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Second-order variational equations for spatial point
processes with a view to pair correlation function

estimation

Jean-François Coeurjollya,∗, Francisco Cuevas-Pachecob, Rasmus
Waagepetersenb

aDepartment of Mathematics, Universiteé du Québec à Montreal (UQAM), Canada
bDepartment of Mathematical Sciences, Aalborg University, Denmark

Abstract

Second-order variational type equations for spatial point processes are estab-
lished. In case of log linear parametric models for pair correlation functions, it
is demonstrated that the variational equations can be applied to construct esti-
mating equations with closed form solutions for the parameter estimates. This
result is used to fit orthogonal series expansions of log pair correlation functions
of general form.

Keywords: estimating equation, non-parametric estimation, orthogonal series
expansion, pair correlation function, variational equation.

1. Introduction

Spatial point processes are models for sets of random locations of possibly
interacting objects. Background on spatial point processes can be found in
Møller and Waagepetersen (2004), Illian et al. (2008) or Baddeley et al. (2015)
which gives both an accessible introduction as well as details on implementation
in the R package spatstat. Moments of counts of objects for spatial point
processes are typically expressed in terms of so-called joint intensity functions or
Papangelou conditional intensity functions which are defined via the Campbell
or Georgii-Nguyen-Zessin equations (see the aforementioned references or the
concise review of intensity functions and Campbell formulae in Section 2). In
this paper we consider a third type of equation called variational equations.

A key feature of variational equations compared to Campbell and Georgii-
Nguyen-Zessin equations is that they are formulated in terms of the gradient of
the log intensity or conditional intensity function rather than the (conditional)
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intensity itself. Variational equations were introduced for parameter estima-
tion in Markov random fields by Almeida et al. (1993). The authors suggested
the terminology ‘variational’ due to the analogy between the derivation of their
estimating equation and the variational Euler-Lagrange equations in partial dif-
ferential equations. The resulting equation consisted in an equilibrium equation
involving the gradient of the log conditional probability of the Markov random
field. Later, Baddeley and Dereudre (2013) obtained variational equations for
Gibbs point processes and exploited them to infer a log-linear parametric model
of the conditional intensity function. Coeurjolly and Møller (2014) established a
first-order variational equation for general spatial point processes and used it to
estimate parameters in a log-linear parametric model for the intensity function.

The first contribution of this paper is to establish second-order variational
equations. The second-order properties of a spatial point process are character-
ized by the so-called pair correlation function which is a normalized version of
the second-order joint intensity function. We assume that the pair correlation
function is translation invariant and also consider the case when it is isotropic.
Since the new variational equations are based on the gradient of the log pair
correlation function, they take a particularly simple form for pair correlation
functions of log-linear form.

Our second contribution is to propose a new non-parametric estimator of
the pair correlation function. The classical approach is to use a kernel estima-
tor, see for example Møller and Waagepetersen (2004). More recently, Jalilian
et al. (2019) investigated the estimation of the pair correlation function using
an orthogonal series expansion. In the setting of their simulation studies, the
orthogonal series estimator was shown to be more efficient than the standard
kernel estimator. One drawback, however, is that the orthogonal series esti-
mator is not guaranteed to be non-negative. We therefore propose to use our
second-order variational equation to estimate coefficients in an orthogonal series
expansion of the log pair correlation function. This ensures that the resulting
pair correlation function estimator is non-negative. We compare our new esti-
mator with the previous ones in a simulation study and also illustrate its use
on real datasets.

2. Background and main results

2.1. Spatial point processes

Throughout this paper we let X be a spatial point process defined on Rd.
That is, X is a random subset of Rd with the property that the intersection of
X with any bounded subset of Rd is of finite cardinality. The joint intensity
functions ρ(k), k ≥ 1, are characterized (when they exist) by the Campbell
formulae (equations) (see for example Møller and Waagepetersen, 2004): for

2



any h : (Rd)k → R+ (with R+ the non-negative real numbers)

E
6=∑

u1,...,uk∈X
h(u1, . . . , uk) =

∫
· · ·
∫
h(u1, . . . , uk)ρ(k)(u1, . . . , uk)du1 . . . duk.

(1)

More intuitively, for any pairwise distinct points u1, . . . , uk ∈ Rd,
ρ(k)(u1, . . . , uk)du1 · · · duk is the probability that for each i = 1, . . . , k, X has a
point in an infinitesimally small region around ui with volume dui. The inten-
sity function ρ corresponds to the case k = 1, i.e. ρ = ρ(1). The pair correlation
function is obtained by normalizing the second-order joint intensity ρ(2):

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
(2)

for pairwise distinct u, v and where g(u, v) is set to 0 if ρ(u) or ρ(v) is zero.
Intuitively, g(u, v) > 1 [g(u, v) < 1] means that presence of a point at u increases
[decreases] the probability of observing a further point at v and vice versa. We
assume that X is observed on some bounded domain W ⊂ Rd with volume
|W | > 0 and without loss of generality we assume that ρ(u) > 0 for all u ∈ W
(otherwise we just replace W by {u ∈ W |ρ(u) > 0} provided the latter set has
positive volume).

We will always assume that X is second-order intensity reweighted stationary
(Baddeley et al., 2000), meaning that its pair correlation function g is invariant
by translations. We then, with an abuse of notation, write g(v − u) for g(u, v)
for any u, v ∈ Rd. We will also consider the case of an isotropic pair correlation
function in which case g(v − u) depends only on the distance ‖v − u‖.

For the presentation of the second-order variational type equation in the
next section some additional notation is needed. For a function h : Rd → R
which is differentiable on Rd, we denote by

∇h(w) =

{
∂h

∂w1
(w), . . . ,

∂h

∂wd
(w)

}>
, w ∈ Rd

the gradient vector with respect to the d coordinates. The inner product is
denoted by a ‘·’ and for h : Rd → Rd, a multivariate function such that each
component is differentiable on Rd, we define the divergence operator by

div h(w) =

d∑

i=1

∂hi
∂wi

(w).

2.2. Second-order variational equations

In this section, we present in Theorem 1 and Theorem 2 our new second-
order variational equations. The prominent feature of the equations is that
they are given in terms of expectations of random sums where the sums only
depend on the pair correlation function through its gradient (Theorem 1) or,
in the isotropic case, its derivative (Theorem 2). This allows us to construct in
Section 3 closed form estimators of pair correlation functions of log linear form.
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Theorem 1. Assume X is second-order intensity reweighted stationary. Let
h : Rd → Rd be a componentwise continuously differentiable function on Rd.
Assume that g is continuously differentiable on Rd, that ‖h‖‖∇g‖ ∈ L1(Rd),
and that there exists a sequence of increasing bounded domains (Bn)n≥1 such
that Bn → Rd as n→∞, with piecewise smooth boundary ∂Bn and such that

lim
n→∞

∫

∂Bn

g(w)h(w) · ν(dw) = 0 (3)

where ν stands for the outer normal measure to ∂Bn. Then

E

{ 6=∑

u,v∈X∩W
e(u, v)∇ log g(v − u) · h(v − u)

}
=

− E





6=∑

u,v∈X∩W
e(u, v)div h(v − u)



 , (4)

where e : Rd×Rd → R+ denotes the function e(u, v) = {ρ(u)ρ(v)|W ∩Wv−u|}−1
for any u, v ∈ Rd and where Ww denotes the domain W translated by w ∈ Rd.

The proof of Theorem 1 is given in Appendix A. We note that condition (3) is
in particular satisfied if the function h is compactly supported.

We next consider the case where the pair correlation function is isotropic,
i.e. for any u, v ∈ Rd there exists g0 : R+ → R+ such that g(u, v) = g(v − u) =
g0(‖v − u‖).

Theorem 2. Assume X is second-order intensity reweighted stationary with
isotropic pair correlation function g0. Let h : R+ → R be continuously differ-
entiable on R+. Assume that g0 is continuously differentiable on R+ and that
either

t 7→ h(t)g′0(t) ∈ L1(R+) and lim
n→∞

{g0(n)h(n)− g0(0)h(0)} = 0 (5)

or

t 7→ td−1h(t)g′0(t) ∈ L1(R+) and lim
n→∞

{nd−1g0(n)h(n)−g0(0)h(0)1(d = 1)} = 0.

(6)
Then we have the two following cases. If (5) is assumed,

E
{ 6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v − u‖)(log g0)′(‖v − u‖)
}

=

− E





6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h
′(‖v − u‖)



 ,

(7)
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where e(u, v) = {ρ(u)ρ(v)|W ∩Wv−u|}−1 for any u, v ∈ Rd. Instead, if (6) is
assumed,

E
{ 6=∑

u,v∈X∩W
e(u, v)h(‖v − u‖)(log g0)′(‖v − u‖)

}
=

− E




6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

h(‖v − u‖)
‖v − u‖ + h′(‖v − u‖)

}
 . (8)

The proof of Theorem 2 is given in Appendix B. We stress that the derivatives
involved in Theorem 2 are derivatives with respect to t ≥ 0. Like for Theorem 1,
conditions (5) and (6) are in particular satisfied if h is compactly supported in
(0,∞).

Remark 1. In Theorem 1 and Theorem 2, the factor |W ∩Wv−u|−1 in e(u, v)
is a so-called edge correction factor that allows us to rewrite the expectations
(4), (7) and (8) as integrals that do not depend on |W |, see the proofs in the
appendices. Other edge corrections (p. 188-189 in Illian et al., 2008) like minus
sampling or, in the case of Theorem 2, the isotropic edge correction, could be
used as well.

2.3. Sensitivity matrix

In the next section we use empirical versions of (7) and (8) to construct
estimating functions for a parametric model of an isotropic pair correlation
function g0 depending on a K-dimensional parameter β, K ≥ 1. We here
investigate the expression for the associated sensitivity matrices.

Consider functions h1, . . . , hK all fulfilling (5) and possibly depending on β.
By stacking the K equations obtained by applying these functions for h1, . . . , hK
in (7) we obtain the estimating function

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v−u‖)(log g0)′(‖v−u‖)+
6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h
′(‖v−u‖)

(9)
where h and h′ are vector functions with components hi and h′i. The sensitivity
matrix is obtained as the expectation of the negated derivative (with respect
to β) of (9). After applying (7) once again after differentiation we obtain the
sensitivity matrix

S(β) = −E
6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1h(‖v − u‖) d

dβ>
(log g0)′(‖v − u‖).

Applying the Campbell theorem and converting to polar coordinates, we obtain

S(β) = −ςd
∫ ∞

0

h(t)

[
d

dβ>
(log g0)′(t)

]
g0(t)dt,
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where ςd is the surface area of the d-dimensional unit ball. In case of (8) we
obtain a similar expression,

S(β) = −ςd
∫ ∞

0

h(t)

[
d

dβ>
(log g0)′(t)

]
g0(t)td−1dt.

By choosing h(t) = −ψ(t) d
dβ (log g0)′(t) for some real function ψ, S(β) becomes

at least positive semi-definite.

3. Estimation of log linear pair correlation function

We now consider the estimation of an isotropic pair correlation function of
the form

log g0(t) = β>r(t) = β> {r1(t), . . . , rK(t)}> (10)

where the functions rk : R+ → R, k = 1, . . . ,K are known. Following Sec-
tion 2.3, the idea is to apply Theorem 2 K times to functions hi, i = 1, . . . ,K,
of the form hi(t) = −ψ(t) ∂

∂βi
(log go)

′(t) = −ψ(t)r′i(t) where the function ψ :

R+ → R will be justified and specified later. It is then remarkable that we
obtain a simple estimating equation of the form Aβ + b = 0. The sensitivity
matrix discussed in Section 2.3 is S(β) = −EA. Provided A is invertible we
obtain the explicit solution

β̂ = −A−1b. (11)

The matrix A and the vector b are specified in the following corollary.

Corollary 1. Let ψ : R+ → R. Assume that ψ and rk (k = 1, . . . ,K) are
respectively continuously differentiable and twice continuously differentiable on
R+. Assume either that

t 7→ ‖r′(t)‖2ψ(t) ∈ L1(Rd) and lim
n→∞

ψ(n)r(n)>r′(n)− ψ(0)r(0)>r′(0) = 0

(12)
or

t 7→ td−1‖r′(t)‖2ψ(t) ∈ L1(Rd)
and lim

n→∞
nd−1ψ(n)r(n)>r′(n)− ψ(0)r(0)>r′(0)1(d = 1) = 0. (13)

If (12) is assumed, we define the (K,K) matrix A and the vector b ∈ RK by

A =

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1ψ(‖v − u‖)r′(‖v − u‖){r′(‖v − u‖)}> (14)

b =

6=∑

u,v∈X∩W

e(u, v)

‖v − u‖d−1 {ψ
′(‖v − u‖)r′(‖v − u‖) + ψ(‖v − u‖)r′′(‖v − u‖)}

(15)
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where again the edge effect factor is e(u, v) = {ρ(u)ρ(v)|W ∩Wv−u|}−1 for any
u, v ∈ Rd. Instead, in case of (13), we define

A =

6=∑

u,v∈X∩W
e(u, v)ψ(‖v − u‖)r′(‖v − u‖){r′(‖v − u‖)}> (16)

b =

6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

ψ(‖v − u‖)r′(‖v − u‖)
‖v − u‖

+ ψ′(‖v − u‖)r′(‖v − u‖) + ψ(‖v − u‖)r′′(‖v − u‖)
}

(17)

Then, the equation
Aβ + b = 0 (18)

is an unbiased estimating equation.

Proof. The proof consists in applying Theorem 2 with h(t) = −ψ(t)r′k(t) for

k = 1, . . . ,K and in noticing that (log g0)′(t) = β>r′(t) = r′(t)>β.

We note that if ψ is compactly supported in [0,∞), then (12) or (13) are
always valid assumptions. Another special case is also interesting: let d > 1
and ψ = 1, then (13) is true if for any k, l = 1, . . . ,K, t 7→ td−1r′k(t)2 ∈ L1(Rd)
and limn→∞ nd−1rk(n)r′l(n) = 0. This simple condition is for instance satisfied
if the rk’s’ are exponential covariance functions.

The results above are for instance applicable to the case of a pair correlation
function for a log Gaussian Cox process with covariance function given by a
sum of known correlation functions scaled by unknown variance parameters.
Assuming a known correlation function is on the other hand quite restrictive.
However, any log pair correlation function can be approximated well on a finite
interval using a suitable basis function expansion so that we can effectively
represent it as a log linear model. We exploit this in Section 4 where we consider
the case where the functions rk are basis functions on a bounded real interval.

Remark 2. In applications of (14)-(15) for d = 2 or (16)-(17) for d ≥ 1 the
division by ‖v − u‖d−1 or ‖v − u‖ may lead to numerical instability for pairs of
close points u and v. This can be mitigated by a proper choice of the function ψ.
In the spatial case of d = 2 we propose to define ψ(t) = (t/b)2(1− (t/b))21(t ∈
[0, b]) for some b > 0. With this choice of ψ the divisors ‖v − u‖d−1 = ‖v − u‖
cancel out preventing very large or infinite variances of (14)-(17).

Remark 3. The quantities (14)-(17) depend on the unknown intensity function.
If the intensity function is constant equal to ρ > 0 we can multiply (18) by ρ2

whereby the resulting estimating equation no longer depends on ρ. Thus g0 can
be estimated without estimating ρ. Otherwise, the intensity function has to be
estimated first, for instance in a parametric way, see Guan et al. (2015), and
plugged into (14)-(17).
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4. Variational orthogonal series estimation of the pair correlation
function

In this section we consider the estimation of an isotropic pair correlation
function g0 on a bounded interval [rmin, rmin + R], 0 ≤ rmin < ∞ and 0 <
R <∞, using a series expansion of log g0. Let {φk}k≥1 denote an orthonormal
basis of functions on [0, R] with respect to some weight function w(·) ≥ 0, i.e.∫ R
0
φk(t)φl(t)w(t)dt = δkl. Provided log g0 is square integrable (with respect to

w(·)) on [rmin, rmin +R], we have the expansion

log g0(t) =

∞∑

k=1

βkφk(t− rmin) (19)

where the coefficients βk are defined by βk =
∫ R
0
g0(t+ rmin)φk(t)w(t)dt.

We propose to approximate log g0 by truncating the infinite sum up to some
K ≥ 1 and obtain estimates β̂1, . . . , β̂K using (18). The resulting estimate thus
becomes

̂log g0,K(t) =

K∑

k=1

β̂kφk(t− rmin).

In the sequel this estimator is referred to as the variational (orthogonal series)
estimator (VSE for short). The approach is related to Zhao (2018) who also
considers an estimating equation approach to estimate a pair correlation func-
tion of the form (19) but for a number m > 1 of independent point processes on
R. The approach in Zhao (2018) further does not yield closed form expressions
for the estimates of the coefficients.

Orthogonal series estimators have already been considered by Jalilian et al.
(2019) who expand g0− 1 instead of log g0. They propose very simple unbiased
estimators of the coefficients but the resulting estimator of g0, referred to as the
OSE in the sequel, is not guaranteed to be non-negative.

4.1. Implementation of the VSE

Examples of orthogonal bases include the cosine basis with w(r) = 1, φ1(r) =
1/
√
R and φk(r) = (2/R)1/2 cos{(k − 1)πr/R}, k ≥ 2. Another example is the

Fourier-Bessel basis with w(r) = rd−1 and

φk(r) =
21/2

RJν+1(αν,k)
Jν (rαν,k/R) r−ν , k ≥ 1,

where ν = (d − 2)/2, Jν is the Bessel function of the first kind of order ν and
{αν,k}∞k=1 is the sequence of successive positive roots of Jν(r). In the context of
the variational equation (18) we need that the basis functions φk have non-zero
derivatives in order to estimate βk. This is not the case for φ1 of the cosine
basis. We therefore consider in the following the Fourier-Bessel basis.
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Let bk = 1[k ≤ K], k ≥ 1. The mean integrated squared error (MISE) for
log g0 of the VSE over the interval [rmin, R+ rmin] is

mise
( ̂log g0,K

)
= ςd

∫ rmin+R

rmin

E
{ ̂log g0,K(r)− log g0,K(r)

}2
w(r − rmin)dr (20)

= ςd

∞∑

k=1

E(bkβ̂k − βk)2 = ςd

∞∑

k=1

[
b2kE{β̂2

k} − 2bkβkEβ̂k + β2
k

]
.

Jalilian et al. (2019) chose K by minimizing an estimate of the MISE for g0.
We have, however, not been able to construct a useful estimate of (20). Instead
we choose K by maximizing a composite likelihood cross-validation criterion

CV(K) =

6=∑

u,v∈X∩W :
rmin≤‖u−v‖≤rmin+R

log[ρ(u)ρ(v) exp[ ̂log g0,K
−{u,v}

(‖v − u‖)]

−
6=∑

u,v∈X∩W :
0≤‖u−v‖−rmin≤R

log

∫

W 2

1[0 ≤ ‖u−v‖−rmin ≤ R]ρ(u)ρ(v) exp[ ̂log g0,K(‖v − u‖)]dudv

where ̂log g0,K
−{u,v}

is the estimate of log g0 obtained using all pairs of points
in X except (u, v) and (v, u). This is a simplified version of the cross-validation
criterion introduced by Guan (2007a) in the context of non-parametric kernel
estimation of the pair correlation function.

For computational simplicity and to guard against overfitting we choose
inspired by Jalilian et al. (2019) the first local maximum of CV(K) larger than
or equal to two rather than looking for a global maximum. Note that when A
and b in (18) have been obtained for one value of K, then we obtain the A and
b for K+ 1 by just adding one new row/column to the previous A and one new
entry to the previous b.

4.2. Simulation study

We study the performance of our variational estimator using simulations of
point processes with constant intensity 200 on W = [0, 1]2 or W = [0, 2]2. We
consider the case of a Poisson process for which the pair correlation function
is constant equal to one, a Thomas process (parent intensity κ = 25, dispersal
standard deviation ω = 0.0198 and offspring intensity µ = 8), a variance Gamma
cluster process (parent intensity κ = 25, shape parameter ν = −1/4, dispersion
parameter ω = 0.01845 and offspring intensity µ = 8), and a determinantal
point process (DPP) with exponential kernel K(r) = exp(−r/α) and α = 0.039.
The pair correlation functions for the four point process models are shown in
Figures 2 and 3 in the usual scale as well as in the log scale. The Thomas and
variance Gamma processes are clustered with pair correlation functions bigger
than one while the DPP is repulsive with pair correlation function less than one.
In all cases we consider R = 0.125 and we let rmin = 0 for Poisson, Thomas,
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Figure 1: Estimates of the first K coefficients when (19) is truncated to K = 2 (left) or K = 8
(right) in case of the Thomas process. White points correspond to the true coefficient values.
Observation window is either W = [0, 1]2 or W = [0, 2]2.

and variance Gamma. For the DPP the log pair correlation function is not
well-defined for r = 0 and we therefore use rmin = 0.01 in case of the DPP.
We use (14) and (15) for computing A and b and referring to Remark 2 we let
b = rmin +R. For each point process we generate 500 simulations.

4.2.1. Estimates of coefficients

Equations (14) and (15) are derived from (7) in which g0 is the true pair cor-
relation function. In practice, when considering a truncated version of (19), the
estimating equation (18) is not unbiased which results in bias of the coefficient
estimates. This is exemplified in case of the Thomas process in the left plot of
Figure 1 which shows boxplots of the first two coefficient estimates when (19) is
truncated to K = 2. In the right plot, (19) is truncated to K = 8 which means
that the truncated version of (19) is very close to the Thomas pair correlation
function. Accordingly, the bias of the estimates is much reduced. However, the
estimation variance increases when K is increased. This emphasizes the impor-
tance of selecting an appropriate trade-off between bias an variance. The plots
in Figure 1 also show how the variance of the coefficient estimates decreases
when the observation window W is increased from [0, 1]2 to [0, 2]2.

4.2.2. Comparison of estimators

In addition to our new VSE, we also for each simulation consider the OSE
proposed by Jalilian et al. (2019) (using the Fourier-Bessel basis and their so-
called simple smoothing scheme) and a standard non-parametric kernel density
estimate (KDE) with bandwidth chosen by cross-validation (Guan, 2007b; Jalil-
ian and Waagepetersen, 2018).

Figures 2 and 3 depict means of the simulated OSE and VSE estimates of
g0 and log g0 as well as 95% pointwise envelopes. Table 1 summarizes the root
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Figure 2: Mean VSE (red curves) and OSE (blue curves) of g0 (first column) and log g0 (right
column) for Poisson (first row) and Thomas (second row) point processes with W = [0, 2]2. In
each plot, the dashed black curve is the true pair correlation or log pair correlation function.
The envelopes represent pointwise 95% probability intervals for the estimates.

MISE (square root of (20)) for the three estimators across the four models. Both
the figures and the table show that the VSE has larger variance than the OSE.
The root MISEs are also larger for VSE than for KDE except in the Poisson
case.

We have also compared the computing time to evaluate the OSE and VSE.
The OSE is generally cheaper except when the number of points and R are
large, see also the case of Capparis in Section 4.3.

The numbers in parantheses in Table 1 report the averages of the selected
K’s for the variational estimator and the OSE. The averages of the selected
K’s are pretty similar for the Poisson and DPP models while the OSE tends
to select higher K than the variational method for the Thomas and variance
Gamma point processes.
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Figure 3: Mean VSE (red curves) and OSE (blue curves) of g0 (first column) and log g0 (right
column) for variance gamma (first row) and determinantal (second row, rmin = 0.01) point
processes with W = [0, 2]2. In each plot, the dashed black curve is the true pair correlation
or log pair correlation function. The envelopes represent pointwise 95% probability intervals
for the estimates.

4.3. Data example

To illustrate the use of the VSE in practice, we apply it (as well as the OSE
and the KDE) to the data example considered in Jalilian et al. (2019). That is,
we consider point patterns of locations of Acalypha diversifolia (528 trees), Lon-
chocarpus heptaphyllus (836 trees) and Capparis frondosa (3299 trees) species
in the 1995 census for the 1000m × 500m Barro Colorado Island plot (Hubbell
and Foster, 1983; Condit et al., 1996; Condit, 1998). The intensity functions
for the point patterns are estimated as in Jalilian et al. (2019) using log-linear
regression models depending on various soil and topographical variables. The
estimated pair correlation functions are shown in Figure 4. The selected number
K for the VSE are 3, 9 and 5 for Acalypha, Capparis, and Lonchocarpus, while
OSE selects K = 7 for all species.

In the case of Capparis, the computation time (4200 seconds) is higher for the

12



Window OSE VSE KDE
Poisson [0, 1]2 0.027 (2.1) 0.051 (2.2) 0.093

[0, 2]2 0.012 (2.0) 0.024 (2.2) 0.037

Thomas [0, 1]2 0.0995 (3.7) 0.1418? (2.7) 0.111
[0, 2]2 0.044 (4.2) 0.063 (2.9) 0.053

Variance Gamma [0, 1]2 0.099 (6.5) 0.148 (3.8) 0.110
[0, 2]2 0.050 (9.6) 0.072 (5.3) 0.057

DPP [0, 1]2 NA (3) 0.1622 (3.6) NA
[0, 2]2 NA (4.1) 0.1582 (5.2) NA

Table 1: Square-root of the MISE for different estimates of log g0, observation windows and
models. The figures between brackets correspond to the average of the selected K’s. The NA’s
are due to occurrence of non-positive estimates. (?: in this setting one replication produced
an outlier and is omitted in the root MISE estimation)
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Figure 4: Estimates of g0 for the three species Acalypha (left), Capparis (middle) and Lon-
chocarpus (right).

OSE than for the VSE (1244 seconds) due to the high number of points for this
species. Comparing the values of the three estimators, the general observation
is that they are very similar for large spatial lags but can differ substantially
for small lags. This emphasizes the general difficulty of estimating the pair
correlation function at small lags.

5. Discussion

In this paper we derive variational equations based on second order prop-
erties of a spatial point process. It is remarkable that in case of log-linear
parametric models for the pair correlation function, it is possible to derive vari-
ational estimating equations which have closed form solutions for the unknown
parameters. We exploit this to construct new variational orthogonal series type
estimators for the pair correlation function. In contrast to previous kernel and
orthogonal series estimators, our new estimate is guaranteed to be non-negative.
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For large data sets, the new estimator is further computationally faster than the
previous orthogonal series estimate. However, in terms of accuracy as measured
by MISE, the new estimator does not outperform the previous estimators. In
the data example, the new estimator and the OSE gave similar results.

We believe there is further scope for exploring variational equations. In Sec-
tions 3 and 4, we restricted attention to the case of an isotropic pair correlation
function. However, by invoking Theorem 1 instead of Theorem 2 it is possible to
extend the results to anisotropic translation invariant pair correlation functions.
For the VSE we would then need basis function on a subset of Rd instead of
an interval in R. Similar, using basis functions on subsets of Rd × R, the VSE
could be extended to the space-time case. This is obviously at the expense of
extra computations and an increased number of parameters.

Another option for future investigation is to consider non-orthogonal bases
for expanding the log pair correlation function instead of the orthogonal Fourier-
Bessel basis used in this work. One might for example consider so-called frames
(Christensen, 2008) or spline bases.
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Appendix A. Proof of Theorem 1

Proof. Using the Campbell theorem (1) and since ∇ log g = (∇g)/g, we start
with

A := E
{ 6=∑

u,v∈X∩W
e(u, v)∇ log g(v − u) · h(v − u)

}

=

∫

W

∫

W

1

|W ∩Wv−u|
∇g(v − u) · h(v − u)

g(v − u)ρ(u)ρ(v)
ρ(2)(u, v)dudv

=

∫

W

∫

W

∇g(v − u) · h(v − u)

|W ∩Wv−u|
dudv.

Using first the invariance by translation of h and ∇g, second Fubini’s theorem,
and third a change of variables, this reduces to

A =

∫

Rd

∇g(w) · h(w)dw.

By assumption, we have using the dominated convergence theorem,

A = lim
n→∞

An where An :=

∫

Bn

∇g(w) · h(w)dw.

We can now use the standard trace theorem (see for instance Evans and Gariepy
(1992)) and obtain

An = −
∫

Bn

g(w)(div h)(w)dw +

∫

∂Bn

g(w)h(w) · ν(dw).

From (3), we deduce from the dominated convergence theorem that

A = lim
n→∞

An = −
∫

Rd

g(w)(div h)(w)dw.
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Finally, using successively a change of variable and the Campbell theorem we
get

A = −
∫

W

∫

W

(div h)(v − u)

|W ∩Wv−u|
ρ(2)(u, v)

ρ(u)ρ(v)
dudv

= −E





6=∑

u,v∈X∩W
e(u, v) (div h)(v − u)





which proves (4).

Appendix B. Proof of Theorem 2

Proof. Both (7) and (8) are proved similarly. We focus only on (8) and follow the
proof of Theorem 1. Using the Campbell theorem (1), the fact (log g0)′ = g′0/g0
and finally a change to polar coordinates, we have

A := E
{ 6=∑

u,v∈X∩W
e(u, v)(log g0)′(‖v − u‖)h(‖v − u‖)

}

=

∫

W

∫

W

1

|W ∩Wv−u|
g′0(‖v − u‖)h(‖v − u‖)
g0(‖v − u‖)ρ(u)ρ(v)

ρ(2)(u, v)dudv

=

∫

W

∫

W

g′0(‖v − u‖)h(‖v − u‖)
|W ∩Wv−u|

dudv

=

∫

Rd

g′0(‖w‖)h(‖w‖)dw

= ςd

∫ ∞

0

td−1g′0(t)h(t)dt.

Using the dominated convergence theorem, partial integration and (6) we have
∫ ∞

0

td−1g′0(t)h(t)dt = lim
n→∞

∫ n

0

td−1g′0(t)h(t)dt

= − lim
n→∞

∫ n

0

td−1g0(t)

{
(d− 1)h(t)

t
+ h′(t)

}
dt

= −
∫ ∞

0

td−1g0(t)

{
(d− 1)h(t)

t
+ h′(t)

}
dt.

A change to polar coordinates and the Campbell theorem again lead to

A = −
∫

Rd

g0(‖w‖)
{

(d− 1)h(‖w‖)
‖w‖ + h′(‖w‖)

}
dw

= −
∫

W

∫

W

{
(d− 1)h(‖w‖)

‖w‖ + h′(‖w‖)
}

ρ(2)(u, v)

ρ(u)ρ(v)|W ∩Wv−u|
dudv

= −E




6=∑

u,v∈X∩W
e(u, v)

{
(d− 1)

h(‖v − u‖)
‖v − u‖ + h′(‖v − u‖)

}
 .
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