NN search problems, a magnitude-
comparable distance can be substituted for the relative distance
since the relative ordering of the distances is more important
than the actual distances [38]. The tunnel-through distance for

points i and j is Eq. 3. For each index, we pre-compute Carte-
sian coordinates given by the latitude and longitude using Eq. 2
and store these on a Merkle kd-tree.

xi = recos(λi)cos(φi)
yi = resin(λi)cos(φi)
zi = resin(φi)


(2)

dist =

√
(xi − x j)2 − (yi − y j)2 − (zi − z j)2) (3)

4.2. Spatial Index per Block
The Merkle Hash Tree, or MHT, is generally used as a

base for arbitrary authenticated directed acyclic graph struc-
tures. The scheme to do verification proposed on MHT is as
follows: recompute the hash value incrementally by recreating
Merkle tree root for a particular block as shown in Eq. 4.

HR(vi) =


H(byte(vi)), vi: leaf node
H(vi,HR(vi,1), ...,HR(vi,n)), vi, j: successors of vi

(4)
As Merkle tree is designed for spatial queries only, we re-

quire a data structure that is able to process spatio-temporal
queries. The SPECTRE protocol states that the block creation
is typically within one second and the size of a block is ex-
pected to be within 40-70 transactions. We consider a three-
dimensional space, i.e., a sphere in a Cartesian space along with
an additional set of points, and use kd-tree for the purpose. A
kd-tree has the advantage that it fits in the main memory and
avoids a complicated structure similar to 3D R-tree with addi-
tional minimum bounding box coordinates. The kd-tree at each
level has the Euclidean distance in one dimension and therefore
has a reasonable performance for processing k-NN, range, and
ball-point queries.

In this work, we consider a kd-tree authenticated by the
Merkle scheme, i.e., an Mkd-tree, and propose a modification
of Mkd-tree which we call Block Space Index or BSI. BSI
stores one hash value for every node which is computed from
the left and right hashes using Eq. 4. Location points are stored
in the internal nodes of BSI. The leaves of BSI store transaction
hash values where each leaf-hash is associated with the hash of
internal node using Depth First Search as shown in Figure 3.

The bulk loading of BSI from the prepared list of trans-
actions Tlist for a block formation is presented in algorithm 1
where t is a timestamp of T ∈ Tlist. The resultant reordered
list of transactionsM is written to the block and BSI is formed
fromM.

Lightweight Client. We also consider the case of a Light Node,
for instance, a mobile device, which does not store the entire
block-DAG. A light client only needs to query node headers
from the peer-to-peer network and select locally the valid parts
by topological voting procedure over the network that is han-
dled by SPECTRE protocol. A typical proof of transaction in-
clusion is handled by BSI. For the same, we send a verifica-
tion object, VO, with the results of spatio-temporal queries to a
lightweight client.
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Algorithm 1 An outline of the steps for BulkLoad routine

Require: Tlist, µ,M← ∅ . µ: recursion depth;M: empty
kd-tree

Ensure: Tlist ← {T .(X,Y,Z)← T .(φ, λ)∀T ∈ Tlist}; . Tlist to
Cartesian space

1: σ← µ mod 3 . Choose splitting point
2: Tlist ← sorted(Tlist, by T .(X,Y,Z)[σ] and T .t) . Sort rest

of transactions
3: Tle f t,m,Tright ← medianSplit(Tlist) . m: root of splitting
4: M← m;
5: BulkLoad(Tle f t, µ + 1,M) . Recursion build left subtree
6: BulkLoad(Tright, µ+ 1,M) . Recursion build right subtree
7: returnM

4.3. Simplified Last Position Verification

In this section, we discuss account management and ac-
count location tracking.

4.3.1. Account Management
An account is a personal data that is associated with a hashed

public key of a user’s initially generated key-pair. The account
includes the last record of space-time location and the number
of stored transactions per account. The state of all accounts
is the state of the whole block-DAG network. In then sys-
tem, accounts are needed for tracking entities associated with
the accounts. The presented block-DAG platform is a public
transaction-based state machine that initiates from the genesis
block, or genesis state, and incrementally updates the location
position of associated anonymous accounts up to the last loca-
tion or final state.

The main challenge of account management in a blockchain
is frequent updates of values for each account. Therefore, an
authenticated data-structure that holds all the account informa-
tion is different from managing transaction history in binary
trees. We utilize Merkle Patricia-trie (MPT) that reflects associ-
ations between each account identifier and their actual data. In
case of spatio-temporal data, the account information includes
geodesic coordinates of the most recent geolocation, timestamp,
and nonce where nonce is the total number of stored transac-
tions for an account.

To efficiently support account state, MPT has the following
features: (i) it is an authenticated data structure and is able to
quickly recalculate a tree root after an insert or update opera-
tion such as create or update account, or update the last geo-
location and timestamp, (ii) tree root is dependent on data and
not the order in which updates are made, (iii) fast roll-back is
supported to construct global block state that only has the fresh
account information and history in the block, and (iv) it enables
answering account specific queries, for example, ‘what is the
most recent position of account x?’ or ‘does account with id
xxx-xx exists?’.

The value of MPT root or location root in the block header
reflects a distinct version of the global state per block. The
MPT implementation introduces a value driven data-structure
through referencing each node by its hash, therefore, key-value

is stored in a levelDB database where the value is the string
representation of a node and the key is its hash. Thus, multiple
copies of the historical states of each node allow fast roll-back.
MPT consist of three types of nodes: (i) a leaf node that stores
key-value pairs, (ii) an extension node that stores a hash of an-
other node, and (iii) fixed length sets of branch nodes typically
having 17 elements. The first 16 elements correspond to the
sixteen possible hex characters in a key, and the final element
holds a value if there is a key-value pair where the key ends at
the branch node. A sample part of MPT version for a block is
shown in Figure 2.

Note that in a blockchain, the state of MPT changes just
from one block to another, but the block-DAG allows several
references from a block to other blocks that adds to the com-
plexity of the construction of MPT. In Algorithm 2, we intro-
duce steps for a snapshot of MPT formation per block.

Algorithm 2 An outline of steps for CreateSnapshotMPT

Require: Bheader, Bbody

. prepare MPT version
Ensure: Rollback(MPT,Bheader.orphanHashes)

1: S ← ∅
2: S ← {Ti : ∀Ti ∈ Bbody@T j ∈ Bbody s.t.

(Ti.uid = T j.uid ∧ Ti.t < T j.t)};
3: Torphanes ← getBlocksTransactions(Bheader.orphanHashes)
4: S ← {Ti : ∀Ti ∈ Torphanes,∀Tb ∈ Bbody,@T j ∈ Torphanes

s.t. (Ti.uid = T j.uid ∧ Ti.uid , Tb.uid ∧ Ti.t > T j.t)}
5: MPT← S . Extend MPT

. Save fingerprint of MPT version
6: Bheader.“Location root”← HR(MPT)

Theorem 1. For each block from GetRobustAccepted(G), the
last position of an account queried from MPT has the complete-
ness of query answer (property 4) .

Proof. Property 1 guarantees absence of conflicting transac-
tions. The properties of MPT ((ii)-(iii) above) ensure a unique
tree root value. Property 3 guarantees a monotonically decreas-
ing time from a block to referenced blocks.

4.3.2. Account Location Tracking
We use MPT and a location root from a block header for

most recent position of an object. We assume that the block
headers are already available. A lightweight client tracks items
by hashed account identifier (uid) that is a hashed from the pub-
lic part of a key pair. For most recent location verification of an
object, we consider the following steps:

(1) A lightweight client has a fresh state of the block-DAG.

(2) The client requests from the peers to get an account state
by the predefined uid that stores the most recent position
and a time-stamp.

(3) The request is handled on peer side by MPT authenti-
cated data structure. Request result includes the account
state and additional information for authorization. The
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Figure 2: The last positions of objects related to accounts are represented by key-value pairs and encoded in Merkle Patricia-trie.

authorization information consists of an array of verifi-
cation objects, VOs, reported by MPT in time-order and
the block identifier of a Bheader that includes location root
hash-value corresponding to a fresh version of the MPT
on the peer side.

(4) The client computes the ‘Location root’ of an object by
hashingH(obtained account state) with the VOs.

(5) The client locally verifies the result on local block-DAG
image with the help of block identifier and Location root
from the previous step. If the verification is successful,
we have the verified most recent location along with a
time-stamp for the client.

5. Spatio-temporal Queries on block-DAG

In this section, we present the queries for the data structures
described in section 4. We first discuss temporal queries on
block-DAG.

5.1. Temporal Queries on block-DAG

To enable a fast temporal search over the block-DAG, we
introduce a temporal meta-information included in each block
header. The temporal range query with a given time range β
over bloc-DAG is the deterministic search procedure P over
block-DAG topology G(V, E) that we name as Temporal Graph
Search (TGS). G has multiple source nodes s, which are recent
nodes with a reference to the previous points, for each v ∈ V .
The temporal range search (searchtime) is implemented in a
breadth-first (BFS) manner, the steps of which are listed below:

(1) Given a time range β = (start time, end time), start BFS
from the tips of the GetRobustAccepted(G).

(2) When reach a block-header Bheader such that [Bheader.start time,
Bheader.end time] ∩ [β.start time, β.end time] , ∅, the
Bheader is included in the result set.

(3) The BFS runs until no new Bheader occurs in range β and
all the next Bheader.end time < β.start time.

Theorem 2. Temporal Graph Search procedure has the com-
pleteness of query answer (property 4) over GetRobustAccepted(G)
⊂ G of block-DAG topology (G).

Proof. Property 3 guarantees monotonically decreasing times-
tamps of Bheader.start time and Bheader.end time for each step
of TGS procedure. The σβ accepts blocks as partial intersec-
tion of time ranges. Therefore, the algorithm has the property 4,
nonetheless, a tiny number of outline transactions will be in re-
sult set that leads to an unsound answer.

5.2. Spatial Queries per Block

The spatio-temporal query is the combination of the two
consequent procedure calls. The first part is the TGS proce-
dure that results in a set of block headersMβ. The second part
is the spatial query over BSI of each block header. A general
spatial search result is denoted as σ(Mβ) = {σ(BS I(Bheader))
∀Bheader ∈ Mβ}. We now present the standalone mechanism of
spatial queries.

The BSI is the extension of Merkle kd-tree, where each in-
ternal node of the data structure is the final space point. In this
work, we use a three dimensional BSI for the three distinct co-
ordinates in the Cartesian coordinate system. With BSI, we are
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Figure 3: Spatio-temporal range search on block-DAG by TGS-BSI procedure: first, filter by temporal range procedure σβ, and given time range β, apply space
range query on each BSI by a given hyper-rectangle q = {x, y}.

able to handle efficient space query per block for the following
types of queries: (i) range query, (ii) k-NN query, (iii) bounded
k-NN query, and (iv) ball-point query, the details of which are
presented below.

5.2.1. Range query
Range query, σq, is stated as follows: Given a dataset of

points D, and a range q = {x} where x ∈ Rd, range query seeks
each s ∈ D that is located inside the hyper-rectangle constituted
by q. The computational cost of a range query for the BSI of a
particular block is O(

√
Bsize +k) where k is the number of result

points.
Given a query hyper-rectangle q, the range search for each

Bheader ∈ Mβ starts at the root and recursively traverses the tree
pruning a subtree if its root does not intersect with q. An exam-
ple of a spatio-temporal range query on block-DAG is shown
in Figure 3. We show a 2D BSI for ease of illustration.

5.2.2. K-nearest neighbors
k-NN query, σk,q, is defined as follows: Given a dataset of

points D, a scalar value k, and a query point q = {x} where
x ∈ Rd, σk,q(D) returns a subset of k points from D that are
closest to q. The average computational complexity of a k-NN
query for a block is O(3Bsizek) assuming that the number of
dimensions of BSI is fixed (3D).

The k-NN algorithm maintains a priority queue to keep k
closest points. The first k points are en-queued and the algo-
rithm traverses down the tree skipping bounding boxes where
is no chance to get a point closer than the points in k. Thus,
the performance of the algorithm depends on quickly reaching
nearby points. The final stage is to aggregate the top-k points
from σk,q(Mβ).

5.2.3. Bounded k-nearest neighbors
Bounded k-NN, σq,rb , is defined as follows: Given a dataset

of points D, a scalar value k, a scalar value of the bounding

radius rb, and a query point q = {x} where x ∈ Rd, σk,q,rb (D), a
k-NN query returns a subset of points in D of size ≤ k that are
closest to the q inside a hyper-sphere of radius rb centered at q.
The average case complexity of a bounded k-NN query is also
O(3Bsizek) considering that the number of dimensions in BSI is
fixed at 3D.

The query algorithm includes additional boundary to a max-
imum radius that creates a limiting hyper-sphere for exploration
during the BSI tree traversal. Bounded k-NN maintains k cur-
rent best points and search branches in BSI when they can’t
have points closer than any of the k current points, or if the ra-
dius is more than a boundary radius rb. The final stage is to
aggregate the top-k points from σk,q(Mβ).

5.2.4. Ball-Point Query
Given a dataset of points D, radius rb, and a point q = {x}

where x ∈ Rd, a ball-point query, σk,q,rb , seeks each s ∈ D that
is in a sphere of radius rb centered at the point q. The average
case computational complexity of a ball-point query average for
a particular block is O(3

√
Bsize + k) where k is the number of

answer points.
Given a bounding radius rb, and a centering point q the ball-

point query for each Bheader ∈ Mβ starts at the root and recur-
sively traverses the tree whilst pruning a bounding box that does
not intersect the hypersphere of radius = rb centered at q.

6. Experimental Evaluation

We now present a detailed evaluation of spatio-temporal
queries over blockchain. We first present the random graph
model for block-DAG generation. Then, we describe the ex-
perimental setup that is followed by the evaluation results and
discussion.

8



Algorithm 3 An outline of the steps for GenBlockDAG routine

Require: Tn, Tr, α,D, Bsize

1: Trlist ← gen(N
(
Tr, α

2
)
,Tn) . list of various transaction

rates per second
2: (V, E)← (genesis block, ∅) . initialize vertices and block

references
3: ω← 0 . remainder of transactions from previous chunk
4: for each chunk c of sizeD from Trlist do
5: B ← round((sum(c) + ω)/Bsize) . number of

unconnected blocks whileD
6: E ← (connect all B to orphans of V)
7: V ← B
8: ω← (sum(c) + ω) mod Bsize

9: return (V, E)

6.1. Random Graph Model for block-DAG

The synthetic topology structure of block-DAG is generated
by Algorithm 3. The following parameters are considered for
block-DAG generation: network delay D, number of transac-
tions per second Tr, total number of transactions Tn, block
size Bsize, and a standard deviation α for a normal distribu-
tion centered at Tr. The generation model is based on the fol-
lowing assumptions: (i) two honest blocks created at the same
time are not mutually reachable, and (ii) no more than n hon-
est unconnected blocks can be created at the same time where
n = D ∗ Brate and Brate is block creation rate.

6.2. Setup

For the experiments, we consider a spatio-temmporal dataset,
‘Pokeman Go’. The dataset includes 18732 records where each
record contains latitude, longitude, timestamp and a Pokemon
type. We assume a constant and intensive transaction flow. In
order to simulate a computing extensive environment, we repli-
cate the dataset 300 times. Thereafter, we generate a block-
DAG with the assumption that the network delay is typically 3
seconds, Tr = 60, Bsize = 50, α2 = 3, and Tn is 300 times the
Pokemon Go dataset size. As the records are duplicated, the
timestamps are updated in accordance with the original dataset.

For query performance measurement, we repeat each ex-
periment ten times at each testing point to get a descriptive and
robust median point. The implementations are in Python and
the results are obtained on a Linux machine with Intel Core i7-
6700 CPU 3.40GHz processor, and 16 GB RAM. The query
times reported in the following text are in 000’s milliseconds,
e.g. we say ‘3 units’ when we mean 3000 milliseconds.

6.3. Spatio-temporal Query Performance Analysis

We evaluate the performance of spatio-temporal queries (Sec-
tion 5): (i) for temporal range upto 2 weeks, (ii) for increasing
number of hours over a block-DAG with Bsize = 40, and (iii)
Bsize = 100, (iv) performance change for a fixed temporal range,
2 hours, for increasing number of transactions included in the
block-DAG. In another set of experiments, we evaluate query
performance of spatial queries: (i) for varying values of k for

k-NN query, (ii) varying bounding radius rb for bounded k-NN
query, and (iii) ball-point query.

In another set of experiments, we evaluate the queries un-
der study for spatio-temporal data handling. As the scan opera-
tion for a blockchain is a brute-force iteration over every block,
a temporal search must go through all the entries of a block-
header due to the absence of time-stamp information within.
For performance comparison, we consider the following: (a)
scan operation that firstly filters transactions by time and then
by space, SCAN time-space, and vice versa, SCAN space-time,
and (b) our proposed time graph search, TGS, and blockchain
space index, BSI, for spatio-temporal querying, TGS-BSI.

6.3.1. Block size
Block size Bsize is the number of transactions in a block and

this information is stored in the block header. We report me-
dian query time in units (000′s milliseconds) as we increase
Bsize from 30 to 110. The observations of Figure 4 state that an
increase in block-size improves query performance for TGS-
BSI as more pruning occurs in each block that reduces the to-
tal number of observations to be considered. As the synthetic
block-DAG is for a two week period, the spatio-temporal query
for two weeks temporal range leads to a spatial query.

We observe in Figure 4 that the query time decreases when
the block size Bsize increases. The running times for k-NN and
bounded k-NN queries are shown in Figure 4 (ii)–(iii). For
Bsize = 30, the TGS-BSI query time is 7.5 units and it decreases
to 1 unit for Bsize = 100, while the k-NN scan queries require
17.5 units. The overall query performance remains stable for
range and ball queries, e.g. for TGS-BSI queries, running time
remains below 2 units whereas for scan queries the running time
is 5 units and upwards.

It can be observed that the block size is an important pa-
rameter for k-NN query performance and as the block size in-
creases, pruning is more effective for TGS-BSI. Nonetheless, in
real applications, we expect that the average Bsize will typically
remain below 100.

6.3.2. Temporal range
We now report time range β results for spatio-temporal queries.

Scan operation handles temporal queries by scanning times-
tamps for each transaction whereas TGS-BSI is a breadth-first
search over the block-DAG that stores timestamp attribute on
each node. We also consider more realistic short temporal ranges
from 0.5 hours to 12 hours. The performance evaluations are
shown for two cases: (i) Bsize = 40, Figure 5, and (ii) Bsize =

100, Figure 6.
For the experiments, we increase β from 0.5 hours to 12

hours and observe that the running time increases linearly with
β, however, time-space scan operation is noticeably time con-
suming. The results of TGS-BSI for k-NN and bounded k-NN
queries for two variants of experiments presented in Figure 5
(ii)–(iii), and Figure 6 (ii)–(iii), show that for Bsize = 100 the
running time is almost half compared to the running time for
Bsize = 40. However, the overall time for TGS-BSI remains
stable for range and ball-point queries.
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Figure 4: Performance evaluation for increasing Bsize from 30 to 110 over a 2 week synthetic block-DAG.
Query parameters: β =2 weeks, q = (φ, λ) = (22.6, 114), k = 15, rb = 15.
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Figure 5: Performance evaluation for increasing time range β from 0.5 hours to 12 hours over a 2 week synthetic block-DAG with Bsize = 40.
Query parameters: q = (φ, λ) = (22.6, 114), k = 15, rb = 15.
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Figure 6: Performance evaluation for increasing time range β from 0.5 hours to 12 hours over a 2 week synthetic block-DAG with Bsize = 100.
Query parameters: q = (φ, λ) = (22.6, 114), k = 15, rb = 15.
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Figure 7: Performance evaluation for increasing Tn from 106 to 6 ∗ 106 transactions over a 2 week synthetic block-DAG.
Query parameters: β =2 weeks, q = (φ, λ) = (22.6, 114), k = 15, rb = 15.
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Figure 8: Performance evaluation over a 2 week synthetic block-DAG. We vary number of neighbors k from 1 to 50 for k-NN search, bounding radius rb from 1 to
11 km for bounded k-NN search and bounding radius from 1 to 50 for ball-point query. Query parameters: β =2 weeks, q = (φ, λ) = (22.6, 114), k = 15, rb = 15.

6.3.3. Number of transactions stored
We also test the scalability of the algorithms we study for in-

creasing number of transactions Tn stored in a block-DAG. We
report the running times as we increase Tn from 106 to 6∗106 in
a synthetic block-DAG. The size of block-DAG and the running
time results are shown in Figure 7 (i)–(iv). It can be observed
that TGS-BSI performs significantly better than scan-range op-
erations. As growing number of transactions are accepted in a
decentralized ledger, it becomes clear that TGS-BSI query per-
formance is encouraging as it outperforms scan-range search by
orders of magnitude.

6.3.4. Query parameters
In addition to the above experiments, we study query per-

formance in a 2 week temporal range, Figure 8, for the fol-
lowing three parameters: number of nearest neighbors k for
k-NN queries, Figure 8(i), bounding radius rb for bounded k-
NN, Figure 8(ii), and increasing bounding radius for ball-point
query, Figure 8(iii).

We report running times as we increase k from 1 up to 50 for
the k-NN query in Figure 8(i). It can be observed that the query
time increases linearly with the increasing values of k. TGS-
BSI outperforms scan-range for k-NN query. Similar trends
can be observed for increasing rb for bounded k-NN query, Fig-
ure 8(ii). We also observe that the overall time for TGS-BSI
remains stable even for harder instances.

In summary, block-DAG based TGS-BSI is a promising
approach that provides significant speedup for spatio-temporal
queries on blockchain. As a block-DAG is a significantly com-
pact data structure and TGS-BSI is customized to answer queries
under study, we conjecture that the performance of TGS-BSI
is bound to improve for more realistic large datasets. Further,
block-DAG is customizable for specific applications and TGS-
BSI can be enhanced to work with additional query types.

7. Conclusion and Future Work

We have presented efficient spatio-temporal data storage and
query processing in public decentralized ledgers that maintain
integrity through cryptographically signed history in block-DAG
and enable efficient spatio-temporal queries without additional

local indexing. We also presented a protocol for authenticated
tracking of a set of entities based on the public key or hashed
account identifier. We considered four types of queries in this
work and reported on performance evaluation of range query,
k-NN query, bounded k-NN query, and ball-point query. The
experimental results demonstrated the effectiveness and appli-
cability of the solution for real-life applications.

As this is one of the initial studies on the topic, a number
of open directions remain. For example, a study on client-peer
communication seems an interesting idea as it is crucial to en-
able lightweight clients at the edge of the network to access the
data from block-DAG peers in an effective way. Further, due to
the presence of malicious peers, query authentication should
also be an important consideration. Additionally, the exten-
sion of spatio-temporal queries to more sophisticated queries,
for instance, ‘find all pairs of points whose distance is at most
k within a time bounds’, skyline k-NN query, reverse k-NN,
etc., is also an interesting direction to explore. Another interest-
ing idea is to extend query computation to decentralized Map-
Reduce framework and support OLAP like queries [39, 40] on
a large number of blocks.
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Highlights 

 

The highlights of this work are as follows: 

• One of the first attempts to formalize the spatio-temporal blockchain query 

processing  

• A note on the limitations in current blockchain systems and a novel solution 

for spatio-temporal query processing on blockchain 

• Introduction of a block-DAG based novel index traversal algorithm, TGS-

BSI, to handle spatio-temporal queries on a block-DAG.  

• A detailed experimental evaluation to demonstrate the effectiveness of the 

solution 


