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Highlights 

 Ferrofluid exergy behavior is investigated within porous media. 

 CVFEM is implemented to model MHD effect on nanofluid. 

 Entropy generation augments with rise of Hartmann number. 

 Bejan number has direct relationship with magnetic field.  
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Abstract   

In current paper, exergy simulation of free convection is scrutinized. In current 

mathematical framework, uniform magnetic field is adopted. In order to save the time, single 

phase model has been involved for nanofluid. Trend of Darcy, Hartmann and Rayleigh 

numbers on Bejan number, exergy loss and Nusselt number are captured through figures. 

Obtained outputs have indicated the growth of Nuave with the Darcy and Rayleigh numbers. 

A growth of Lorenz forces reflects greater exergy loss. To get the desired outcomes for 

application prospective, lower Hartmann number should be selected. 

Keywords: CVFEM; Exergy; Nanofluid; Heat transfer; Lorentz force. 
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1. Introduction 

Mixing of nanoparticles in a pure carrier fluid significantly augment the thermal 

conductivity, consequently improve heat transfer rate which can be helpful in various 

industrial process. Common used coolant, like water for illustration, is about three orders 

magnitude lower in the heat conduction when compared with metals. Recent decades, 

nanofluids are utilized in numerous areas [1-9]. Rashid et al. [10] carried out the macroscopic 

modeling for wavy porous duct including second grade fluid. They imposed both magnetic 

and electric fields. Non-Newtonian flow due to Lorentz forces and imposed chemical reaction 

was investigated by Roy and Gorla [11]. They reported lower skin friction with rise of 

magnetic forces. Their outputs indicated that Schmidt number has direct relation with 

Sherwood number.  

New modeling approach for analyzing entropy generation of nanofluid has been 

offered by Sheikholeslami [12]. He displayed that permeability has reverse relation with 

Bejan number. Third grad nanofluid movement within non stationary domain was simulated 

by Shah et al. [13]. They supposed that bottom wall is stretched. They incorporated 

thermophoresis impact on energy transportation. Impact of chemical reaction on Eyring-

Powell fluid motion has been scrutinized by Hayat and Nadeem [14]. They evidenced that 

concentration declines with rise of reaction parameter. Thermal radiation impact on 

nanoparticle thermal behavior was explained by Nasir et al. [15]. They imposed MHD and 

reported Sherwood number to describe concentration of nanofluid. Various nanoparticles 

have been tested by Rehman and Nadeem [16] for nanofluid transport along stretching forces. 

Maximum Nusselt number has been obtained with selecting copper. Two magnetic sources' 

impacts on thermal treatment of ferrofluid were investigated by Muhammad et al. [17]. They 

demonstrated that temperature profile augments with rise of ferrohydrodynamic parameter. 

Prandtl fluid model formulation has been constructed by Bilal et al. [18]. They also involved 
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thermo diffusion impacts. They concluded that Sherwood number declines with augment of 

Dufour number. Nanofluid layer behavior in existence of EHD has been analyzed by 

Moatimid and Hassan [19]. They provided instability analysis for two pure fluids. Numerical 

developments for thermal analysis have been presented by various researchers [20-28]. 

In current study, we discuss the new model for magnetic force impact on nanomaterial 

convection by including homogenous model for ferrofluid. Exergy analysis was examined in 

view of second law approach. Last equations with considering non-Darcy law was simulated 

via innovative approach namely CVFEM which is less employed for computations of 

nonlinear systems.  

 

2. Explanation of problem and method  

Consider the laminar, steady free convection of H2O based ferrofluid in a permeable 

region with involving Lorentz forces. Fig. 1 describes the domain in which inner side 

imposed the constant heat flux. We assumed that viscous dissipation and joule heating were 

negligible. To add the permeability in momentum equations, Non-Darcy model was 

incorporated. To simplify the governing equations, pressure source terms were discarded with 

involving -ω formulation. CVFEM was implemented to solve the equations. This approach 

is very powerful due to this fact that it uses not only the advantage of FVM but also it uses 

the benefits of FEM for discretization [29]. To save time in simulation single phase model 

was employed for nanomaterial. Considering two dimensional problem leads to below 

equations [29]:   

0
v u

y x

 
 

 
 

(1) 
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 
2 2
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/nf p nf
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

     
    
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(4) 

As we mentioned, to estimate the properties of carrier fluid, homogenous model with 

following formulas was employed: 

       (1 ) / , /p p p ps f nf f
CC C C CC C C          (5) 
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 (9) 

 0.01 2 227886.4807 3.1 4263.02 316.0629 0.035T

nf e B B       

       

(10)         

Features of nanomaterial were portrayed in table 1.  To simplify the above equations, Eq. (11) 

was implemented and then Eq. (12) was employed to reach last equations:  
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(12) 

Thus, the last equations have following forms:  
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(15) 

Dimensionless parameters which are used above equations and boundary conditions are as 

follows: 

 

 

 

 

 

4

2

6 2

5 1 4

0 3

, / ,

, ,

,Pr / , , ,

/ ,

f f f f

Pnf nf

f P f

nf nf nf
f f

f f f

nf
f f

f

K
Da Ra gq L k

L

C
A A

C

k
A A A

k

Ha B L A

  



 

 
 

 


 



 

 
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locNu and aveNu are determined from: 
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,gen totalS , Be and dX were calculated according to below formulas: 
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(20) 

, /gen th gtBe S S  (21) 

0d gtX S T  (22) 

 

3. Results and discussion 

Simulations were executed to illustrate the new concept of energy and exergy 

treatment of convective flow of nanomaterial within a permeable region. Non Darcy and 

single phase models were incorporated considering -ω formulation. The governing non 

dimensional system has been figure out numerically by means of CVFEM. Influences of 

buoyancy and Lorentz forces were accounted in view of entropy analysis.  

Prior to the validation and presenting outputs, the mesh sensitivity analysis has been 

examined. As displayed in table 2, Nuave has no changes after 3
rd

 mesh, so this grid can 
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guarantee a grid independent output. The computational outputs for the special case have 

been verified by comparisons with current outputs in existing studies [30] in table 3 and the 

outputs were in nice agreement. Figs. 2, 3, 4 and 5 portray various component of entropy, Be 

and Xd as well as nanomaterial hydrothermal behavior. At low values of Da and Ra, contours 

expounded that the isotherms forms a pack of straight lines along the boundaries which 

indicates conduction mode. By augmenting Rayleigh number, nanofluid transport boosts up 

and convection develops but it has an inverse correlation with Bejan number. Thermal plume 

can be progressed easily in greater values of Ra. When permeability of region augments, it 

improves the convection. Also, thinner boundary layer was reported as a result of augmenting 

Rayleigh number. Thermal boundary thickness grows when Ha augments. Entropy 

generation reinforces with augment of magnetic forces. One can perceived that nanofluid 

transportation enhances with rise of Darcy number. So, exergy loss declines with augment of 

Da. Be and Xd have inverse relation with permeability and buoyancy force. So, with augment 

of Ra and Da, entropy generation become weaker and as an outputs less resistance has been 

affected the domain. Boundary layer thickness becomes thicker for greater Hartmann number 

due to reduction of flow in appearance of resisting force. Beside, exergy loss has direct 

relation with Lorentz forces. Similar trend is reported for Bejan number. 

,Be ,aveNu and dX  variations were deliberated in Figs. 6, 7 and 8 for different active 

parameters. In addition, following formulas can be offered: 

 

   

1.11 0.033 0.21log 0.41

0.035 log 0.22 0.13log

aveNu Da Ra Ha

Da Ra Da Ha Ra Ha

   

           (23)  

 

   

3

3 3

0.95 8.5 10 0.0931log 0.03

5.38 10 log 3.25 10 0.019log

Be Da Ra Ha

Da Ra Da Ha Ra Ha



 

    

             (24)  
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 

   

70.64 1.34 7.71log 14.43

0.13 log 7.23 1.29log

dX Da Ra Ha

Da Ra Da Ha Ra Ha

   

           (25)  

Temperature distribution augments with greater values of Darcy number. So, free 

convection proliferates with Da. Stronger resisting force can be obtained with rise of Ha. 

Thus, Nuave declines with rise of Ha.  There are reductions in Be and Xd for higher values of 

Da and Ra. 

 

4. Conclusions 

This paper was focused on nanofluid, laminar, free convection in a porous domain 

including exergy analysis. Non-Darcy model and Lorentz forces impacts were incorporated. 

The homogeneous model was utilized to characterize the features of nanomaterial. 

Comparison of our outputs with previous outputs was made for various Ra and found to be in 

nice agreement. The outputs revealed that the exergy loss is in a direction proportion with 

Hartmann number. For higher values of Da, nanofluid motion enriches and consequently 

Nuave augments. Isotherms become curvy with rise of permeability 

Acknowledgment: Dr. Mossaad Ben Ayed would like to thank Deanship of Scientific 

Research at Majmaah University for supporting this work under the Project Number No. 

1440-51. 
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Fig. 1. Current domain with constant heat flux 
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Fig. 2. Outputs for various Ra at 0.04 ,Ha 1,Da 0.01     
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Fig. 3. Outputs for various Ra at 0.04 ,Ha 20 ,Da 0.01     
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Fig. 4. Outputs for various Ra at 0.04 ,Ha 1,Da 100    
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Fig. 5. Outputs for various Ra at 0.04 ,Ha 20 ,Da 100    
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Fig. 6. Values of Nuave for various , ,Ra Ha Da
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Fig. 7. Values of Be for various , ,Ra Ha Da
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Fig. 8. Values of Xd for various , ,Ra Ha Da
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Table1. Features of H2O and iron oxide  

 Pure water 3 4Fe O  

 
1

m 


  0.05  25000 

5 110 ( K )   21 1.3 

k(W / m.k )  0.613 6 

pC ( j / kgk )  4179 670 

3( kg / m )  997.1 5200 

 

Table2. Various grids and obtained aveNu at 100, 1,Da Ha 
410Ra  and 0.04  . 

51 151  71 211   

2.12102 2.15137 
91 271  

61 181  81 241  2.15804 

2.14914 2.15365 
 

 

Table3. Comparison of current outputs with benchmark [30] at Pr=0.7. 

 3Ra 10  4Ra 10  5Ra 10  

De Vahl Davis [30] 1.118 2.243 4.519 

Present 1.1432 2.2749 4.5199 

 

 

 


