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Abstract: Major depressive disorder (MDD) is a severe illness imposing an increasing social and
economic burden worldwide. Numerous rodent models have been developed to investigate the
pathophysiology of MDD. One of the best characterized and most widely used models is the
chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner.
More than 2000 published studies used this model, mainly to assess novel compounds with potential
antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and
concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological
changes. However, the stress-induced cellular and molecular changes are important as they may
serve as potential translational biomarkers and increase our understanding of the pathophysiology
of MDD. Here, we summarize current knowledge on the structural and molecular alterations in
the brain that have been described using the CMS model. We discuss the latest neuroimaging
and postmortem histopathological data as well as molecular changes including recent findings on
microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the
available experimental data provide convincing evidence that the CMS model has a high translational
value. Future studies examining the neurobiological changes in the CMS model in combination with
clinically effective antidepressant drug intervention will likely deliver further valuable information
on the pathophysiology of MDD.

Keywords: animal model; CMS; depressive disorder; diffusion MRI; magnetic resonance imaging;
microRNA; MRI; neuroplasticity; proton magnetic resonance spectroscopy; 1H MRS

1. Introduction

Major depressive disorder (MDD) is a complex and potentially life threatening disorder imposing
a severe social and economic burden worldwide. MDD is projected to become a leading cause of
disability by the end of 2030, according to a recent World Health Organization (WHO) report [1].
There are effective treatment strategies, but many patients remain undiagnosed, or do not respond
sufficiently to antidepressant therapy. A major limitation of effective therapy is that the diagnosis
of MDD is still based on subjective criteria as was recently updated in the Diagnostic and Statistical
Manual for mental disorders (DSM V) [2,3]. Therefore, objective biomarkers are needed to detect the
pathophysiological changes specific for MDD. Despite decades of intensive research at the clinical
and preclinical levels, objective biomarkers are still not available to aid the unbiased diagnosis of
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MDD. In vivo neuroimaging of the structural and functional changes that are present in the brains of
depressed individuals may help us to develop such diagnostic markers. For example, hippocampal
volume decrease has been intensively studied as a neuroimaging biomarker for MDD [4–8]. One should
emphasize that the exact cellular pathophysiology underlying this overall hippocampal volume change
is still debated [9–11]. Animal models of depression are valuable tools as they may improve our
understanding of the underlying pathophysiology, could facilitate the identification of disease specific
biomarkers, and aid the development of new antidepressant treatment strategies. Fortunately, it is
now clear that animal models based on chronic stress protocols recapitulate many of the structural
alterations that have been demonstrated in the brains of depressed patients, therefore such models are
valuable tools to investigate the pathophysiology of the disease [12,13].

The chronic mild stress (CMS) model, which was originally developed by Paul Willner [14] is
one of the best characterized and most widely used rodent models of MDD [15,16]. Originally, the
model was developed for rats—and it works best with rats—but since then, many research groups
adapted the protocol for mice. The CMS model is an extensively validated and realistic model of
depression providing (1) high face-validity, for example, similarity between the behavioral phenotype
and the clinical symptom profile; (2) predictive validity, for example, symptom amelioration by clinical
effective antidepressant treatments and conversely unaffected by clinical ineffective treatment of the
human disorder; (3) etiological validity, for example, triggering by events known to be important
for eliciting the human disorder; and (4) construct validity, for example, similar neurobiological
underpinnings [15–18]. Most importantly the CMS model, like a few related rodent models based on
stress exposure, such as social defeat and learned helplessness models [13,19,20], all mimic one of the
core symptoms in depression; anhedonia, which is a decreased interest in activities that used to be
pleasurable in the premorbid state. In rodents, this behavior is measured as a decreased voluntary
consumption of a dilute sucrose solution. The key component of the CMS protocol is that during a
prolonged period rodents are exposed to a sequential number of mild and variable micro-stressors
including alterations in day/night illumination, housing conditions, food/water availability and so
forth [16,17].

In our own studies, we have mainly used a Wistar rat strain, which is an outbred strain,
and subjected the animals to a series of micro-stressors every day (Figure 1). Likely due to their
genetic within-strain variability rats respond differently and individually to stress exposure; some are
susceptible to stress exposure, while some are capable of actively coping with stressors, being stress
resilient [21]. Stress susceptible rats show deficits in reward sensitivity, measured as a decrease in
sucrose consumption, as well as impairments in a number of additional behavioral, histological and
functional readouts [22,23]. These deficits may be reversed by chronic, but not acute, antidepressant
treatment; however, a substantial fraction are treatment resistant and do not recover [24]. Thus, the
clinical time-lag during remission, as well as the inadequate antidepressant drug efficacy, is well
simulated in the CMS model and makes it a valuable tool in antidepressant drug screening, as well as
for studying disease pathology and mechanisms underlying drug action, treatment resistance and
stress resilience mechanisms.

In the literature of CMS experiments, most studies investigated the potential antidepressant
efficacy of novel compounds by examining stress-induced behavioral changes and subsequently
assessing whether concomitant drug treatment was able to reverse the stress-induced behavioral
alterations. However, there are also several studies which focused on CMS-induced cellular and
molecular changes. These are important as they may help us to unravel the neurobiological background
of MDD. We should emphasize, that it is still debated whether the chronic-stress models are truly
helpful and some scientists argue that the chronic stress-induced cellular alterations actually do not
explain the neurobiological basis of depressive episodes [25]. It might also be that stress results in
additional molecular or cellular alterations which have not yet been discovered, but more directly
contribute to the development of depressive episodes.
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The aim of the present review is to provide an up-to date summary of our current knowledge on
the structural and molecular alterations that have been described specifically in the CMS model by
in vivo imaging and postmortem histopathological studies. Data from the CMS model are rapidly
accumulating and we believe that such a summary could aid future research. We argue that these
findings are of great clinical importance as they have strong translational value. Not only because
they could shed light on the neurobiology of the disease, but because they could greatly facilitate the
development of objective diagnostic markers. Furthermore, different chronic stress protocols sometimes
yield different results. Here we aim to list those findings that have been described exclusively with the
CMS model.
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Figure 1. The weekly protocol of the chronic mild stress (CMS) treatment. Adult male Wistar rats are 
subjected every day to a different micro-stressor lasting for 10–14 h. Intermittent illumination: lights 
on and off every 2 hours; Cage tilting into a 45° position; Strobe flashing: stroboscopic lightning; 
Damp bedding: pouring water into the cage to damp the beddings; Paired housing: pairing two rats 
by having an unfamiliar partner at each grouping session. This weekly schedule is typically repeated 
over a period of 4–8 weeks. 
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Figure 1. The weekly protocol of the chronic mild stress (CMS) treatment. Adult male Wistar rats are
subjected every day to a different micro-stressor lasting for 10–14 h. Intermittent illumination: lights
on and off every 2 h; Cage tilting into a 45◦ position; Strobe flashing: stroboscopic lightning; Damp
bedding: pouring water into the cage to damp the beddings; Paired housing: pairing two rats by
having an unfamiliar partner at each grouping session. This weekly schedule is typically repeated over
a period of 4–8 weeks.

The present review is structured in such a way that we discuss the key areas of stress circuitries
separately and present the corresponding stress-induced cellular and molecular changes affecting
these regions. This approach is based on the available knowledge that brain areas regulating the stress
response are the ones which are typically affected in MDD patients as well as in animal models of
depression [13,26–30].
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2. Hippocampal Formation

The hippocampal formation is part of the limbic system and an important regulator of the
hypothalamus-pituitary-adrenal (HPA) axis [31]. Furthermore, this brain area is highly susceptible to
various insults and hippocampal volume decrease has been intensively studied as a neuroimaging
biomarker for depression [4–8]. One important underlying cellular mechanism for this high sensitivity
is the fact that hippocampal neurons have high expression levels of receptors for glucocorticoids and
mineralocorticoids. These receptors mediate a variety of effects on neuronal excitability, neurochemistry,
and structural plasticity [32,33]. In consequence, the chronic stress-induced surge of adrenal steroids
alters cellular functions and plasticity in the hippocampus and results in dendritic atrophy, loss of
dendritic spines and inhibition of neurogenesis in the adult dentate gyrus [34–36]. These cellular
changes contribute to the gross hippocampal volume loss [9,10] since the loss of dendritic and axonal
material, as well as glial changes, are the most likely contributing factors to the hippocampal volume
loss. Massive neuronal loss—which has been documented in earlier studies—is no longer considered
an important contributing factor [9,10,36–38]. Our own MRI findings, which were primarily based on
regions of interest (ROIs) (Figure 2), also imply the absence of massive neuronal loss, which if present
would affect the diffusion tensor imaging (DTI) based mean diffusivity (MD), fractional anisotropy (FA)
parameters, and cellular markers of proton magnetic resonance spectroscopy (1H MRS) [28–30,39–41].
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as spine density and also alters spine morphology in pyramidal neurons of the hippocampal CA3 
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Another thoroughly investigated form of neuroplasticity is the generation of newborn neurons 
in the adult dentate gyrus. Large number of studies documented that CMS inhibits adult 
hippocampal neurogenesis [24,43,47–59]. Follow-up studies also found a significant decrease in the 

Figure 2. A representative 3D image of a rat brain which has been digitally reconstructed from magnetic
resonance imaging (MRI) scans and depicts the medial prefrontal cortex (violet), caudate putamen
(green), hippocampus (blue) and amygdala (brown).

One of the most well-known stress-induced cellular change is the dendritic atrophy of pyramidal
neurons which has been documented first in the CA3 area, but later also in the CA1 region [42]. There is
also evidence of stress-induced dendritic atrophy of dentate granule cells [42,43]. This stress-induced
dendritic reorganization is typically accompanied by reduced spine density as it was shown in
hippocampal CA1 pyramidal neurons [44]. CMS reduces the length of apical dendrites [45] as well
as spine density and also alters spine morphology in pyramidal neurons of the hippocampal CA3
area [46].

Another thoroughly investigated form of neuroplasticity is the generation of newborn neurons in
the adult dentate gyrus. Large number of studies documented that CMS inhibits adult hippocampal
neurogenesis [24,43,47–59]. Follow-up studies also found a significant decrease in the total number
of dentate granule cells in stress exposed rats [60,61]. Furthermore, it has been shown that these
cellular changes are accompanied by subcellular cytoskeletal alterations, that is, altered expression
of alpha-tubulin isoforms and phospho-MAP-2 indicating impaired microtubule dynamics [62].
Numerous experimental data suggest that conditions that produce dendritic retraction make the
hippocampus vulnerable to neurotoxic or metabolic insults and as the “glucocorticoid cascade
hypothesis” postulates, when these conditions are long-lasting then eventually the hippocampus
will shrink, and its impaired functioning will lead to disturbed HPA-axis regulation and cognitive
deficits [63–65].
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As more recent studies point out, chronic stress affects another important neuronal cell type, namely
the GABAergic local circuit inhibitory neurons [66–70]. GABAergic interneurons of the hippocampus
make up only 10–20% of the total neuronal population [71], still their remarkable anatomical and
physiological diversity allows them to regulate virtually all aspects of cellular and neural circuit
function [72,73]. Importantly, recent theories highlight the role of these GABAergic neurons, of the
hippocampus and neocortex, in the pathogenesis of MDD [74–76]. These concepts are based on the
observations in clinical studies involving depressed patients and chronically stressed animal models
which all demonstrate reduced GABA levels in the brain, as well as decreased expression of GABAergic
interneuron markers, and alterations of GABAA and GABAB receptor expressions in multiple brain
areas. In the CMS model, we have also demonstrated stress-induced changes in the number of
hippocampal interneurons [70]. We found reduced number of parvalbumin, somatostatin, calretinin
and neuropeptide Y expressing neurons in specific hippocampal subareas [70]. Parvalbumin-positive
GABAergic interneurons, which are crucially involved in processing complex cognitive tasks, seem
to be particularly vulnerable to stress exposure [66,67,70,77,78]. In line with these observations,
a significant decrease in the dendritic arborization of CA1 GABAergic interneurons were found
together with a reduced expression of glutamic acid decarboxylase 67 (GAD67) in different layers
of CA1 and CA3 regions of the hippocampus [68]. GAD67 is an isoform of the GAD enzyme that
catalyzes the decarboxylation of glutamate to GABA. The stress-induced dysfunctional inhibitory
network eventually leads to impaired rhythmic oscillations and, as a consequence, to cognitive deficits
which are common in stress-related psychiatric disorders [77].

We have also carried out a detailed electron microscopic analysis to quantify the frequency and
morphology of perisomatic inhibitory synapses in the hippocampal CA1 area (Figure 3). Surprisingly,
the number of these inhibitory synapses was not affected by stress [79]. This finding was unexpected
since (1) we found a reduced number of parisomatic GABAergic inhibitory neurons in the same
animals [79]; and (2) there are numerous reports on the remarkable remodeling of the excitatory synapses
on spines that has been reported in response to stress and depressive-like behavior [80–83]. Not only
changes in synapse numbers have been documented, but stress can result in a significant remodeling
of the ultrastructural morphology of individual excitatory synapses. Specifically, stress-exposure
reduced the length of the synaptic active zones in the dentate gyrus and reduced the thickness of the
postsynaptic density in the CA1 area [84]. Another quantitative electron microscopy study reported
that, in animals exposed to CMS, the density of synapses and small dendritic spines were increased
in the inner and outer molecular layers of the dentate gyrus [85] which all suggests a significant
remodeling within the hippocampal neuronal circuitry.

The stress-induced morphological changes of the GABAergic network are complemented by
in vitro electrophysiological findings, which document dysfunctional GABAergic neurotransmission in
the hippocampi of chronically stressed rats [77,86–88]. In addition to that, an in vivo electrophysiological
study focusing on network functions documented impaired long term potentiation (LTP) induction
and decreased basal synaptic transmission at the hippocampal CA3-CA1 synapses, and this was
accompanied by decreased density of dendritic spines in CA1 and CA3 pyramidal neurons [89].

The more detailed neuroanatomical and functional studies document region-specific stress-induced
differences in the dorsal and ventral hippocampus [45]. Specifically, the dorsal hippocampus mediates
spatial navigation while the ventral hippocampus is considered to be responsible for mainly emotional
and anxious behavior [90,91]. The ventral hippocampus is a potent regulator of the neuroendocrine
system by inhibiting the activity of the HPA-axis and consequently diminishing glucocorticoid release
from the adrenal glands [92]. Neylan et al., 2003, reported that cortisol levels are positively correlated
with hippocampal N-acetylaspartate (NAA) levels. Partly in accordance with this, we found a
significant increase in NAA levels, but only after eight weeks of CMS [30,41]. A related study reported
significant increase in N-acetyl aspartyl glutamate (NAAG) and glutamate in the brains of CMS exposed
rats [93], which suggests extracellular glutamate accumulation in the hippocampus after an increase of
glucocorticoid levels [94]. Another CMS study also documented positive correlations of corticosterone
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with GABA/glutamine ratios and glutamate/glutamine ratios in the hippocampus in stress-exposed
rats [95]. The chronic stress-induced elevation of extracellular glutamate may lead to excitotoxicity
and eventually to neuronal death as proposed by the “neurotoxicity hypothesis of depression” [96,97].Cells 2020, 9, x 6 of 28 
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of the dentate gyrus and pyramidal neurons (pyr) of the CA1–3 areas. Abbreviations: o: stratum 
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Figure 3. A representative microscopic image of the rat hippocampus (A). In this coronal section, the
GABAergic perisomatic inhibitory neurons were visualized with parvalbumin-immunohistochemistry,
see the numerous brown cells, some of them are indicated with arrows. Their dense axon fibers
delineate the two distinct cell layers (gcl and pyr) formed by the granule cells (gcl) of the dentate gyrus
and pyramidal neurons (pyr) of the CA1–3 areas. Abbreviations: o: stratum oriens; pyr: stratum
pyramidale; r: stratum radiatum; lm: stratum lacunosum-moleculare; m: dentate molecular layer
(stratum moleculare); gcl: granule cell layer (stratum granulosum); h: hilus proper; DG: dentate gyrus;
CA1–3: Cornu Ammonis 1–3. A representative electron microscopy image of perisomatic contacts and
inhibitory synapses in the CA1 area (B). The axon terminal (green) of an inhibitory neuron projects to
the soma (blue) of a pyramidal cell. Synaptic densities are indicated with yellow arrowheads. Scale bars:
0.5 mm on A and 250 nm on B.

As recent findings indicate, stress affects not only neurons, but also glial cells, astrocytes [98] and
oligodednrocytes [99], as well as microglial cells [100]. These findings are important since abnormalities
of these glial cells have been described also in the brains of depressed patients [101]. Several CMS
studies reported on a robust decrease in the number of GFAP-expressing astroglia in the dentate
gyrus [102,103], whereas microglial activation was detected both in vivo (with PET) and postmortem
(with immunofluorescence staining, and western blotting) [104]. Furthermore, CMS exposure results in
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an increased number of activated microglial cells (Iba-1+) [105]. These findings have led to “gliocentric
theories of depression,” in which glial cells account for the pathophysiology of depression [106–109].

Molecular factors have been studied as well, and dysregulation of neurotrophic factors, primary
brain-derived neurotrophic factor (BDNF), have been pointed out as a key molecule in stress
related cellular changes. It has been shown that stress reduces BDNF expression [110] as well
as dendritic trafficking of BDNF and that may contribute to the stress-induced dendritic atrophy [111].
Increased expression of BDNF, or direct infusion into the hippocampus can restore dendritic atrophy
which suggests that BDNF is a potent regulator of the dendritic complexity [112,113]. It has also
been demonstrated that chronic treatment with antidepressant drugs stimulates BDNF-mediated
signaling [114]. Notably, there is a “BDNF theory of depression” which describes BDNF as the key
molecule accounting for the pathological changes underlying the symptoms of depression [115–117].

Finally, we should point out that recent progress in human-induced pluripotent stem cell (iPSC)
technologies provide excellent novel platforms for modeling the genetic mechanisms underlying
MDD [118]. These models could be useful especially for studying individual differences and for
developing personalized therapies [119]. Furthermore, single-cell models allow the quantitative
analysis of synaptic transmission and the plasticity of different cell lines (i.e., GABA- or glutamatergic
neurons) and these models are also valuable for compound screening [120].

3. Prefrontal Cortex (PFC)

The prefrontal cortex (PFC) has extensive connections to other neocortical and sub-cortical
brain regions and therefore has a vital role in the regulation of executive functions, emotions and
memories [121]. Furthermore, the PFC also participates in the regulation of the HPA-axis [122].
Numerous studies have documented disrupted prefrontal activity and structural atrophy in depressed
patients [123–125], and atrophy in the medical PFC has been shown to correlate with executive
dysfunctions [126]. It is well documented that chronic stress can reduce the volume of the PFC both
in humans and rodents [127–130]. The cellular basis of this volume reduction is most likely the loss
of dendritic material, but stress-induced decrease in glial cell proliferation may also contribute to
this [9,131,132]. It has also been shown that CMS promotes apoptosis in the neocortex [133]. A pioneering
study documented CMS-induced apical dendritic atrophy of pyramidal neurons in the prelimbic (PrL)
and infralimbic (IL) cortices together with reduced neuronal density of layer II in PrL and IL as well as a
reduced volume of layer I/II in PrL and IL cortices [134]. Another study reported reduced dendritic
length of PFC neurons together with dendritic spine loss and altered spine morphology in CMS treated
rats [46,135]. Furthermore, in a three week paradigm of CMS, a reduced spine number in layer V
pyramidal neurons was found [136]. A substantial reduction in the apical dendritic branches might
be a causal factor for the significant increase in the axial kurtosis tensor that we could detect in the
PFC [30,137], however, histological validation of kurtosis metrices are not possible. Furthermore,
a proton magnetic resonance spectroscopy (MRS) study found a significant decrease of glutamate (Glu),
glutamine (Gln), NAA + NAAG, Glx and GABA levels in the PFC of CMS animals [138].

As mentioned earlier, current theories highlight the importance of GABAergic inhibitory neurons of
the neocortex in the development of depressive disorders. Dysfunctional GABAergic neurotransmission
has been reported both in depressed patients and in animal models [76,139–141]. So far there have
been some controversies in the literature, as both enhanced [142] and impaired [23] inhibition has
been demonstrated in the PFC of chronically stressed animals. But it is generally accepted that
chronic stress directly affects various subtypes of GABAergic interneurons in the medial PFC either
by reducing the number of specific GABAergic cell types [23] or by reducing the expression of
the GABA producing enzyme GAD67 [69,143]. There is also evidence that stress can increase the
activity of parvalbumin-positive cells which has mainly been shown in female animals [144–146].
The stress-induced dysfunctions of the PFC GABAergic networks disrupt excitatory/inhibitory balance
which in turn leads to disturbed emotional and cognitive functioning, as well as disrupted HPA-axis
regulation [140–142,147].
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So far, only a handful of studies examined the stress-induced ultrastructural changes in the PFC.
Our group found that CMS reduced the number of excitatory synapses as well as the number of
myelinated axons in the IL, while synapse membrane lengths were increased [130]. Another research
group also found a significant remodeling of excitatory synapses, that is, stress reduced the length
of the synaptic active zones in the anterior-cingulate (Cg1) cortex and reduced the thickness of the
postsynaptic density in the PrL [84]. Yet another group reported on increased inhibitory terminals
and synapses onto glutamatergic cells [142]. These findings are important since synapse loss has been
documented in the PFC of depressed patients [148,149] and synaptic dysfunctions have been proposed
as key factors contributing to emotional disturbances [140].

Glial cells in the PFC are highly important for inducing depressive behavior which was supported
by the finding that glial loss alone may cause depressive like behavior [150]. In addition, numerous
studies have demonstrated that chronic stress can alter the number of glial cells and impair their
functions [105,151–158]. Furthermore, Rajkowska and co-workers reported a significant decrease
in neuronal and glial cell densities in the PFC of depressed patients [159,160]. In some cases, the
investigators could not differentiate between the different types of glial cells, for example, in the case
of the human postmortem studies, where the samples are stained with Nissl staining. Nissl staining
enables the differentiation only between neurons and glia. But there are additional studies which
documented that stress affects all types of glial cells in the PFC, that is, astrocytes [154,161] and
oligodednrocytes [162] as well as microglial cells [152,153]. These findings are important since
abnormalities of these glial cells have also been described in the brains of depressed patients [101].
These findings have led to “gliocentric theories of depression,” in which glial cells account for the
pathophysiology of depression [106–109].

4. Other Neocortical Areas

Most of the clinical and preclinical research on depression has focused on stress-circuitries of the
brain but recent studies have shown that the cerebral cortex is not merely a conduit to sub-cortical
regions of the brain but has a significant role in the etiology and therapy of mood disorders [163].
For example, psychomotor retardation is a key component of depression which has a significant negative
impact on the overall functioning of depressed patients [164]. Among others, a slumped posture, and
decreased or slowed movements of hands, legs, torso and head are typical symptoms. As a potential
contributing factor, a clinical DTI study reported microstructural alterations of cortico-cortical white
matter motor pathways which was also related to psychomotor retardation of depressed patients [165].
Another MRI study reported decreased cerebral blood flow in the primary motor cortex in MDD
patients with psychomotor retardation [166] and a recent meta-analysis of whole-brain studies revealed
reduced gray matter volumes of the right supplementary motor area alterations in first episodes of
depression [167]. Functional and neuroanatomical disturbances have also been found in the auditory
cortex of MDD patients [168,169]. Further MRI studies documented significant thinning of several
cortical areas, as well as widespread reduction of gray matter areas have been documented [170,171].

In our pre-clinical studies we also observed significant microstructural alterations in the motor
and auditory cortical regions in the CMS model using diffusion MRI and immunohistochemistry [28].
We found a significant decrease in extracellular diffusivity in the auditory cortex of CMS exposed
rats, presumably due to the moderate increase of neurite density level [28]. In support of this, an
activated auditory cortex was reported in rats after CMS exposure [67]. Another longitudinal structural
MRI study also revealed significant alterations in auditory, motor and somatosensory cortex [172].
These structural findings were associated with increased functional connectivity in the network [172].
These data suggest an as yet unexplained role of the auditory cortex in mood disorders. Notably,
available evidence documents that the basolateral amygdala is essential to the development of plasticity
in the auditory thalamus to support activation of auditory cortex during fear conditioning [173].
We also observed a significant thinning of the motor cortex in stress-exposed rats [28] and another
study reported increased apoptosis in the neocortex of CMS treated rats [133]. These structural findings
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were associated with increased functional connectivity in the network [172]. A global gray matter
atrophy in the brains of depressed patients [174,175] also highlight the importance of other cortical
areas in the pathogenesis of MDD.

5. Amygdala

The amygdala is part of the limbic system and is crucially involved in the regulation of the stress
response and mediates the influence of stress on memory consolidation and recall [176]. The amygdala
is a key brain area in emotional reactivity and therefore disturbed functioning of the amygdala has
been documented in depressed individuals [177] and unmedicated depressed individuals have reduced
amygdala volume [178]. In general, it is accepted that the amygdala is hyperactive in depressed
patients [179].

Corresponding to this sustained hyperactivity, chronic stress models repeatedly document
increased dendritic length and complexity in the amygdala [180]. We also found a significant increase
in neurite density based on biophysical modeling of diffusion MRI data in the amygdala of CMS-exposed
animals [39,40]. A follow-up study demonstrated that the recovery of the microstructural alterations
in the amygdaloid complex are delayed in comparison to hippocampal recovery [181]. However,
we could not substantiate these findings when we did a longitudinal CMS recovery study using
diffusion MRI and in vivo 1H MRS [30,41]. Notably, the amygdala contributes to the long-term storage
of emotionally arousing and fear-related memories after stress exposure, whereas the hippocampus and
PFC are associated with stress-induced impairment of memory retrieval and working memory [176].
The significant dendritic and concomitant synaptic atrophy in the hippocampus and hypertrophy in the
amygdala might be an important underpinning of this contrasting memory pattern [113]. Most likely
this dendritic and synaptic hypertrophy in the amygdala represents the neurobiological basis of the
hyperactivation of the amygdala, which correlates with the severity of post-traumatic stress disorders [182].

Functional studies indicate a transient increase in the excitatory neurotransmitter glutamate after
acute stress exposure, which also corroborate the finding of hyperactivation of the amygdala [183].
At the same time, chronic elevation of extracellular glutamate during chronic stress results in neuronal
damage and glial activation [184,185]. Furthermore, a significant decrease in the number of astrocytes
has been reported in the amygdala of a patient with MDD [160] and a moderate decrease in the CMS
model [39]. Contrary to the hippocampus, BDNF expression is increased in the amygdala after chronic
stress exposure [114].

A quantitative electron microscopy analysis found that chronic stress results in an increased
maximal thickness of the postsynaptic density in the basolateral amygdala [84]. This microstructural
hypertrophy may also contribute to the significant increase in the volume of the amygdala after chronic
stress exposure [186]. Notably, the volume increase of the amygdala is not a consistent finding and
may be due to the CMS-induced cellular and sub-cellular plasticity, which contribute to either adaptive
anxiety-related behavior or dysregulated anxiety-related behavior [187].

Finally, we should emphasize that a phylogenetically conserved “molecular signature” of
depression has been demonstrated in the amygdala, as a similar pattern of altered gene expression was
identified in the amygdala of MDD patients and CMS-exposed animals [188]. In this study, a large-scale
gene expression was monitored in postmortem tissue from the anterior cingulate cortex and amygdala
of MDD patients and the findings were then compared with data from a CMS study and confirmed
by quantitative polymerase chain reaction (qPCR) and Western blot. The detected genes belonged to
existing cohesive networks which indicated decreased oligodendrocyte and up-regulated neuronal
structure and functions. For example genes regulating neuronal molecular pathology of principal
pyramidal cells of the amygdala were detected, that is, the convergence of increased ARHGAP6
(a RhoA inhibitor), CACNB2 (voltage-dependent calcium channel), and modulators of glutamatergic
synaptic plasticity (CAMK2D, EGR1), coupled with increased components of cell-matrix remodeling
(MATN2, CDH13, and CHSY1), suggested increased structural and functional dendritic/synaptic
compartments [188].
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Others found that the stress-induced anhedonic behavior was associated with disturbed diurnal
oscillation of the expression of clock genes in the mouse basolateral amygdala [189].

6. The Dorsal Striatum

A meta-analytic study found a significantly decreased volume of several subcortical structures
including the caudate nucleus and putamen in depressed patients [190,191], which has been supported
by postmortem studies reporting reduced neuronal density in the caudate nucleus of depressed
patients [192]. Impaired functioning of the striatum has also been documented which was correlated
with the psychomotor retardation [193].

So far, relatively little is known about the stress-induced changes in the striatum, but our findings
indicate a marked reduction in neurite density and a long lasting reduction of axonal density [29].
Another in-vivo diffusion MRI study reported a stress-induced increase in axial diffusivity (AD) and a
reduction of the mean kurtosis parameter compared to stress-resilient animals [194]. Another diffusion
MRI based study found increased radial diffusivity (RD) in the left striatum after CMS exposure [195].
Increased RD is considered a marker of demyelination and suggests neuronal atrophy. In line with
this a postmortem neuronal tracing study found differential dendritic atrophy and hypertrophy in the
dorso-lateral-striatum and dorso-medial-striatum, respectively [134].

7. White Matter Regions

Microstructural changes of the main commissural white matter pathways, such as the corpus
callosum, have been extensively documented in depressed patients [196]. Anhedonia is a core symptom
of MDD and a clinical DTI study revealed a positive correlation between anhedonia and reduced FA
and increased RD values in white matter pathways that connect regions critical for value encoding,
representing stimulus-reward associations, and guiding value-based action selection [197]. In another
DTI study, anhedonia was linked to decreased FA in the cingulum and medial forebrain bundle,
a pathway that connects the ventral tegmental area and nucleus accumbens [198].

White matter alterations have been also studied in the CMS model (Figure 4). A preclinical DTI
study showed decreased FA and increased mean diffusivity and radial diffusivity in the corpus-callosum
of rats subjected to six weeks of CMS exposure [195]. In a clinical DTI study an increased MD of
cortico-cortical white matter motor pathways was revealed [165]. This study also found a negative
association of MD value with motor activity in MDD patients [165]. Another recent study documented
lower FA values in the genu and frontal portion of the body of the corpus callosum in the MDD
patients [199]. This study also employed white-matter tract indices (WMTI) [200,201], which revealed
significantly smaller values of intra-neurite signal fraction in the body of the callosum and greater
fiber dispersion in the genu [199]. Such biophysical model-based parameters have great potential for
capturing subtle alterations in the tissue microstructures and may be used as a biomarker for disease
onset or progression/ relapse.
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8. Other Brain Areas

Numerous other brain areas contribute to the clinical symptoms of depressed patients and we list
here a handful of studies which have investigated neurobiological changes in the CMS models.

Habenula: The habenula is a small, evolutionarily conserved brain structure located in the epithalamus
which plays a central role in aversive processing and is hypothesized to be hyperactive in depressed patients
mediating anhedonia, the central symptom of the disease. Disrupted functioning and altered volume of
the habenula have been described in depressed patients [202,203]. A large scale, mass spectrometry-based,
quantitative proteomic screening study found that expression of theβ form of calcium/calmodulin-dependent
protein kinase type II (βCaMKII) was significantly up-regulated in the lateral habenula of rats which were
subjected to the learned helplessness model, or were selectively bred for the phenotype of learned helplessness
(valid animal models of depression) and thus, identified βCaMKII as a powerful regulator of neuron
function in the habenula and a key molecular player of depression [204].

We also did a molecular profiling study of the lateral habenula using rat whole genome expression
chips (Affymetrix) and real-time quantitative polymerase chain reaction (RT-PCR) to verify the
microarray results [205]. We found that stress affected intracellular cascades like growth factor
receptor signaling, G-protein-coupled receptor signaling, and Wnt signaling-processes involved in the
neuroplastic changes observed during the progression of depression [205]. A more recent study reported
that the CMS-induced depressive-like behaviors was associated with DNA hypomethylation in the
lateral habenula [206]. In this study, DNA hypomethylation increased the transcription of βCaMKII and
glutamate receptor 1 in the lateral habenula and attenuated serotonin levels in the dorsal raphe nuclei.
These data suggest that DNA methylation in the lateral habenula can control 5-HT neuronal activity
in the dorsal raphe and by that regulates the emotional state [206]. Another research group found
significant up-regulation of the somatostatin-2 receptor in the medial habenula of stress-susceptible
rats [207]. Disturbed expression of the neuropeptide somatostatin has already been described decades
ago in depression and other neurological disorders with mood disturbances [208–210].

Nucleus accumbens: The nucleus accumbens is located in the ventral striatum and is a key element
of the mesocorticolimbic system, a brain circuit mediating reward and motivation [211]. Functional
MRI studies reveal significantly weaker responses to positive reward in the nucleus accumbens of
patients with MDD [191]. In the CMS model, it has been shown that stress-induced anhedonia was
associated with the dendritic hypertrophy and increased spine density of the medium spiny neurons
in the nucleus accumbens [212]. Another investigation found that the amplitude of molecular rhythms
in the nucleus accumbens was amplified following CMS exposure and that this change correlated with
mood-related behavior [213].

Dorsal raphe nucleus: The dorsal raphe has a central role in depressive disorders as it is the largest
source of serotonin innervation to the forebrain. As the “monoamine theory of depression” postulates,
deficient serotonergic neurotransmission is the key neurobiological factor underlying depressive
symptoms [214–216]. However, in recent years this theory has been repeatedly questioned [217]
and therefore this brain area nowadays receives relatively little experimental attention. Despite that,
a recent state of the art optogenetic study demonstrated that optogenetic stimulation of the dorsal
raphe nucleus could alleviate the depressive-like symptoms in CMS treated rats [218] and by that
provided further support to the “monoamine theory of depression.”

Suprachiasmatic nucleus: The suprachiasmatic nucleus is a small group of neurons in the
hypothalamus (right above the optic chiasm) and by its extensive interactions with many other
brain areas it controls many aspects of the circadian rhythm. Disturbances in circadian rhythms are core
features of depression as depressed patients often display altered circadian rhythms, sleep disturbances,
and diurnal mood variation [219]. Circadian rhythmicity is a consequence of intracellular molecular
mechanisms involving the so-called clock genes and disturbed functioning of these genes has been
documented in various mental disorders including MDD [220,221]. In the CMS model the amplitude
of molecular rhythms in the suprachiasmatic nucleus was reduced and this correlated directly with the
mood-related behavior [213].
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9. MicroRNA Changes in the CMS Model

MicroRNAs (miRNAs) are short (18–23 nucleotides), non-coding single-stranded RNA molecules
that can regulate gene expression at the post-transcriptional level by binding to mRNAs and cause
mRNA degradation or translational modification. miRNAs regulate approximately the half of the
protein coding genes [222].

Micro RNAs are important regulators of numerous cellular processes in the CNS, that is, cell
proliferation, differentiation and apoptosis. They also play a significant role in the development of
depressive disorders [223–225]. Altered expression levels of miRNAs have been documented also in
schizophrenia, Alzheimer, Parkinson’s disease, and bipolar disorder [226–229]. miRNAs are relatively
stable compared to mRNAs, they are protected from degradation by forming complexes with proteins
or inclusion in exosomes and their expression level can be cell/tissue type or stage- specific. By these
properties, they appear to be potential biomarker candidates of some neuropsychiatric disorders.

Several animal studies document that stress can modify miRNA expression in different brain
regions (Table 1). Both acute and chronic stress can influence the expression of various miRNAs
and such molecular changes are likely to be similar in humans, because most miRNA families are
phylogenetically conserved from C. elegans to humans [230,231].

Meerson et al. and Rinaldi et al. were the first to investigate region-specific alteration of miRNA
upon stress exposure but they found contrasting data. In one study, chronic restraint stress caused
significant changes of miRNA levels in two stress-responsive regions of the rat brain, the hippocampal
CA1 and the central nucleus of the amygdala and most of these alterations were reductions (e.g.,
miR-134) [232]. In contrast, Rinaldi et al. observed an increase in the expression levels of miRNAs
in the PFC following acute and repeated stress [233]. A more recent study used CMS exposure to
investigate the miRNA expression profile in the hippocampus with a miRNA array chip technology and
qRT-PCR analysis. Zhou et al. found that five miRNAs were significantly upregulated—miR-382-3p,
miR-183-5p, miR-3573-5p, miR-202-3p, miR-493-3p, and only miR-370-3p was downregulated [234].
The gene ontology (GO) analysis of these miRNAs showed that their target genes may regulate many
pathways that are involved in the development of MDD [234].

Alterations of miRNA expression in the PFC are likely to play a notable role in the pathogenesis
of depression. A recent study reported an increased level of miR-9-5p, miR-128-1-5p, miR-382-5p and
a decreased level of miR-16-5p, miR-129-5p, miR-219a-5p in the PFC of mice exposed to CMS [235].
The stress-induced increase of miR-9-5p and miR-128-1-5p was comparable to what has been reported
in depressed patients [236,237].

CMS exposure can increase expression levels of miR-18a-5p, miR-34a-5p, miR-135a-5p, miR-195-5p,
miR-320-3p, miR-674-3p, miR-872-5p in the ventral tegmental area (VTA) followed by parallel decrease
of these miRNAs in the PFC of stress exposed rats and these alterations seem to be more pronounced
in stress-resilient than anhedonic animals [238]. These miRNAs share a common target, namely the
serotonin transporter (SERT), which is the pharmacological target of selective serotonin reuptake
inhibitor (SSRI) antidepressants.

Zurawek et al. investigated miRNAs in stress resilient animals and found that 376 mature miRNAs
measured in the periphery were associated with the resilient phenotype [239]. Furthermore, they
reported that the serum concentration of miR-16 was associated with the stress-resilient phenotype as
resilient animals had higher serum concentration of miR-16 compared to unstressed and anhedonic-like
animals [239]. However, they did not find a correlation between miR-16 levels in the blood and in
the brain in response to CMS [239]. They also observed that acute stress exposure resulted in the
up-regulation of miR-16 in the ventral tegmental area of the stress-resilient animals, while miR-16 was
down-regulated in the medial PFC of the stress-exposed animals [239]. One should emphasize here
that miR-16 has an important role in the regulatory function of SERT, therefore miR-16 significantly
contributes to the therapeutic action of the SSRIs [240].
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Table 1. Stress-induced changes in micro RNA levels.

Reference
miRNA

Analysis Method Species Brain Area Behavioral Parameter
Upregulated Downregulated

Meerson et al., 2010 [232] miR-134 Spotted array,
qRT-PCR Adult rat

Hippocampal CA1,
central nucleus of the

amygdala
Chronic restraint stress

Rinaldi et al., 2010 [233] let-7a, miR-9, miR-26a/b Microarray,
Northern blot CD1 mice PFC Acute and chronic

restraint stress

Zurawek et al., 2016 [239]
miR-16

qRT-PCR Male Wistar Han rat
VTA

Chronic mild stress
miR-16 medial PFC

Higuchi et al., 2016 [241] miR-124 qRT-PCR,
Northern blot BALB/c mice Hippocampus Chronic ultra-mild stress

Buran et al., 2017 [235] miR-9-5p, miR-128-1-5p,
miR-382-5p

miR-16-5p,
miR-129-5p,
miR-219a-5p

qRT-PCR BALB/c mice PFC Chronic mild stress

Zurawek et al., 2017 [238]

miR-18a-5p, miR-34a-5p,
miR-135a-5p, miR-195-5p,
miR-320-3p, miR-674-3p,

miR-872-5p

qRT-PCR Wistar Han rat

VTA

Chronic mild stressmiR-18a-5p,
miR-34a-5p,
miR-135a-5p,
miR-195-5p,
miR-320-3p,
miR-674-3p,
miR-872-5p

PFC

Yu et al., 2018 [242] miR-134 qRT-PCR Wistar rat BLA Chronic unpredictable
mild stress

Zhou et al., 2018 [234]
miR-382-3p, miR-183-5p,

miR-3573-5p, miR-202-3p,
miR-493-3p

miR-370-3p Microarray, qRT-PCR SPF Sprague-Dawley
rat Hippocampus Chronic unpredictable

mild stress
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Higuchi et al. were the first to demonstrate a crucial role of hippocampal miRNAs in the
development of chronic stress-induced depression-like behavior and neuroplasticity. They observed a
reduced level of hippocampal miR-124 in CMS treated mice [241]. Notably, the same study reported
that neither viral-mediated hippocampal overexpression of miR-124, nor intrahippocampal infusion
of a miR-124 inhibitor, affected depression-like behaviors in non-stressed mice [241]. In contrast,
another study found that 21-days social defeat stress caused increased miR-124 levels in the rat
hippocampus [243].

miR-134, a brain-specific miRNA, has a negative effect on synaptic development and plasticity [244].
A recent study found that chronic stress decreased the expression of miR-134 in the basolateral amygdala
and this was associated with synaptic changes as well as decreased phosphorylation of CREB and
decreased expression of BDNF [242].

In summary, there are increasing data available on the functional role of CNS-associated miRNAs
in depressive disorders. So far, it is known that dysregulation of miRNAs can lead to silencing important
target genes or even impaired mRNA translation causing diverse neuropathological outcomes. Clearly,
more studies are needed to understand the role of specific miRNAs in the diagnosis and treatment
of MDD.

10. Conclusions and Future Directions

The currently available experimental data provide convincing evidence that the CMS model has
high translational value. However, more studies are needed to determine exactly which structural
and molecular markers are useful in clinical practice for the diagnosis, prognostics and assessment of
the therapeutic response. Future longitudinal studies using the CMS paradigm in combination with
pharmacological treatment with clinically effective antidepressant drugs will allow investigations of
essential cellular and molecular changes during disease progression and recovery. Such data should
provide valuable and translational information on the pathophysiology of MDD.
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235. Buran, İ.; Etem, E.Ö.; Tektemur, A.; Elyas, H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors
upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci. Lett. 2017, 656, 51–57.
[CrossRef]

236. Dwivedi, Y. Evidence demonstrating role of microRNAs in the etiopathology of major depression.
J. Chem. Neuroanat. 2011, 42, 142–156. [CrossRef] [PubMed]

237. Bocchio-Chiavetto, L.; Maffioletti, E.; Bettinsoli, P.; Giovannini, C.; Bignotti, S.; Tardito, D.; Corrada, D.;
Milanesi, L.; Gennarelli, M. Blood microRNA changes in depressed patients during antidepressant treatment.
Eur. Neuropsychopharmacol. 2013, 23, 602–611. [CrossRef] [PubMed]

238. Zurawek, D.; Kusmider, M.; Faron-Gorecka, A.; Gruca, P.; Pabian, P.; Solich, J.; Kolasa, M.; Papp, M.;
Dziedzicka-Wasylewska, M. Reciprocal MicroRNA Expression in Mesocortical Circuit and Its Interplay with
Serotonin Transporter Define Resilient Rats in the Chronic Mild Stress. Mol. Neurobiol. 2017, 54, 5741–5751.
[CrossRef] [PubMed]

239. Zurawek, D.; Kusmider, M.; Faron-Gorecka, A.; Gruca, P.; Pabian, P.; Kolasa, M.; Solich, J.; Szafran-Pilch, K.;
Papp, M.; Dziedzicka-Wasylewska, M. Time-dependent miR-16 serum fluctuations together with reciprocal
changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in
chronic mild stress - An animal model of depression. Eur. Neuropsychopharmacol. 2016, 26, 23–36. [CrossRef]

240. Baudry, A.; Mouillet-Richard, S.; Schneider, B.; Launay, J.M.; Kellermann, O. MiR-16 targets the serotonin
transporter: A new facet for adaptive responses to antidepressants. Science (80-.) 2010, 329, 1537–1541.
[CrossRef]

241. Higuchi, F.; Uchida, S.; Yamagata, H.; Abe-Higuchi, N.; Hobara, T.; Hara, K.; Kobayashi, A.; Shintaku, T.;
Itoh, Y.; Suzuki, T.; et al. Hippocampal microRNA-124 enhances chronic stress resilience in mice. J. Neurosci.
2016, 36, 7253–7267. [CrossRef]

242. Yu, H.; Fan, C.; Yang, L.; Yu, S.; Song, Q.; Wang, P.; Mao, X. Ginsenoside Rg1 Prevents Chronic Stress-Induced
Depression-Like Behaviors and Neuronal Structural Plasticity in Rats. Cell. Physiol. Biochem. 2018, 48,
2470–2482. [CrossRef]

243. Bahi, A.; Chandrasekar, V.; Dreyer, J.L. Selective lentiviral-mediated suppression of microRNA124a in the
hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology 2014, 46, 78–87. [CrossRef]

244. Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A brain-specific
microRNA regulates dendritic spine development. Nature 2006, 439, 283–289. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0094839
http://dx.doi.org/10.1016/j.biopsych.2010.09.039
http://www.ncbi.nlm.nih.gov/pubmed/21183010
http://dx.doi.org/10.1101/gad.1884710
http://www.ncbi.nlm.nih.gov/pubmed/20413612
http://dx.doi.org/10.1111/j.1525-142X.2008.00302.x
http://dx.doi.org/10.1007/s12031-009-9252-1
http://dx.doi.org/10.1016/j.bbr.2009.11.012
http://dx.doi.org/10.1007/s12035-016-0365-6
http://dx.doi.org/10.1016/j.neulet.2017.07.017
http://dx.doi.org/10.1016/j.jchemneu.2011.04.002
http://www.ncbi.nlm.nih.gov/pubmed/21515361
http://dx.doi.org/10.1016/j.euroneuro.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22925464
http://dx.doi.org/10.1007/s12035-016-0107-9
http://www.ncbi.nlm.nih.gov/pubmed/27660265
http://dx.doi.org/10.1016/j.euroneuro.2015.11.013
http://dx.doi.org/10.1126/science.1193692
http://dx.doi.org/10.1523/JNEUROSCI.0319-16.2016
http://dx.doi.org/10.1159/000492684
http://dx.doi.org/10.1016/j.psyneuen.2014.04.009
http://dx.doi.org/10.1038/nature04367
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Hippocampal Formation 
	Prefrontal Cortex (PFC) 
	Other Neocortical Areas 
	Amygdala 
	The Dorsal Striatum 
	White Matter Regions 
	Other Brain Areas 
	MicroRNA Changes in the CMS Model 
	Conclusions and Future Directions 
	References

