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Abstract 

Using next-generation sequencing, we obtained for the first time a complete mitochondrial DNA 

genome from a museum specimen of the extinct wolf (Canis lupus) population of the island of Sicily 

(Italy). Phylogenetic analyses indicated that this genome, which was aligned with a number of 

historical and extant wolf and dog mitogenomes sampled worldwide, was closely related to an 

Italian wolf mtDNA genome (the observed proportion of nucleotide sites at which the two sequences 

are different was p = 0.0012), five to seven times shorter than divergence among Sicilian and any 

other known wolf mtDNA genomes (p range = 0.0050 – 0.0070). Sicilian and Italian mitogenomes 

joined a basal clade belonging to the mtDNA haplogroup-2 of ancient western European wolf 

populations (Pilot et al., 2010). Bayesian calibration of divergence times indicated that this clade 

coalesced at MRCA = 13.400 years (with 95% HPD = 4000 – 21.230 years). These findings suggest 

that wolves probably colonized Sicily from southern Italy towards the end of the last Pleistocene 

glacial maximum when the Strait of Messina was almost totally dry. Additional mtDNA and genomic 

data will further clarify the origin and population dynamics before the extinction of wolves in Sicily. 

 

Key words: Sicilian wolf; Canis lupus; complete mtDNA genome; next-generation sequencing; 

island extinctions. 
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Introduction 

 

In the last centuries, the extension, abundance and genetic diversity of many animal populations 

have been negatively influenced by humans (Li et al., 2016). In particular, populations of large 

vertebrates and top predators have decreased due to anthropogenic environmental changes such 

as deforestation, decline of natural prey and direct persecution (Chapron et al., 2014). The wolf 

(Canis lupus) is one of the few large predators that survived the Pleistocene faunal turnover (Loog 

et al., 2018), but its populations have fluctuated widely throughout the Holocene and in recent 

centuries as a result of the excessive hunting of wild ungulates and direct shootings (Leonard et al., 

2005; Randi, 2011). During those periods, the wolves disappeared from the southern and central 

regions of North America and from most of the countries of western and central Europe. Although 

some wolf populations are currently expanding, re-colonizing parts of their historical territories, 

aided by legal protection, controlled hunting and active conservation, demographic declines have 

led to the local extinction of several small and isolated populations (Linnell et al., 2008). For 

example, the last wolf Honsu (C. l. hodophilax), a dwarf subspecies endemic to the main islands of 

Japan, was killed in 1905 (Ishiguro et al., 2009). The wolf Ezo (C. l. hattai), found only in Hokkaido, 

Japan, was uprooted from the island in the late 1800s (Ishiguro et al., 2010). Furthermore, the small 

isolated wolf population of Sierra Morena, in central Spain, has recently been confirmed extinct 

(Gómez-Sánchez et al., 2018). 

Fossil remains indicate that wolves have been present in Europe since at least the end of 

the middle Pleistocene at about 0.5-0.3 million years ago (Sotnikova and Rook 2010). However, 

those ancestral populations, which exhibited a suite of distinct ecologic and morphologic traits, 

have been completely substituted by contemporary wolves that have spread throughout Europe c. 

25,000 - 20,000 years ago (Pilot et al., 2014; Loog et al., 2018). The extant wolves in the Italian 

peninsula (a distinct subspecies Canis lupus italicus Altobello, 1921) are genetically divergent from 

all other wolf populations in Europe, due to their long-lasting isolation south of the Alps, and to 

recent natural and anthropogenic bottlenecks (Lucchini et al . 2004, Pilot et al 2014). The wolves 

of peninsular Italy barely survived in the second half of the twentieth century, when they were 

limited to the southernmost parts of the Apennines and numbered less than 100 individuals 

(Boitani 1984). During this long period of demographic decline and range contraction, wolves in 

the Alps and the Apennines lost almost all of their mtDNA diversity, which in the past was much 
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larger than the current one (Dufresnes et al., 2018). Since the middle of the last century, the 

recovery of Italian wolves has been spectacular, but the fate of Sicilian wolves has been less 

positive and the population has become extinct (Angelici et al., 2019). 

The historical records of Sicilian wolves are scarce. Their phylogeographic origins, historical 

distribution and abundance on the island are largely unknown (but see: Angelici et al., 2019). Most 

probably the wolves were already rare in the first half of the 1800s, probably due to the loss of 

habitat and of natural preys (Minà Palumbo 1868). Direct hunting was one of the main causes of the 

decline of the Sicilian wolf population and final extinction (Pratesi 1978). Although some anecdotal 

reports mentioned the presence of wolves until 1959 (Pasa A., 1959). An mtDNA control-region 

sequence showed that the skin of an alleged wolf shot in 1924 in Bellolampo (Palermo; preserved 

in the Regional Museum of Terrasini), belongs either to a domestic dog (Angelici et al. 2019), 

morphologically confused with a wolf, or to a hybrid showing maternal mtDNA introgression. 

Although morphological traits and molecular identifications of the few specimens still preserved in 

museums have recently been described (Angelici et al. 2019), the origin and phylogenetic relations 

of the extinct Sicilian wolf population still need further investigation. 

Sicily has been repeatedly isolated and connected to mainland peninsular Italy as a result of 

the eustatic fluctuations of the Mediterranean (Anzidei et al., 2012). Paleogeographic 

reconstructions and paleontological data document periods of intense African-Sicilian faunal 

interchange across the Strait of Sicily during the Messinian bridge, c. 5.3 million years ago (Stock et 

al., 2008). More recently, at the glacial peaks of the Pleistocene, the north-eastern coasts of Sicily 

have been repeatedly connected to Calabria, the tip of the south-western Italian peninsula 

(Antonioli et al., 2014). The Strait of Messina, currently 3.2 km wide and 80-120 m deep, has been 

drained at glacial peaks (Antonioli et al., 2014), and temporary terrestrial bridges have been used to 

colonize the island from a number of animal populations (Palombo 2018), including several 

amphibians and reptiles (Frits et al., 2004 et al., 2016), a galliform bird (Alectoris graeca whitakeri, 

Randi et al., 2003), and European wild cats (Felis silvestris, Mattucci et al., 2013). 

In this study, we hypothesize that wolves in Sicily have been effectively isolated from 

mainland Italian populations at least since the flooding of the last Pleistocene land-bridge across the 

Strait of Messina. We sequenced for the first time a complete mitogenome of the Sicilian wolf, 

obtained from a museum-preserved specimen. With these data, we aim to evaluate the 

phylogenetic relationships of this individual's mtDNA with extant and historical wolves from Italy 
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and worldwide, and to estimate the Sicilian wolf divergence times based on a completed 

mitogenome and not limited to very short mtDNA control-region sequences. Moreover, assuming 

that in the case of hybridization, morphologic identifications can be misleading, we aimed to identify 

the origin of the sequenced mitogenome, either if from a wolf or a dog ancestral maternal 

population via hybridization. We hope that these results will contribute to reconstructing a plausible 

scenario of wolf colonization of the island of Sicily. 

 

Materials and Methods 

 

DNA extraction 

 

A tissue sample was collected from a stuffed wolf specimen (Fig. 1) preserved at the Civic Museum 

“Baldassare Romano”, Termini Imerese (Palermo; Italy). The origin of this specimen is not 

documented, although Angelici and Rossi (2018) suggest that the wolf was probably killed on Monte 

San Calogero near Termini Imerese (Palermo). We sampled the distal portion of the second finger 

of the front leg, including the bone of the phalanx and the nail. The DNA was extracted only from 

the inner parts of the phalanx and the nail, which are somehow protected by exogenous 

contaminations and degradation. Before extraction, the sample surfaces were exposed to UV 

radiation for 30 minutes. We split the sample into two parts, phalanx and nail, which were processed 

independently. We collected the inner dry tissue remains by drilling the nail and grinding the 

phalanx. Thus we obtained two lots of powder, which weighted 324 mg and 252 mg, respectively. 

The tissue powder was stored into two sterile UV-decontaminated test tubes. We used these 

aliquots to independently extract two DNA samples using a ChargeSwitch® Forensic DNA 

Purification Kit (Thermo Fisher), following the producer's procedure. We chose a silica bonding 

method which includes a few extraction steps and therefore should minimize DNA losses. The 

samples were lysed overnight in agitation at 50°C; the DNA bound to magnetic beads was cleaned 

by three washing step. We eluted twice the extractions by incubation for 10 minutes at room 

temperature with 25 ml of elution buffer obtaining a final volume of 50 ml of DNA solution. Since 

historical DNA is already fragmented, incubation at 50°C during the night should not affect 

fragmentation, thus maximizing DNA recovery.  We repeated the elution once again, but we did not 
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find any residual trace of DNA, showing the efficiency of the dilution step. Finally, the two DNA 

extractions were pooled to obtain a single DNA sample. To minimize the risk of contaminations by 

exogenous DNA, the samples were processed in a environmental DNA lab where decontaminating 

procedures have been previously applied to ensure DNA-free zones. Nothing else was processed in 

the lab those days. We used a separate area of the lab dedicated to special applications, easy to 

decontaminate and that was never employed for Canis spp DNA. All bench-tops and equipment 

were flamed or cleaned with bleach and ethanol. We used a 1% solution of sodium hypochlorite, 

sprayed on the lab surfaces and left for 5 min before drying and wiped with 70% ethanol to produce 

levels of gaseous chlorine at the recommended exposure limits (Ballantyne et al., 2015). All the 

equipment were exposed to UV overnight in a sterile laminar-flow hood. We used pipette tips with 

sterile aerosol filters.  

 

NGS library preparation and DNA sequencing 

 

The quality and concentration of the pooled DNA was checked and quantified by 

spectrophotometer analysis using Nanodrop (Thermo Fisher Scientific, Waltham, Massachusetts, 

USA), Qubit (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and TapeStation (Agilent 

Technologies Inc. Santa Clara, California) equipments. An empty extraction sample containing all 

the chemicals in the kit, but without DNA, was used as a negative control. No DNA was detected in 

the blank sample by spectrophotometric analysis of the meat station. Due to the absence of DNA, 

we did not sequence the negative samples. The composition of fragment size and concentration 

for each size range of the input DNA was analyzed in the Tapestation. The volume of the input 

DNA solution was determined by evaluating the concentration of the most frequent fragment 

range, between 200 and 400 bp. The smaller fragments were removed by purification following 

the Agencourt (Bechman) beads protocol. 

We used the Illumina Truseq DNA nano kit (Illumina Inc., San Diego, CA, USA) for library 

preparation according to the manufacturer instructions with some modifications as indicated 

below. We chose not to apply the fragmentation steps because the DNA was already fragmented as 

shown by the spectrophotometric analysis. The extracted DNA resulted already in small fragment 

useful for the sequencing steps. In the second phase, the DNA fragments were blunted using the 

repair mixture 2 at 30 ° C for 30 minutes. The shortest DNA fragments were removed with 250 μl of 

undiluted Sample Purification Beads reagent (SPB). A single adenine nucleotide was added to the 3ʹ 
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ends of the blunt fragments to prevent self-ligation and provide complementary bases for adapters. 

Adapter ligation was performed using LIGation Mix2; adapter dimers were removed by SPB cleaning. 

The library was PCR-amplified with the PCR Primer Cocktail at 95°C for 3 minutes, 8 cycles of: 98°C 

for 20 seconds, 60°C for 15 seconds, 72°C for 30 seconds, 72°C for 5 minutes, hold at 4°C. A library 

composed by a fragment distribution centered at the 295 bp was obtained; It was normalized at the 

concentration of 4nM and then diluted at 12.5 pM. PhiX Control library (v2; Illumina) was added and 

the library was sequenced on a MiSeq platform (Illumina Inc., San Diego, CA, USA), using a SBS MiSeq 

Reagent Kit v2 with a 150 Paired End run.  

 

Bioinformatic analyses and mtDNA genome assemblage 

 

Image analysis, base calling and data quality assessment were performed on the MiSeq that 

generated the BCL files. Casava 1.8 embedded into Illumina Base space wrapper (Illumina Inc., San 

Diego, CA, USA) was used for de-multiplexing and for the conversion of the BCL files to compressed 

Fastq files. Adapter sequences were removed with AdapterRemoval 2.3.0 (Schubert et al. 2016); 

reads were trimmed for low quality bases and overlapping reads for at least 11 nucleotides were 

merged using the following parameters: trimns, minlength 30, trimqualities, minquality 35, collapse. 

The processed reads were mapped against the complete mtDNA reference genome of an Italian 

wolf (GenBank accession number KF661048) by means of the BWA-MEM 0.7.17 aligner algorithm 

(Li and Durbin, 2010). We extracted 2130 reads, which mapped onto the reference mitogenome. 

Mapped reads were filtered using MapDamage 2.0 (Jónsson et al., 2013) and quality scores of C->T 

or G->A transitions, potentially due to post-mortem DNA damage, were adjusted according to the 

position in reads and damage patterns. Filtered reads mapped onto mtDNA (6.618 paired end reads) 

were extracted from the BAM file using SAMTools 1.4 (Li et al., 2009), reconverted to Fastq format 

and then assembled into a complete consensus sequence with Spades 3.11 (Bankevich et al. 2012) 

for subsequent analysis of concatenated mtDNA genome . The quality of assembled mtDNA genome 

was evaluated using Quast tool (Gurevich et al., 2013). DNA SNPs (Table 2) were validated by manual 

inspection using IGV 2.4.6 (Robinson et al., 2011) . BWA-MEM was used to map specific reads of 

sex-determining Y gene (SRY) region present within our FASTQ files against dog SRY sequence 

(AF107021.1) as reference. To confirm the presence of SRY sequences within our sample, we 

performed a search for mapped reads with blast algorithm as implemented in NCBI website 

(Altschul et al. 1990) with the parameters: expect threshold: 10, word size: 28, match score: 1, 
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mismatch score: -2, gap costs: linear; filtered for low complexity, the more significant match was 

with Canis lupus familiaris chromosome Y genomic sequence, accession number KP081776.1, with 

a 100% of identity and a e-value of 5e-49  

 The processed reads were mapped against the complete mtDNA reference genome of an Italian 

wolf (GenBank accession number KF661048) by means of BWA-MEM 0.7.17 aligner algorithm (Li 

and Durbin, 2010). The new Sicilian wolf mitogenome was then realigned with the sequences of the 

three Italian wolf mtDNA genomes in GenBank: KF661048.1 (Thalmann et al. 2013); KU696389.1 

and KU644662.1 (Koblmuller et al. 2016), and with a sample of the many complete Canis lupus 

mitogenomes in the GenBank using ClustalW (Higgins et al., 1994) in MEGAX (Kumar et al. 2018) 

with default parameters. Correct translations were taken into account. Short overlapping DNA 

segments, eventual incomplete stop codons and mutations at the three codon positions were 

identified using MEGAX. RNA sequences were identical to homologous Canis lupus sequences in 

GenBank, so we did not reconstruct secondary structures.  Missing and ambiguous bases were 

excluded and not used in phylogenetic analyses. 

 

Phylogenetic analyses and estimates of divergence times 

 

We analysed two different datasets that were generated aligning the new Sicilian and other Canis 

lupus mitogenomes downloaded from GenBank (Table 1). Set#1 includes 51 complete modern wolf 

mitogenomes used by Koblmuller et al. (2016), three historical wolf samples, 14 dogs (C. l. familiaris) 

and five Himalayan wolves (named C. l. laniger or C. l. chanco) that were used as outgroups. Set#2 

includes 26 modern wolf mitogenomes used by Thalmann et al. (2013), two historical Ezo wolf (C. l. 

hattai) and three historical Honsu wolf (C. l. hodophilax; Matsumura et al. 2014), four Himalayan 

wolves and four coyote mitogenomes that were used as outgroups. In these two alignments, we 

excluded the control-regions (CR), which were only partially sequenced in the historical and in some 

of the modern samples. The alignments were manually checked in MEGAX and adjusted. Moreover 

we blasted the new Sicilian wolf mtDNA CR in GenBank to search for eventual matching with other 

wolf or dog CRs. In particular we were aiming to assess if the new Sicilian wolf CR was shared with 

the available CRs sequenced from the historical wolves which lived in the Alps and Italian peninsula 

(Dufresnes et al. 2018) or in Sicily (Angelici et al. 2018).  
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Table 1. List of complete Canis mitogenomes aligned and used in phylogenetic analyses (n = 

number of mitogenomes). 

 

 

Alignment 

 

Mitogenomes (n) 

 

References 

 

   

Set#1 Sicilian wolf (1) This study (GenBank MH891616.1) 

 Italian wolves (1) Thalmann et al. 2013 (KF661048.1)  

 Modern wolves (50) Koblmuller et al. 2016 

 Historical wolves (3) Koblmuller et al. 2016 

 Dogs (14) Koblmuller et al. 2016 

 Himalayan wolves (5) Koblmuller et al. 2016 

   

Set#2 Sicilian wolf (1) This study (MH891616.1) 

 Italian wolves (3) Thalmann et al. 2013 (KF661048.1) 

Koblmuller et al. 2016 (KU696389.1; KU644662.1)  

 Modern wolves (23) Thalmann et al. 2013 

 Historical  Ezo wolves (2) 

Historical  Honsu wolves (3) 

Matsumura et al. (2014) 

 Himalayan wolves (4) Thalmann et al. 2013 

 Coyotes (4) Thalmann et al. 2013 

 

 

We performed a preliminary DNA substitution model selection of the mitogenome 

alignments in Set#1 and Set#2 using IQtree 1.6.8. (Nguyen et al. 2014) with the Model Finder+Tree 

reconstruction procedure. We used IQtree to compute maximum-likelihood (ML) trees with the 

best-fit model (TN+F+R6; TN = TN93; Tamura & Nei, 1993; F = empirical base frequencies; R6 = 

generalized free-rate Gamma-distribution with 6 categories; Yang 1995). The trees were rooted 

using the five Himalayan wolf (C. l. laniger and C. l. chanco; Set#1) or the four coyote (DQ480509, 

DQ480510 and DQ480511, Björnerfeldt et al. 2006; KF661096.1, Thalmann et al. 2013; Set#2) 

mitogenomes as outgroups. For comparative purposes, we analysed the Set#1 and Set2# alignments 

in MEGAX using the FindBest DNA Model maximum-likelihood (ML) procedure. The best-fit 

substitution model was TN93+G, followed by HKY+G (G = G-distribution with 6 categories, 

corresponding to R6 in IQtree). We used the Neighbor-joining procedure (NJ; Saitou and Nei 1987) 

with these substitution models and heterogeneous lineages evolution. Support to the phylogenetic 
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tree internodes were determined by 1000 interior-branch length test of minimum evolution trees 

(ME; Nei and Kumar 2000) and by 1000 bootstrap samplings of NJ trees (Tamura et al. 2013). We 

identified and visualized  transitions, transversions, variant sites and repeat motifs copy numbers in 

MEGAX. All positions containing missing data were excluded.   

We used the Set#2 alignment to compute a Bayesian majority-rule phylogenetic tree using 

BEAST 2.5.1 (Drummond et al. 2012), with the HKY+G model. Markov chain Monte Carlo (MCMC) 

samples were drawn every 1000 generations from a total of 1,000,000 generations, following a 

discarded burn-in, based on Tracer 1.7.1 (Drummond and Rambaut 2007) outputs, of 100,000 

generations.  BEAST was used to infer the age of the most recent common ancestor (MRCA) of a 

clade joining the Italian and Sicilian wolf mtDNA, which was calibrated using the divergence times 

among Japanese wolves (MRCA = 46,800; 95% highest probability density HPD = 37,500–58,000 

years) as estimated by Matsumura et al. (2014). Both the uncorrelated log-linear model (Drummond 

et al. 2006) and the strict clock model were tested for the molecular clock, and both the Bayesian 

skygrid model (Gill et al. 2013) and a constant model for the population size. The convergence and 

performance of different models were assessed using Tracer 1.7.1. The consensus tree was 

visualized with FigTree 1.4.4 (A. Rambaut et al. 2018) or with TreeAnnotator in BEAST. The 

configuration files for BEAST were done using BEAUti (in the BEAST package). 

 

Results 

 

The quantity and quality of the DNA extracted from the inner nail and distal bone phalange of an 

historical wolf from the now extinct Sicilian population was good enough to obtain reliable mtDNA 

sequences  by next-generation procedure.  Good DNA quality was indicated by a value of the ratio 

260/280 nm = 1.9, which suggested a low presence of inhibitors. The total double-strand DNA 

concentration was = 1.6 ng/µl. DNA fragments were distributed normally with size ranging from 40 

bp to 1040 bp, centered at 250 bp, with a concentration of 0.6 ng/µl. Based on the results of these 

quality-controls we omitted the initial DNA fragmentation step for library preparation. The DNA was 

directly PCR-enriched for fragments spanning from 165 bp to 655 bp, centered at 295 bp, (Fig. 2). 

We obtained a library of about 12 GB for the paired-end readings (5.8 GB for the fastq R1 and 5.9 

GB  for the fastq R2 files). We recovered about 3,150 paired-end readings (about 6,300 readings in 

total; DNA concentration = 2.49 ng/µl) with an average length of 100 bp. Taking into account the 
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presence of overlapping and duplicate readings and that the mitogenome of the wolf is about 

16.500 bp, the coverage for the mtDNA was c. 20X. 

The reads were assembled into a complete Sicilian wolf mtDNA, which was 16,678 bp long 

(GenBank accession number: MH891616.1). Direct inspection (in MEGAX) of the alignment with 

reference dog and Italian wolf homologous sequences, showed that all the expected mtDNA tRNA, 

rRNA and protein-coding genes were correctly identified and mapped; these sequences did not 

show any anomalous stop codon and translated into the expected RNAs or proteins. Thus, we 

assumed that this mtDNA genome was authentic. In comparison with the known Italian wolf mtDNA 

genomes, the Sicilian wolf exhibited 14 silent transition substitutions and only one first-position G-

A mutation that changed a V into an M aminoacid residue at codon 21 of the ATP6 gene in the 

Sicilian wolf (Table 2). The mtDNA CR of the Sicilian wolf was 1,219 bp, that is 50 bp shorter than 

the corresponding sequence of the Italian wolf CR due to 10 missing copies of a CGGTACACGT repeat 

(Kim et al. 1998). 

 

Table 2. List of mutation differences between the Italian wolf reference (KF661048.1; Thalmann et 

al. 2013)  and the new Sicilian wolf (MH891616.1) mitogenomes. The variant sites were identified 

and visualized in MEGAX. 

 

 

 

mtDNA gene 

 

 

Position 

 

Mutation 

ND1 3458 C-T 

ND1 3497 C-T 

ND2 4025 A-G 

ND2 4352 T-C 

COX1 6072 T-C 

COX1 6111 T-C 

ATP6 8025 G-A [V-M] 

ND3 9637 T-C 

ND3 9763 C-T 
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ND4 11326 T-C 

ND4 11515 G-A 

ND4 11838 G-A 

ND5 13575 T-C 

ND6 13863 T-C 

ND6 14937 T-C 

CR 15615 C-T 

CR 15629 C-T 

CR 15804 C-T 

CR 16018 C-T 

 

 

The observed proportion of nucleotide sites at which the Sicilian and Italian wolf 

mitogenomes are different (p-distance) was p = 0.0012 (identical to the estimated TN93 distance), 

that is five to seven times shorter than genetic distances (D) among the Sicilian and any other wolf 

mitogenomes (D = 0.0050 – 0.0070). The p-distance between Sicilian and Italian wolves CR was D = 

0.0181; hence, as expected (Stoneking 2000), the CR mutated faster than the RNA and protein-

coding mtDNA sequences. 

The best-fit model of nucleotide substitution in Set#1 and Set#2 was TN+F+R6 (BIC = 

67166.7818); the next one was the HKY+F+R6 (Hasegawa et al. 1985), with BIC = 67181.2424. The 

maximum-likelihood (ML) trees computed by IQtree with the best-fit model are shown in Fig. 3 

(Set#1) and Fig. 4 (Set#2). In both trees the mitogenome of the Sicilian wolf joined a basal 

phylogenetic clade that included the Italian wolf and two mtDNA genomes respectively sequenced 

from a wolf sampled in Poland (KF661045.1) and in Belarus (KU696390.1). This clade (hereafter 

named the Italian clade) was basal to all the other modern wolf and dog genomes, excluding the 

two Pleistocenic wolves included in set#1: KF661088.1 (estimated age 28,000 years, from Alaska) 

and KF661081.1 (18,000 years from Russia). However, the internodes connecting the main wolf 

clades were weakly supported by bootstrap analyses (Fig. 3 and Fig. 4). The Sicilian wolf mitogenome 

in the Italian clade was basal to the peninsular Italian wolf mitogenome. Bootstrap and interior-

branch length tests showed that the Italian clade was 99% - 100% supported. The same position of 

the Sicilian wolf mitogenome in the Italian clade and the same topology of the trees were obtained 

in MEGAX with the best-fit TN93+G substitution model and the NJ procedure.  
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The Bayesian majority-rule consensus phylogenetic trees (Fig. 5) obtained analysing the 

Set#3 mtDNA genomes fully supported the IQtree and MEGAX results. The Japanese and Italian wolf 

clades were basal to all the other modern wolf and dog genomes. The average coalescence time of 

the Italian clade, as estimated in BEAST following Matsumura et al. (2014), was MRCA = 13,400 years 

(with 95% highest probability density HPD = 4000 – 21,230; Fig. 6). The divergence times of the 

Italian wolf and Japanese wolf from the other wolf clades were similar (c. 100,000 years), 

highlighting the ancient origins of wolves in peninsular Italy and Sicily in comparison to other wolves 

and dogs worldwide. The Italian and Sicilian wolf mitogenomes belong to the wolf haplogroup-2, 

that includes all the ancient wolves sampled in western Europe dating from between 44,000 and 

1,200 years ago (Pilot et al. 2010). 

The mtDNA CR of the Sicilian wolf was blasted in GenBank to search for eventual best match 

matching with domestic dog CRs. The CR of the Sicilian wolf did not match with any of the dog 

sequences known so far, thus supporting its origin in a wild wolf populations. The sequence was 

identical to a partial mtDNA CR sequence found by Dufresnes et al. (2018) in a different wolf sample 

from Sicily (their haplotype H3 from sample AN855; Museo di Zoologia P. Doderlein, Palermo). The 

sequence was also identical to two partial mtDNA CR sequences (MK129178.1 and MK129179.1) 

found by Angelici et al. (2018). Thus, this mtDNA genomes was apparently unique for the extinct 

wolf population of Sicily. 

We analyzed the stored genomic DNA reads  to search for specific  sex markers. We identified 

SRY sequences matching with the homologous Canis lupus chromosome Y genomic sequences 

present in GenBank (AF107021.1), thus indicating unequivocally that the studied specimen was a 

male. 

 

Discussion 

 

In this study we obtained for the first time a complete mitogenome of a wolf from the now extinct 

Sicilian population. This wolf was likely killed on Mt. San Calogero, near the city of Termini Imerese, 

probably in the last years of the nineteenth century, very near to the extinction of the island 

population, for the last documented wolf was killed in 1935. The DNA extracted from this sample 

was of quality good enough to obtain reliable mtDNA coverage and sequences using next-

generation procedures. Due to the well known high copies number of the mtDNA genome per cell, 
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depending on the type of tissue (Bogenhagen et al., 1974), mtDNA coverage can easily exceed the 

coverage of genomic DNA sequences (Picardi et al., 2012), thus facilitating reliable library 

construction. These results could also be explained by the relatively good quality of the DNA, which 

was extracted from the inner part of a nail and distal phalange bone, in fact a protected environment 

from exogenous contaminations and from DNA degradation. The tissue sample was collected from 

a wolf killed about one century ago, which should be considered historical and not truly ancient. 

The control-region of the new Sicilian wolf mitogenome is identical to a partial CR sequenced 

from a different Sicilian wolf sample (Dufresnes et al. 2018), and to two partial CR sequences 

obtained from another Sicilian wolf specimen, as mentioned by Angelici et al. (2018). These results, 

pending further evidence from molecular studies of additional Sicilian wolf samples, suggest that, 

during the last few decades before the extinction, the wolf population of Sicily showed a unique 

mtDNA haplotype and low genetic diversity. Phylogenetic analyses also indicate that the 

mitogenome of the Sicilian wolf is closely related to the predominant mitogenome of the past and 

extant wolf population in peninsular Italy (Dufresnes et al. 2018; Randi et al. 2014; Montana et al. 

2017). The Sicilian and Italian wolf mitogenomes join in a strongly supported clade (the Italian clade) 

which includes also two mtDNAs sequenced from two wolves sampled in Poland and in Belarus, 

respectively. 

This clade is basal to all the other modern wolf and dog haplogroups sequenced so far, with 

the exception of most of the ancestral sequences obtained from Pleistocenic wolves (Thalmann et 

al. 2016; Koblmuller et al. 2016), and from the now extinct Japanese wolves (C. l. hodophilax; 

Matsumura et al. 2014). The origin and fate of the Japanese wolves has been described Matsumura 

et al. (2014). Both the Japanese and Italian wolf clades, which apparently split c. 130,000 – 100,000 

years from all the other modern wolf haplogroups worldwide, belong to the mtDNA haplogroup-2 

(Pilot et al. 2010). This haplogroup has been detected in the ancient western European wolf 

population that were largely substituted by the recent spread of modern wolves, which showed the 

more recent mtDNA haplogroup-1 (Pilot et al. 2010). However, these mitogenomes clearly indicate 

that both extant wolves in Italy and extinct wolves in Sicily are by far more recent than Himalayan 

wolves, formerly considered a subspecies of C. lupus and named C. l. laniger or C. l. chanco, but now 

ranked as distinct species C. himalayensis (Aggarwal et al. 2007). They diverged c. 550,000 (95% HDP 

= 495,100–605,600) years ago (Matsumura et al. 2014), and predated the evolutionary radiation of 

Eurasian and New World C. lupus. 
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In this study we used Matsumura et al. (2014) estimates of Japanese wolf mtDNA divergence 

time to compute a MRCA = 13,400 years (95% HPD = 4000 – 21,230) of the Italian wolf clade. The 

mtDNA genome of the Sicilian wolf is basal to the Italian wolf clade, thus a MRCA = 13,400 years can 

be considered as an approximate estimate of island-mainland wolf mtDNA divergence. Although 

phylogenetic relationships and divergence time estimates obtained from complete mtDNA genomes 

should, in principle, outperform estimates obtained using only shorter sequences, they should 

anyway be used with caution. First, the mtDNA is a maternal haploid genome informative only on 

single-gene relationships and not on population-species phylogeny. Then, the sample size used in 

our and other studies (e.g., Angelici et al. 2019) are by far too small to exclude uncertainty. The wolf 

population in Sicily is extinct, the available museum specimens are few and perhaps not always 

suitable for genomic studies, thus the sample size of the target population could not be much 

expanded. However, we believe that the addition of complete mitogenomes from other 

haplogroup-2 wolf populations could improve the phylogenetic structure and connections of the 

Italian wolf clade, allowing more reliable estimates of divergence times. Moreover, sequences form 

chromosomal genes could contribute to better describe the phylogeographic history of the wolf 

population in Sicily. 

The mtDNA CRs of Sicilian wolves are distinct from homologous CR sequences of historical 

Italian wolves obtained by Dufresnes et al. (2018). Wolves in peninsular Italy were certainly 

abundant a few centuries ago, but the museum specimens suitable to DNA sequencing are too few 

to conclude that the Sicilian haplotypes were absent in the historical mainland population. Hence, 

we cannot exclude that the Sicilian mtDNA haplotypes evolved in peninsular Italy. However, based 

on the available data, the most parsimonious hypothesis is that those haplotypes evolved in Sicily 

following wolf colonization of the island. The divergence time of 13,400 years (95% HPD = 4000 – 

21,230) of the Sicilian wolf mtDNA is compatible with the age of the last land bridge between the 

island and the south-western tip of Italy, which, according to Antonioli et al. (2012) lasted for at 

least 500 year from 21,500 to 20,000 years ago. A late Pleistocene colonization of peninsular wolves 

before the Messina strait was definitely flooded less than 20,000 years ago does not exclude earlier 

colonization waves, which, seems, nevertheless undocumented by the available Sicilian wolf 

specimens. These estimates of mitogenome divergence time and landbridge connections should, 

anyway, be considered as preliminary due to the uncertainty (and large HPD) inevitably consequent 

to both paleogeographic and molecular dating. 
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Conclusions 

 

During late Holocene a number of species, and in particular ungulates (red deer, fallow deer, roe 

deer, wildboar), the natural prey of wolves, went extinct in Sicily like due to anthropogenic pressures 

(La Mantia and Cannella 2008). The concomitant consequences of habitat transformations, ungulate 

decline and overhunting most probably pushed the wolf population of Sicily to decline and finally 

disappearing. The few available stuffed specimens evidence smaller body size and paler coat colours 

of the last wolves in Sicily in comparison to the Italian wolves. Moreover wolves in Sicily did not 

show the darker fur strip on the front legs, a morphological trait typical, but not unique of the 

peninsular Italian wolf population (Altobello 1921; Ciucci and Boitani 2003). Dwarfism and local 

phenotypic adaptations are typical of some island vertebrate populations. Moreover, we cannot 

exclude that during the final population bottleneck wolves in Sicily crossbred and hybridized with 

free-ranging dogs, perhaps accelerating the speed of the extinction vortex (see: Gómez-Sánchez et 

al. 2018). Future genomic data and analyses could perhaps shed more light on the extent of 

homozygosity and eventual domestic dog introgression in the lost population of wolves in Sicily. 
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Figure Legends 

Figure 1. A picture of the sampled and genotyped Sicilian wolf from the Civic Museum “Baldassare 

Romano”, Termini Imerese (Palermo; Italy). 

 

Figure.2: Capillary DNA analysis on Tape station electrophoretic systems demonstrating the size 

bands distribution for the obtained library 

Figure 2. Maximum-likelihood tree of wolf mitogenomes used by Koblmuller et al. (2016), 

including three historical wolf samples, 14 dog (C. l. familiaris) genomes and the new Sicilian wolf 

mitogenome. Five Himalayan wolf (here named C. l. laniger or C. l. chanco) mtDNAs were used as 

outgroups. The Italian clade is indicated. Bootstrap values at the internodes. 

 

Figure 3. Neighbor-joining tree of modern wolf mtDNA genomes (control-region excluded) used by 

Thalmann et al. (2013), and the new Sicilian wolf mtDNA genome. Four coyote (C. latrans) mtDNAs 

were used as outgroups. The Italian clade is indicated. Bootstrap values at the internodes. 
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Figure 4. Consensus Bayesian phylogenetic tree computed by BEAST 2.5.1 (Drummond et al. 2012) 

with the HKY+G model (Hasegawa et al. 1985). We used a subset of wolf mtDNA genomes 

(control-region excluded) published by Matsumura et al. (2014), including two historical Ezo wolf 

(C. l. hattai), five historical Honsu wolf (C. l. hodophilax) and the new Sicilian wolf mtDNA genome. 

Four coyote mtDNAs were used as outgroups. The Markov chain Monte Carlo samples were drawn 

every 1000 generations from a total of 1.000.000 generations, following a discarded burn-in of 

100.000 generations. 

 

Figure 5. Age estimates (indicated by bar lengths) of the nodes of the consensus phylogenetic 

trees computed by BEAST 2.5.1 with the HKY+G nucleotide substitution model. 
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Figure 1. 
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Figure 4. 
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Figure 6. 
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