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Hydrogen mass transport resistance changes in a high temperature polymer membrane fuel
cell as a function of current density and acid doping

Sobi Thomasa,∗, Samuel Simon Arayaa, Steffen Henrik Frenscha, Thomas Steenbergb, Søren Knudsen Kæra,∗

aDepartment of Energy Technology, Pontoppidanstræde, Aalborg University, Aalborg East -9220, Denmark
bDanish Power Systems, Egeskowej 6c, DK-3490 Kvistgaard, Denmark

Abstract

High temperature polymer electrolyte membrane fuel cells (HT-PEMFC) have phosphoric acid doped membranes. Acid in the
membrane is mobile and tends to move out of the membrane depending on the acid doping. The migration of acid (when the doping
is high) towards the anode at high current density > 0.4 A cm−2 causes gas diffusion layer (GDL) and catalyst flooding which
thereby results higher hydrogen transport resistance. Thus, it is important to determine the acid doping level, which is optimal. In
this study, transient changes in hydrogen mass transport is investigated as a function of doping level and current density. Three
doping levels 11, 8.3 and 7 molecules of H3PO4 per PBI repeat unit are investigated. Electrochemical impedance spectroscopy
(EIS) was modified to a single frequency measurement and time constant are calculated for resistance change with current density
using a linear fit. The time constants are 2.0±0.5, 3.4±0.3, 8.2±0.2 min for low and 2.5±0.8, 4.9±0.3 and 4.5±0.2 min for high
current densities, for the respective doping levels. The resistance decreases at high and increases at low current densities for all the
doping levels with a varying time constant. This change in time constant is attributed to low doping level having lower capillary
pressure to push the acid from reaching GDL pores from the membrane and/or catalyst layer.

Keywords: Load cycling, EIS, Fuel cell, high temperature PEM, Phosphoric acid

1. Introduction

High temperature PEM fuel cells (HT-PEMFC) have sev-
eral advantages in terms of higher CO tolerance and minimal
humidification complexities [1, 2]. The most commonly used
membrane is phosphoric acid doped polybenzimidazole (PBI)
membranes. The advantage is the possibility of fuel cell op-
eration at elevated temperatures which enhances the reaction
kinetics and reduces engineering problems associated with sys-
tem design. HT-PEM fuel cells are operated at a temperature of
around 160-180 ◦C. The proton conductors in these fuel cells
are phosphoric acid (PA) which makes the fuel cell operation
at elevated temperature possible without humidification. How-
ever, the presence of acid required for the proton conduction is
also associated with some problems. The PBI matrix which is
doped with PA takes up two acid molecules per PBI repetitive
unit. However, the acid doping required to achieve reasonable
performance is significantly higher. The doping level also de-
pends on the membrane preparation method. Two most com-
monly used MEAs in HT-PEM fuel cells are sol-gel type and
post-doped MEAs. In case of sol-gel MEAs, the acid doping
level can reach up to 70 per PBI repeat unit [1] and is much
higher compared to post-doped MEAs which usually have dop-
ing level of 9-12 per PBI repeat unit [3]. .

∗Corresponding author
Email addresses: sot@et.aau.dk ( Sobi Thomas), skk@et.aau.dk

(Søren Knudsen Kær)

Nevertheless, in both the cases, a large amount of acid is free
within the cell and can move to other parts of the cell, such
as the gas diffusion layer (GDL), catalyst layer and also the
flow-plates, from where the chances of it getting removed with
the gases are high. The loss of phosphoric acid is a highly de-
bated topic considering the fact that differently doped MEAs as
mentioned above are available commercially. Some authors re-
ported that there is a loss of acid by evaporation which leads to
the degradation of HT-PEMFC in the long term when the dop-
ing is high [4, 5]. The other argument reported is that the acid
loss is not an issue for the durability under certain operating
conditions [6, 7].

Yu et al. [7] investigated the cause of degradation in an HT-
PEMFC using continuous 550 h operation. The test results
show a degradation rate of 0.18 mV h−1 after an activation for
90 h. The analysis based on different characterization methods
suggest that the degradation was a result of catalyst agglom-
eration and thereby leading to acid leaching from the catalyst
and getting lost. The investigation of acid redistribution on
an operating HT-PEM fuel cell was carried out as a function
of current density. When a load (140 mA cm−2) was applied,
the membrane was seen to swell by ≈20% compared to operat-
ing at open circuit voltage (OCV). This increase was attributed
to an increment in the water generated which gets attracted by
the PA. Further increment of current density to 550 mA cm−2

did not further increase the membrane thickness [8]. The life-
time investigation of HT-PEM fuel cell under accelerated stress
test was investigated by [5]. The parameters considered which
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could influence the acid loss were temperature and reactant flow
rates. They reported 40% loss in acid from a beginning doping
level of ≈36 molecules of H3PO4 per PBI repeat unit resulted in
minimal loss of performance. They also reported that the rate
of acid loss over a period of 2830 h up to a PA loss of 90 % was
same. They suggested there was no effect on the rate of acid
loss to the MEA doping levels [5].

Maier et al. [8] reported 20 % of generated water on the cath-
ode migrates to the anode under the influence of differences in
acid concentration and PA affinity for water. In different studies
using nuclear magnetic resonance (NMR) spectroscopy [9, 10]
it was reported that the proton conductivity in PA-doped PBI
membrane is dominated by H3O+ and H2O species at low PA
doping levels and by H4PO4

+ and H3PO4 molecules when the
PA doping is higher.

The cause of degradation as function of cell resistivity, PA
loss and catalyst agglomeration was investigated by Wannek
et al. [6] under different operating conditions. They reported
that the loss of acid in PA-doped poly(2,5-benzimidazole) (AB-
PBI) membrane was not the main reason for the cell degrada-
tion, even when operated at temperatures below 100 ◦C. The
investigation of platinum particle size indicate that the degra-
dation was more dominated by the catalyst. The degradation
of start/stop with purging was reported lower compared to cell
cycling at 160 over the entire test period [6]. The loss of acid
affects the proton conductivity and that leads to cell degrada-
tion [11, 7]. Geormezi et al. [12], investigated the effect of PA
loading on the anode catalyst when operating with reformed
fuel. The study suggests that PA loading needs to be low on
the anode catalyst, however the presence of PA assists in faster
transfer of protons. Thus, it is seems to be great importance to
deduce an optimal doping level for better proton conductivity
and longer durability.

The present study aims to map the transient changes in the
hydrogen mass transport due to the acid migration towards an-
ode as a function of current density and acid doping. The acid
doping effect on acid migration will be important to understand
how the performance gets affected and also the optimal acid
doping requirement to avoid acid migration and thereby loss of
acid and performance.

2. Experimental setup and procedure

The MEAs used in the present study are Dapazol R©from Dan-
ish Power Systems ApS. The MEA is composed of electrodes
on both sides with a thickness of 150 µm and catalyst loading
of 1 mg cm−2 of platinum. The doping level of the membrane is
varied by using three different concentrations of PA and water
solution. The concentrations used are (65 %, 75 % and 85 %)
for the doping process. The corresponding doping levels were
determined as 7, 8.3 and 11 molecules of H3PO4 per PBI repeat
unit, respectively. The active area of the membrane is 45 cm2,
however, the active area of the electrode was reduced to 2 cm2,
by masking the cathode side membrane using a gasket and hav-
ing a window of (1.8×1.1) near the cathode outlet open to the
gas access. This was done to achieve a uniform flow distribu-
tion across the area and to avoid mass transport issues which

may arise due to non-uniform flow of gases in the channel.
Two channel serpentine and three channel serpentine flow fields
were used for the anode and the cathode side, respectively. The
gaskets were made of Teflon with a thickness of 150 µm on both
sides. The end plates were made of aluminum and the torque
applied was 7 N m using 8 tie-rods and spring assembly.
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Figure 1: The test sequence of load cycling between 0.2 A cm−2 and 0.8
A cm−2, (a) Normal EIS, (b) EIS measurement at one frequency

The tests were carried out with a Greenlight Innovation fuel
cell test stand. The electrochemical impedance spectroscopy
(EIS) was carried using a Gamry Reference 3000. A break-in
process was carried for 100 h at 0.2 A cm−2 with hydrogen on
the anode and oxygen on the cathode. The flow rates were fixed
at 0.2 L min−1 and the gases were humidified at room temper-
ature (30 ◦C) on both sides. The humidification of gases were
to avoid the drying of membrane at high flow rate. All experi-
ments were carried out at 160 ◦C.

The flow rates were fixed at 1 L min−1 on both sides for the
IV curves as well as the EIS measurements which corresponds
to a stoichiometric ratio of above 80 on both sides with pure
H2 and O2. The test sequence for the experiments are shown in
Fig. 1. All the full spectrum EIS measurements were carried
out in galvanostatic mode with the amplitude fixed at 5 % of
the load and points per decade (ppd) fixed at 5. The points per
decade was low in order to reduce the duration of the measure-
ments. The frequency was scanned from 10 kHz to 1 Hz for
the complete spectra, while the single frequency measurements
were carried out in potenstiostatic mode with a fixed amplitude
of 10 mV. The frequency range was restricted to 1 Hz on the
lower end to obtain a fast spectra with minimal change in the
steady state of the system. Lower frequency was found to take
a longer measurement time. The choice of frequency was justi-
fied by the fact that mass transport issue was already visible at
1 Hz as seen from Fig. 4. The data validity was ensured using
kramer-kronig transformation which showed a error % of less
than 1 %. All IV curves were measured by scanning the current
at a ramp rate of 0.50 A min−1 and the lower voltage limit was
set to 0.2 V.
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3. Results and discussion

The anode side mass transport is faster due to the lighter H2
molecules compared to cathode side where the solubility of O2
in PA is slower [13, 14]. Thus, to determine the mass transport
limitations on the anode, the IV curve was recorded under dif-
ferent H2 concentration on the anode and pure oxygen on the
cathode as shown in Fig. 2. To make the gas flow constant for
all the IV curves, N2 was mixed with anode fuel to make it
100 %. The mass transport issues are more dominantly visible
for H2 concentrations below 10 %. A decrease in the limiting
current with lower H2 concentration as seen in Fig. 2 confirms
the assumption that mass transport issues are from the anode
and not dominated by cathode where oxygen is supplied. The
IV curve was used to determine the concentration suitable for
cycling the cell between 0.2 and 0.8 A cm−2. Based on the re-
sults, to capture the anode mass transport issues on the anode
due to acid filling the GDL pores, a concentration of 5 % was
chosen. The concentration was chosen such that the voltage
was above 0.4 V for both 0.2 and 0.8 A cm−2. A lower con-
centration of anode fuel was used to make the mass transport
issue on the anode more dominant. The low concentration also
simulates the scenario, where some areas on the catalyst have a
very low H2 concentration when operating with reformed fuel.
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Figure 2: IV curve at different H2 concentrations.

The first experiment was carried out with MEAs doped with
85 % concentrated PA and a doping level of 11 molecules of
H3PO4 per PBI repeat unit. The EIS recorded with an inter-
val of 1 min is shown in Fig. 3. The EIS was recorded after
changing the current to 0.8 A cm−2 and 1 min rest time after
an operation of ≈5 h at 0.2 A cm−2. The anode fuel concentra-
tion was fixed at 5 % H2 and 95 % N2 during the tests. The
measurement time for each EIS spectrum was 2 min and 23 s.
The results indicate no significant difference in the EIS spectra
when changing from high to low current density.
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Figure 3: EIS over time at 0.2 A cm−2 with 5 points per decade

The analysis of EIS data shows no or minimal differences in
the spectra over time. This suggests that acid migration from
the membrane to the anode GDL (if any), which is assumed to
affect the mass transport issue is not captured by the full spectra
EIS measurement. However, based on previous experience and
results from [15], it is known that acid migration and redistribu-
tion is a fast process and the time taken to record the EIS could
be too long for detecting the acid kinetics related phenomena.

The EIS interpretations in the literature [16, 17] suggests that
the mass transport issues are dominant in the low frequency re-
gion <10 Hz of the EIS spectra. Thus, to reduce the measure-
ment time and be able to detect the fast acid kinetics related
mass transport issues on the anode, the range of frequency scan
was reduced. A frequency range from 10 Hz to 0.5 Hz with
5 points per decade was selected. The EIS recorded is shown
in Fig. 4. The impedance at frequencies below 1.6 Hz shows
an increase over time at 0.2 A cm−2. While at high current
density (0.8 A cm−2), the points overlap. This suggests that
change of current density has an effect on the low frequency
resistance which is mainly contributed by the mass transport is-
sues [17, 16]. However, when a similar measurement is carried
out at high current density, the mass transport issues are not
visible or not captured by the fast frequency scan. This could
be either due to fast acid kinetics at high current density or the
noise in the measurement at high current density (low voltage)
is shadowing the small resistance change at low frequency.

Thus, the next step was to carry out impedance measurement
at a single frequency. The cell was operated at one current den-
sity for 5 h before changing the current density and starting
the measurements. This was to make sure that the acid-water
balance within the system has reached a uniform distribution
within the cell. The measurements were repeated for three cy-
cles and the mean value was plotted. This was to eliminate

3
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Figure 4: Low frequency (10 to 0.5 Hz) EIS recorded over time at 0.2 A cm−2

and 0.8 A cm−2

the experimental error and to have a statistical validation of the
data.

In Fig. 5 (a), the resistance at 1 Hz measured for 1 h at
0.2 A cm−2 is shown. An increase in resistance at the begin-
ning is measured and then it stabilizes. The resistance for three
different doping levels also show a difference in the low fre-
quency resistance. A lower doping level has a higher resistance
and the difference is quite significant. These differences are at-
tributed to the acid doping which probably results in a variation
in the absolute value of the resistance for the differently doped
MEAs.The MEA with a doping of 7 molecules of H3PO4 per
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Figure 5: Low frequency resistance change over time at @ 0.2 A cm−2 and
0.8 A cm−2

PBI repeat unit has the highest resistance. An increase in the
doping to 8.3 and 11 molecules of H3PO4 per PBI repeat unit
resulted in a decrease in the resistance. This indicates that the
performance also has a direct correlation to the doping of the
MEA.

Similarly, the resistance over time measured at 0.8 A cm−2 is
shown in Fig. 5 (b). The resistance decreases over time for high
current density operation at the beginning and then the resis-
tance stabilizes. The 1 Hz frequency resistance over time shows
an increase at low current density (0.2 A cm−2) and decrease
at high current density (0.8 A cm−2). The resistance changes
are seen to be minimal for a doping level of 11 molecules of
H3PO4 per PBI repeat unit. This suggests that the optimal dop-
ing level for minimal acid redistribution is around 11 molecules
of H3PO4 per PBI repeat unit.

The comparison of plots in Fig. 5 (a) and (b) for each dop-
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ing level show a variation in the difference between the two
current densities. The shrinking of impedance as the current in-
crease is because of the change of slope on the IV curve, which
is equivalent to the low frequency intercept of the impedance
spectra with the real axis [18]. Thus, at higher current the low
frequency resistance should be lower compared to at lower cur-
rent density. However, in this case the doping level-based slope
change could be seen. The lowest doping level show maximum
difference between the two current densities low frequency re-
sistance which corresponds to the IV curve slope. This dif-
ference could be attributed to low PA doping level results in a
scarcity of proton conductors which becomes dominant at high
current density compared to low current density.

The difference between the initial resistance at 0.2 A cm−2

and the initial resistance at 0.8 A cm−2 for each doping level
was calculated to deduce the difference in the resistance. The
percentage change in resistance with current density was cal-
culated as 3.5 %, 9.8 % and 17 % for doping levels of 11, 8.3
and 7 molecules of H3PO4 per PBI repeat unit, respectively.
This difference suggest that the change of resistance over time
is slower for a doping level of 11 molecules of H3PO4 per PBI
repeat unit compared to other lower doping levels of 8.3 and 7
molecules of H3PO4 per PBI repeat unit.

The above two arguments suggest that the voltage change
with current density is different for the differently doped MEAs.
This is of interest to predict the performance of HT-PEMFCs
with differently doped PBI membranes.

4. Discussion

To map the doping level, transient hydrogen mass transport
resistance and current density, the resistance was fitted with a
function as defined by Eqn. 1. The variable ’b’ in the equation
represent the time constant for the linear time varying system
to reach steady state when a change in the input was initiated.
The change in the present case was current density while all the
other parameters were kept constant.

f (x) = a × e( −x
b ) + c (1)

where a and c are constants and b is the time constant of func-
tion ’f’.

The current density change induces a variation in the PA dis-
tribution which in turn changes the output resistance of the sys-
tem. A current density induced changes in PA distribution in an
HT-PEMFC was also reported in [19, 20, 21].

The fitted resistance for different PA loading and two current
densities, 0.2 and 0.8 A cm−2 are shown in Fig. 6 (a), (b) and
(c). The trend shows increase in resistance at 0.2 A cm−2 and a
decrease in resistance at 0.8 A cm−2 for all the three differently
doped MEAs.

In Fig.6 (a) shows the resistance change over time for an
MEA with a doping level of 11 molecules of H3PO4 per PBI
repeat unit. The time constants for low and high current den-
sities are 2 and 2.5 minutes, respectively. The resistance be-
comes stable very fast indicating that the acid redistribution is
a fast process. However, from the resistance changes shown in
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Figure 6: Fitted resistances showing the time constants at 0.2 A cm−2 and at
0.8 A cm−2 for differently doped MEAs

Fig.6 (b) and (c) for doping levels of 8.3 and 7 molecules of
H3PO4 per PBI repeat unit, respectively, the time constants are
longer.

The time constants for MEAs with different loading show
an increasing trend with a decrease in the acid loading. In the
case of high current density operation, the time constants are
similar for a loading of 8.3 and 7 molecules of H3PO4 per PBI
repeat unit and was calculated to be around 4.5 minutes. While
in the case of low current density operation a clear variation in
the time constant was calculated. The time constant for lowest
loading of 7 molecules of H3PO4 per PBI repeat unit was high-
est and vice verse for higher loadings of 8.3 and 11 molecules
of H3PO4 per PBI repeat unit.

In literature [19, 22] it was reported that at high current den-
sities the acid/water migrates from the cathode to the anode and
back-diffuses at low current densities. The acid/water migrat-
ing to the anode builds up a capillary force due to change in the
concentration of PA, which pushes the acid into the GDL and
thereby hinders the pathway for the H2. The opposite happens
at lower current densities.

However, in the present case the acid doping level is 3 times
lower compared to the one reported in [19], and hence, seems
to behave in a different way. At low current density the low
frequency resistance increases and at high current density the
low frequency resistance decreases. This could be seen from
Fig.6 (a), (b) and (c).

Becker et al. [21] used MEAs with doping level similar to
the present study. They reported the acid is migrating from the
cathode to the anode at high current density and back-diffusion
happens at low current density using ohmic resistance measure-
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ment of the membrane. They reported a balancing of back dif-
fusion and migration could be achieved with proper doping lev-
els and width of the membrane. The relationship of back diffu-
sion at steady-state is calculated using Fick’s law of diffusion as
shown in Eqn. 2. A higher doping level increases back-diffusion
and thinner membrane facilitates faster back-diffusion.

Jm = D × ∆[H3PO4]/w (2)

where Jm is the diffusion flux, D is the diffusion coefficient,
∆[H3PO4] is the change in concentration and w is the thickness
of the membrane.

A lower acid concentration also results in a thinner mem-
brane, i.e., lower ’w’ in Eqn.2 compared to higher doped
MEAs, which swells with the acid uptake. Thus, the back-
diffusion could be faster depending on which parameter of the
two mentioned above is more dominant.

The migration of acid from the membrane to the anode cat-
alyst may take place under high current density operation and
the generated capillary force, which facilitates the drag of acid
to the GDL, is lower when the doping level is lower. Due to
the low acid doping, the concentration distribution of acid in
the catalyst layer is possibly lower. Therefore, the migration of
acid/water towards the anode facilitates the formation of more
active three phase boundary closer to the catalyst active sites.
Hence H2 access to the three phase boundary becomes eas-
ier and the transport of generated proton also becomes easier
provided the acid has a connectivity to the membrane. This
assumption is valid as many have reported the strong interac-
tion of acid and PBI [23]. Another possibility is the influence
of higher water generation leads to better proton conductivity
through the membrane. The paper focuses on determining an
optimal acid doping level for HT-PEMFCs for longer durabil-
ity under varying load operations. The manuscript suggests that
acid loss which is a major issue in HT-PEMFC could be solved
using an optimal doping level. The manuscript focusses on load
cycling profile which fits well with automotive as well as sta-
tionary power systems drives. As such, this paper should be of
interest to a broad readership including those interested in sys-
tem design: High temperature Polymer Electrolyte Membrane
Fuel Cells: EIS modelling, testing, and performance character-
ization. Thank you for your consideration of our work. Please
address all correspondence concerning this manuscript to me at
the Aalborg University and feel free to correspond with me by
e-mail (sot@et.aau.dk). Some of the potential reviewers who
work on similar topics are mentioned below.

The calculated time constants for the resistances to become
stable are shown in Table 1.

In the present case, the flow rates are 1 L min−1 on both sides,
which corresponds to a stoichiometric ratio of above 80 on both
sides with pure H2 and O2. Thus, the change in resistance aris-
ing due to cathode flow variation seems unlikely.

The three doping levels have different time constant of rising
and falling resistance at low and high current densities. The
highest time constants are for the MEAs with the least doping
level. These time constants are calculated by fitting the mean
of three measurements of each current density. This is a clear

Table 1: Time constants taken for the resistance to become stable at 0.2 A cm−2

and 0.8 A cm−2

Acid doping Time constant ( at
0.2 A cm−2)

Time constant ( at
0.8 A cm−2)

molecules of
PA per PBI
repeat unit

[min] [min]

11 2.0±0.5 2.5±0.8
8.3 3.4±0.3 4.9±0.3
7 8.2±0.2 4.5±0.2

indication that the acid movement dynamics are influenced by
the doping level.

To understand the phenomena better, the resistance at 1 kHz
was recorded over time. The ohmic resistance also follows the
same trend as the low frequency resistance as shown in Fig. 7.
A similar result was reported in [22]. They saw an increase in
high frequency intercept when the current was switched off and
then an decrease in HFR when current was applied. They ex-
plained the phenomena based on hydration/dehydration of PA
in the membrane. The resistance change at high frequency was
determined for the MEA with 8.3 molecules of H3PO4 per PBI
repeat unit. The time constants were calculated as 5.4 and 1.1
minute for high and low current density operation.
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Curve fitting

0.8 A.cm-2

Curve fitting

Figure 7: Ohmic resistance at 1 kHz over time at 0.2 A cm−2 and 0.8 A cm−2

Thus, the increases and decreases of high frequency intercept
suggests that the low frequency resistance trends with current
density and doping level could be an influence of the HFR in-
tercept being transmitted in the impedance spectrum.

A lower doping level is seen to have a higher absolute resis-
tance values and thus, the performance will be lower. On the
other hand, a lower doping level is seen to reduce the loss of
acid higher as the resistance is seen to be continuously decreas-
ing with time at 0.8 A cm−2. Thus, a comparison of different
resistances at low and high frequency and also at different dop-
ing levels and current density suggest that doping level of 11
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molecules of H3PO4 per PBI repeat unit is optimal for better
performance and longer durability.

5. Conclusion

Three MEAs with doping levels of 11, 8.3 and 7 molecules of
H3PO4 per PBI repeat unit were investigated with EIS and mod-
ified EIS methods. The objective was to map the doping level,
current density and transient H2 mass transport resistance. A
low current density of 0.2 A cm−2 and a high current density
of 0.8 A cm−2 was selected for inducing a change in the acid
dynamics. The tests were carried out to quantify issues related
to acid/water migrating towards the anode at high current den-
sity and back-diffusion when operating at low current density.
The impedance at two different frequencies, high and low was
used to quantify the process occurring at the anode. To ensure
that the anode limitations are recorded at low frequency, the
cathode was supplied with pure oxygen at a high stoichiometry
and the anode supply was 5 % H2 and 95 % N2 mixture. The
assumption here was the low H2 concentration would enhance
the anode effect and at the same time simulate the concentration
at some portions of a fuel cell operating with reformed fuel.

At low current density the resistance at 1 Hz frequency and
at 10 kHz increased immediately for a short time before get-
ting stabilised. While on the other hand at high current density
the resistance at both high and low frequency decreased before
stabilizing. The low frequency region which is associated with
mass transport (in this case H2 mass transport) improved when
the current was high for a short time before stabilizing and it
degraded when the current was low.

The time constants for these changes in resistance were cal-
culated as 2.0±0.5, 3.4±0.3 and 8.2±0.2 min at 0.2 A cm−2, and
2.5±0.8, 4.9±0.3 and 4.5±0.2 min at and 0.8 A cm−2 for 11, 8.3
and 7 molecules of H3PO4 per PBI repeat unit, respectively.

The high frequency resistance measurement suggest that the
changes seen in the low frequency are dominantly influenced
by the changes in the proton conductivity of the membrane and
the mass transport is not influenced by the current density when
the doping levels are around ≈11 molecules of H3PO4 per PBI
repeat unit. This is an interesting finding as it suggest that when
the doping level is low, the GDL flooding and thereby loss of
acid by evaporation is not a major issue in the durability of HT-
PEMFC operating under load cycles. Another interesting as-
pect which was deduced based on the current experimental re-
sults is the optimal acid doping level for HT-PEMFC to operate
with minimal acid loss is somewhere around 11 molecules of
H3PO4 per PBI repeat unit as higher doping level of around 33
molecules of H3PO4 per PBI repeat unit has been investigated
by others [5], and have suggest flooding of GDL and thereby in-
duced acid losses. This is important in cases of automotive ap-
plications were the drive cycle involves cycling of load. Thus,
a doping level of around 11 molecules of H3PO4 per PBI repeat
unit could provide with a longer durability when cycling of load
is involved.
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Highlights 

• Enhanced durability of HT-PEMFC under load cycling drive cycle. 
• Mitigation of Phosphoric acid migration towards anode with optimal acid doping. 
• Modified impedance to distinguish different loss in HT-PEMFC. 
• Phosphoric acid dynamics calculated under load cycling. 

 


