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Abstract

Assessing the energy-saving potential in a building stock requires accurate prediction of
the energy use in buildings, as well as estimating effects of imposing energy-conservation
measures. Bottom-up building physics-based building stock energy models are widely used
for this purpose. However, deficient data (e.g. data related to the use of the building) compel
modellers to use normative assumptions in its place, thereby compromising the accuracy of
building-physics based models. Furthermore, validation of building-physics based building
stock energy models is often lacking.

In the present study, a hybrid bottom-up building stock energy model was developed
in order to overcome the drawbacks of traditional building-physics (engineering) based
modelling methods. Using a sample of more than 100.000 residential buildings, individ-
ual building-physics based models were calibrated against energy use data in a multiple
linear regression setting, thereby providing a novel hybrid bottom-up building stock en-
ergy model. Furthermore, embedding building-physics based building energy models in a
statistical model made it possible to validate the model by means of common statistical
measures.

The proposed hybrid model provided significantly more accurate estimates of the energy
use in an unseen sample of buildings than a purely building-physics based building stock
energy model. Moreover, as the hybrid model included a unique building-physical description
of each building in the sample, it could be used for estimating the effect of imposing an
arbitrary energy upgrade.

This way of setting up a hybrid building stock energy model provides a simple, yet
accurate, approach for estimating the energy-saving potential of a building stock that could
be used for informing policy makers and other stakeholders.

Keywords: Hybrid bottom-up modelling, Building stock energy modelling, Realisable
energy-saving potential, Heat consumption, Energy Performance Certificate data

Nomenclature

ȳ Average energy consumption of buildings in sample [kWh]
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β Regression coefficient

ε Regression model residuals (error term)

ŷi Predicted energy consumption of building i [kWh]

Afloor Heated floor area

j Fold number

k Number of predictors in regression model

n Number of buildings in sample (i.e. number of observations)

yi Billed (actual) energy consumption of building i [kWh]

BBR Danish Building and Dwellings Register

BSEM Building stock energy model

calc Calculated

CV Cross-Validation

CVRMSE Coefficient of Variation of the Root Mean Square Error

ECM Energy Conservation Measure

EPC Energy Performance Certificate

EUI Energy Use Intensity [kWh/m2]

FSS Forward Subset Selection

MAPE Mean Absolute Percentage Error

MLR Multiple Linear Regression

NMBE Normalised Mean Bias Error

pred predicted

Q Energy consumption [kWh]

reg registered

RMSE Root Mean Square Error
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1. Introduction

Reducing energy use in buildings is a top priority in many countries, because buildings
account for a major part of the total energy use. Moreover, several studies suggest that
buildings possess a considerable cost-effective energy-saving potential [1, 2]. Realising this
potential requires that decisions made by politicians and other stakeholders are made on an
informed basis. Building stock energy models (BSEM) can be used for informing stakeholders
with respect to energy use, as well as the related energy-saving potential, of a building
stock. Therefore, a key prerequisite of any BSEM is that it provides reliable estimates
of the current- as well as future energy use, while being able to study effects of imposing
energy-conservation measures. However, studies suggest a shortfall in actual energy-savings
compared with expected, or theoretical, energy-savings [3, 4]. This is sometimes referred to
as the ’energy savings deficit’ [4]. Moreover, making the estimated energy-saving potential
reliable and trustworthy requires that the underlying model has been validated; a quality
that is often missing in building stock energy models [5].

Different types of BSEMs exist, each with distinct characteristics. Generally, BSEMs
can be divided into top-down and bottom-up models [6]. While top-down models are useful
for evaluating changes in energy use over time (e.g. due to political interventions or techno-
logical developments), they are not useful for evaluating effects of energy-conservation mea-
sures (ECM) as they do not provide the necessary building-physical description. Bottom-up
BSEMs, on the other hand, provide the means to evaluate effects of ECMs on the energy
use in buildings [6, 7].

1.1. Bottom-up building stock energy modelling

The energy-saving potential of a building stock (i.e. from neighbourhood scale up to
national scale) can be estimated using bottom-up building stock energy models, which can
either be based on statistical methods or on building-physics based methods [6], see Figure 2.

Building physics based models have been used extensively for estimating the energy-
saving potential in building stocks [8, 9] due to their capability of modelling individual
end-uses (e.g. individual building components) [7]. However, an inherent drawback of the
building physics based models is the need for specifying usage characteristics in terms of
hours of occupation (including use profiles), set-point temperatures, DHW use and venti-
lation rates, etc., which are often unknown when modelling an entire building stock. In
place of unavailable data, modellers are often compelled to use normative values, e.g. values
specified in national standards such as [10], though it may compromise the accuracy of the
model [11].

On the other hand, statistical models obviate the need for modelling socio-technical
characteristics (e.g. indoor temperatures, ventilation rates, DHW usage, etc.) explicitly [6].
Therefore, a combination of the two modelling methods could provide for modelling energy
use accurately, in cases where access to relevant data is limited.

1.2. Bottom-up building stock data

Collecting data on an entire building stock is resource demanding [12]; however, with the
implementation of the Energy Performance of Buildings Directive (EPBD) [13], many Euro-
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pean countries have gained access to large amounts of data on the physical properties of their
respective building stocks. This information, in combination with bottom-up engineering
models, provides a unique insight into the energy saving potential in these buildings. How-
ever, on the building stock scale much information remains unavailable, such as information
about the users (e.g. number of inhabitants, age, education and income) of the building and
their preferences towards indoor environmental conditions (e.g. indoor temperatures and
ventilation rates), among others for privacy reasons.

Access to (actual) energy use data make it possible to set up statistical models. This
could be used for deriving unavailable information through model calibration. Many utility
companies store this information in terms of billed energy use. Moreover, the deployment
of smart-meters eases the collection of energy use data on a large scale. In Denmark, utility
companies are required by law to report annualised energy use of their customers back
to the national Building and Dwelling Stock Register (BBR), in order to facilitate energy
conservation [14].

1.3. Estimating the energy-saving potential of a building stock

Estimating the energy-saving potential (ESP) of a building requires estimating the
present energy use as well at the energy use following an energy upgrade. The present
(base-line) energy use can be estimated using either statistical or building-physics based
methods, whereas estimating the future energy use (following an energy-upgrade) requires a
building-physical description or an equivalent building-physical interpretation of the model.

In addition to the building physical properties, indoor environmental conditions must be
known in order to estimate the realisable energy-saving potential. However, socio-technical
factors has proven to vary significantly among buildings. Furthermore, these factors are
linked with the energy performance of the building, in terms of prebound- and rebound effects
[15, 16, 17]. Prebound effects include socio-technical factors that cause energy inefficient
buildings to use less energy than expected (e.g. due to lower average indoor temperatures).
Rebound effects include socio-technical factors that cause building not to realise their full
energy-saving potential, e.g. because the average indoor temperature is increased upon an
energy efficiency upgrade. In this context, it should be noted that rebound effects cover both
user behaviour and technical factors. A formal definition of the ’rebound effect’ is given by
Galvin et al. in [4].

Therefore, estimating the ESP on the basis of the energy performance of a building alone
(i.e. on the basis of the physical properties), referred here to as the technical ESP, often leads
to an overestimation of the realisable ESP if not adjusted for differences in user behaviour
[18]. However, this is often overlooked in building stock energy modelling [19].

Figure 1 conceptually illustrates the relationship between the building-physical energy
performance of a building, which is based on the physical properties in combination with nor-
mative assumptions about indoor environmental conditions, and the corresponding (actual)
energy use, as well as the related ESP.
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Figure 1: Relationship between the building-physical energy performance (P) and the related energy use
(C) of a building. Conceptual illustration (adapted from [17, 20])

Whereas the technical ESP assumes no difference in socio-technical characteristics (i.e.
the ESP can be estimated on the basis of the building-physical energy performance alone,
P=C), the realisable ESP takes differences into account in order to provide more reliable
estimates of the actual decrease in energy use.

1.4. Hybrid bottom-up building stock energy modelling

In order to overcome the drawbacks of building-physics based models, Swan et al. pro-
posed combining statistical- and building-physics based methods into a hybrid bottom-up
building stock energy model [6]. Thus, we define a hybrid building stock energy model
as a model that combines aspects from building-physics based methods with aspects from
statistical methods or vise versa, see Figure 2.
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Figure 2: Conceptual illustration of combining modelling methodologies for hybrid bottom-up building stock
energy modelling. Adapted from [6, 7, 5].

Swan et al. and developed a hybrid model of the Canadian housing stock (the Canadian
hybrid residential end-use energy and emissions model, CHREM), which modelled DHW,
appliances, and lighting in a statistical model and used this as input in a building-physics
based model [21, 22]. This way of combining a statistical model with a building-physical
model offered the distinct advantage that usage profiles did not have to be assumed [22].
However, several other parameters remain uncertain in building stock energy modelling
including indoor temperatures and air change rates. Therefore, models that can account for
all uncertain parameters, while providing a building-physical description of the system, are
required.

In order to account for uncertainties in building stock energy models, Booth et al. pro-
posed a framework for calibration building-physics based models against measured energy
use [23]. Valovcin et al. proposed a slightly different approach, in which the output of
a building energy simulation (BES) of 1,250 buildings were used as input in a statistical
multiple linear regression model in order to post-process the results of the building-physics
based models. In a more recent study, Brøgger et al. investigated the influence of rebound-
effects on the heat-saving potential in the Danish residential building stock by embedding
the calculated heat demands of a large sample of residential buildings in a statistical multiple
linear regression model [20]. A similar approach was adopted by Majcen et al. in a study of
the energy use for heating in the social housing building stock in Amsterdam; however, this
study did not include a building-physical model of the building stock, but used the issued
energy performance certificate instead [24].

1.5. Aim and objectives

Given the need for a unique building-physical description for assessing the energy-saving
potential of a building stock, the objective of the present paper was on coping with the
inherent challenges in building-physics based modelling by means of a hybrid modelling
approach. Moreover, the focus of this paper was on developing an accurate, yet simple,
model for predicting of the average energy use for space heating and DHW in residential
buildings using widely available data.
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Using a sample of the Danish residential building stock, this paper illustrates a novel
approach for combining unique building-physical models of each building in the sample with
energy use data and other relevant data in a hybrid BSEM.

In the present study, only heat use in residential buildings was considered. Likewise, only
existing data sources were utilised with the purpose of illustrating the potential of existing
data sources in BSEM.

2. Data description

In the present study, two databases were used for setting up a regression-based hybrid
BSEM. Data from the Danish Energy Performance Certificate (EPC) database were used
for setting up individual building energy models of each building in the sample (i.e. a
building-physics based model), as described in [5], see subsection 2.1.

This information was combined with data from the publicly available Danish Building-
and Dwelling Register (BBR). Information from the BBR included registered (i.e. metered)
annual energy use for heating and geographical location of the individual building among
other information, as described in [20]. The information listed in Table 1 was used as
predictors in the present study.

Predictor Scale Levels/Range Abbreviation Source

Energy use for heating (registered)* Ratio 20 kWh/m2 - 500 kWh/m2 Qreg BBR

Calculated heat demand Ratio 20 kWh/m2 - 500 kWh/m2 Qcalc Calculated**

Heated floor area Ratio 25m2-40000m2 Afloor EPC

Year of construction Interval 1600-2014 Year BBR

Building type Nominal

Farmhouse (FARM),
Detached SFH (SFH),

Terraced house (ROW) or
Blocks of flats (MFH)

Type EPC

Primary heat supply Nominal Individual boiler or
District heating

PHS EPC

Fuel type Nominal District heating,
Gas or Fuel oil

Fuel BBR

Secondary heat supply Nominal None, Electrical heating,
Stove or Both

SHS EPC

Ownership Nominal Private, Housing association,
Non-profit housing association or Other

Own EPC

Tenancy Nominal No/Yes Rent EPC

* Dependent variable
** Calculated on the basis of building-physical characteristics from the EPC database

Table 1: Information from the Danish EPC database and the BBR database used as predictors in the present
study. Adapted from [20].

In total, data on 134.065 residential buildings was available for setting up the model.
The registered annual energy use for heating was metered (hence not simulated) by the

utility companies upon account. However, as the account periods did not necessarily span
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an entire year, these were annualised by utility companies to match the year in which the
energy was used. In order to match the registered energy used for heating to the calculated
energy use for heating, both were heating degree day corrected to match a standard year.

2.1. Building-physics based model
The building-physics based model was based on data from the Danish EPC database.

Information in this database was collected by energy experts in terms of visual inspections
of each individual building. Building-physical data was collected from 2006 to 2015. In the
Danish EPC database, physical properties of all building elements were collected in separate
files. Data included information about the thermal performance of each building element,
sizes and orientation (including shadows from other objects). Moreover, ventilation- and
infiltration rates, as well as internal heat loads were assumed by the energy experts. This
information was used for setting up a unique model of each building in the database based
on the European standard ISO 13970 [25]. The output of the building-physics based model
(in terms of the calculated heat demands of each building) served as a proxy for the energy
performance of the building (i.e. the building-physical description).

As the building-physics based model provided a full description of the building-physical
parameters of each building in the sample, it could be used for studying effects of improv-
ing energy efficiency in the building stock, e.g. by imposing fictitious energy-conservation
measures.

Energy demands for space heating and DHW preparation were calculated for each build-
ing separately, using the single-zone monthly method outlined in ISO 13790 [25], as de-
scribed in [5]. Calculating the energy demand of each building individually provided a
unique building-physical representation of each building to be compared with the registered
heat use in the statistical model.

3. Method

The present paper proposes a method for setting up a hybrid bottom-up building stock
energy model that combines individual building-physics based models with the additional
information about each building that is listed in Table 1 in the sample in a statistical (hybrid)
multiple linear regression (MLR) model. A similar model was used by Brøgger et al. [20]
for studying rebound effects in the Danish residential building stock.

This represents a distinct way of setting up a hybrid BSEM, e.g. compared with the
hybrid model developed by Swan et al. [6], which uses the output of a statistical model in a
building-physics based BSEM. The proposed method could be seen as a way of calibrating
building-physics based models, by taking rebound effects into account, see Figure 1.

It should be noted that only energy used for heating in residential buildings were consid-
ered; however, the methodology is not confined to neither a specific type of buildings, nor
to a specific type of energy use.

The following sub-sections describe the data used in the model, the model structure and
the model selection procedure. In section 4, the model is fitted and the accuracy of the
model is evaluated.
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3.1. Model structure

The multiple-linear regression model was fitted using the calculated heat demands from
the building-physics based model as the base predictor (i.e. it was required to enter the
model). In order to avoid including redundant information in the model, a forward selection
model algorithm was applied in combination with cross-validation, as described in subsec-
tion 3.2. Lastly, the model was validated using a hold-out sample. Figure 3 illustrates the
workflow used for setting up the proposed hybrid BSEM.

Figure 3: Hybrid model flowchart. The building-physics based model, which can be used for studying effects
improving the energy efficiency of a building, was used as input in the statistical (MLR) model

Using building-physics based models as input in a statistical model allows for modelling
the effect of an energy efficiency upgrade (in the building-physics based model) while obviat-
ing the need for defining user behaviour explicitly, as this is accounted for by the statistical
model. This way, better estimates of the realisable energy-saving potential may obtained in
a simple way as illustrated by the ’Actual’ line in Figure 1.

3.1.1. Statistical model

The statistical part of the hybrid model relied on an MLR model. This statistical mod-
elling technique was chosen due to the ease-of-use, as well as the straight-forward interpre-
tation of the model parameters. An interpretation of the proposed model is presented in
[20]. Moreover, pseudo-rebound effects could be modelled by including interaction effects
between the calculated heat demand and the other explanatory variables.
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It should be noted, however, that the general methodology (i.e. the proposed hybrid
model) is not confined to using MLR for the statistical modelling part. Thus, other more
advanced statistical modelling tools (e.g. support vector machines or artificial neural net-
works) could be employed.

3.2. Model selection

In the present study, the MLR part of the hybrid model was fitted including one predictor
at a time, in order to optimise the prediction accuracy of the model. In this context, it was
desirable to fit a parsimonious (i.e. a simple, yet accurate) model. In each model fit, the
calculated energy demand served as the base predictor variable.

In order to select the parsimonious model, Forward Stepwise Selection (FSS) was applied
on a sub-sample of 50,000 buildings. Starting from the base model, which included only the
calculated energy demand, each additional predictor was added in turn. At each step, the
predictor that decreased the Root Mean Square Error (RMSE) the most was selected. Hence,
all remaining predictors were tested at each step in the FSS procedure. The RMSE is defined
in Equation 1:

RMSE =

√
1

n

∑
(yi − ŷi)2 (1)

In order to remedy any selection bias, the FSS procedure was used in combination with
10-fold cross-validation (CV). Splitting the sub-sample in ten equally sized portions (folds),
the models were fitted to nine of the ten folds subsequently predicting the energy use in the
last fold. This process was repeated ten times such that all folds were used for model fitting
as well as for model validation (cross-validation). The model selection algorithm is outlined
below.

Data: Sub-sample using 50.000 observations (≈ 40 % of all observations)
split in ten equally sized folds;
for fold 1 to 10 do

select fold j for cross-validation and fit base-model using the remaining nine folds;
for each additional predictor do

add predictor to the base model;
predict energy use for the 10th fold (not used for fitting the model);
calculate RMSE;
select model with the lowest RMSE as new base model;
return order in which predictors were added and corresponding RMSEs

end

end
Algorithm 1: Model selection algorithm using Forward Stepwise Selection in combination
with 10-fold cross-validation.

The predictors to be included in the final model were chosen based on the one-standard-
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error rule1.

3.3. Model validation

Evaluating the accuracy of the proposed hybrid model had the distinct advantage, that
commonly accepted statistical measures could be readily adopted. Several measures could
be used for model validation, e.g. as proposed by Kristensen, et al. [26].

In the present study, four metrics were used for evaluating the model performance in-
cluding the coefficient of determination (i.e. the adjusted R2), the coefficient of variation of
the root mean square error (CV(RMSE)), the mean absolute percentage error (MAPE) and
the normalised mean bias error (NMBE).

The R2
adj was used for evaluating the goodness of fit of the model, in terms of the

explained variance. The CV(RMSE) was used for evaluating the accuracy of the model
at the individual building level, taking the size of the energy use (in terms of the mean
energy use for heating) into account. The MAPE was used for assessing the average error.
Lastly, the NMBE was used for assessing the accuracy of the model at the aggregate level.
The mathematical definition of each metric is given in Appendix A, together with a short
description of how it may be interpreted.

In the present study, only the data that was not used for selecting the model were used
for validating the model (i.e. out-of-sample validation).

4. Results

In order to select the parsimonious model, the goodness of fit of the building-physics
based model was first evaluated. Secondly, the simple hybrid model, which contained the
calculated heat demand as the only predictor, was fitted. Next, each predictor in Table 1 was
added consecutively to the simple hybrid model, including both main effects and interaction
effects, and the goodness of fit was evaluated in accordance with algorithm 1, as described in
section 3. The mean RMSE of the ten folds used for fitting each model is plotted in Figure 4
along with the standard error of the estimated RMSE (illustrated by the error bars).

1Using the one-standard-error rule, a predictor was only included in the model, if it decreased the RMSE
by at least one standard error compared with the preceding model.
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Figure 4: Model selection based on the marginal improvement in RMSE of each model calculated using
10-fold cross-validation. The error-bars illustrate the standard-error of the RMSE in each model.

Even though the RMSE did not decrease by one standard error from the building-physical
model to the simple hybrid model (i.e. a simple linear regression model where the calculated
heat demand entered as the only predictor), it did when adding information about the heated
floor area to the model simple hybrid model. This poses an interesting finding, because
differences in physical characteristics among all building types (e.g. surface area to volume
ratio) was already accounted for in the building physical part of the model. Hence, this
indicated that socio-technical factors were significantly different among different buildings
of different size, e.g. different building types.

Beyond the point where information about the heated floor area was included in the
model, the predictive capability of the model did not improve by at least one standard
error. Therefore, we considered the model that included the calculated heat demand and
the heated floor area to be the parsimonious model for predicting the annual energy use for
heating, having access to the predictors in Table 1. The model is outlined in Equation 2.

Qreg,i = β0 + β1 ·Qcalc,i + β2 · Afloor,i + β3 ·Qcalc,i · Afloor,i + εi (2)

The parsimonious model thus included main effects of the calculated heat demand and the
heated floor area, as well as interaction effects between the calculated heat demand and the
heated floor area. Thus, the energy used for heating of a building could be estimated based
on the heat demand calculated in the building-physics based model in combination with
information about the heated floor area. The parameters of the model is given in Table 2
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Coefficients 2.5 % CI Estimate 97.5 % CI p-value

Intercept −3.66 × 103 −3.43 × 103 −3.21 × 103 <2.2 × 10−16*

Qcalc 4.18 × 10−1 4.26 × 10−1 4.35 × 10−1 <2.2 × 10−16

Afloor 6.99 × 101 7.09 × 101 7.20 × 101 <2.2 × 10−16

Qcalc x Afloor
** −7.26 × 10−6 6.88 × 10−6 −6.50 × 10−6 <2.2 × 10−16

* Machine epsilon
** Interaction term

Table 2: MLR model parameter estimates

Evidently, the large number of observations make even very small effects statistically signif-
icant. In practice, the interaction term between the calculated heat demand and the heated
floor area could be removed without affecting the results notably; i.e. the way the energy
use for heating changes with the energy efficiency of the building did not appear to depend
very much on the size of the building. This could provide an argument for adding main
effects and interaction effects independently in algorithm 1.

Moreover, it should be noted that some predictors were collinear (e.g. Qcalc and Afloor)
for which reason the estimated coefficient could be overestimated. This problem could be
overcome by evaluating the accuracy of the model out-of-sample, as was done in the following
section.

4.1. Model validation

In Table 3, the prediction accuracy of the hybrid model is compared with that of the
building-physics based model.

Model R2
adj CV(RMSE) MAPE NMBE

Building-physics
based model

75.5 % 121.6 % 51.1 % −22.8 %

Hybrid model 81.6 % 105.4 % 31.2 % −1.0 %

Table 3: Model evaluation metrics

The predictive performance of the hybrid BSEM was significantly better than the building-
physics based model. Especially in terms of the NMBE, the hybrid model almost eliminated
the bias (i.e. the error on the building stock scale). However, considerable errors could still
be detected on the individual building level (in terms of the CV(RMSE)) and in terms of
the MAPE. In other words, bias in the model was almost eliminated whereas capturing the
variation in data was only improved slightly. This entails that there was a large variation in
energy use even among buildings with the same building-physical energy performance. This
could be due to differences in socio-technical characteristics within groups of buildings with
similar characteristics (i.e. the same building type with similar building-physical energy
performance), which could not be captured in the present model, as information about the
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users of the individual building was not available. This entails that socio-technical char-
acteristics tended to even out on average. Hence, the proposed model could describe the
”average” energy use for heating and thereby the average energy-saving potential.

The predictive performance of the building-physics based model and the hybrid model
respectively is illustrated in Figure 5.

Figure 5: Heat demands estimated with the building-physical model (left) and the hybrid model (right)
respectively, both compared with the registered energy use.

Looking at Figure 5 (left), it is apparent that the energy demands calculated in the
building-physics based model were generally overestimated, which was also indicated by the
NMBE in Table 3. It is commonly believed that the average indoor temperature assumed
in the building-physics based model is too high in energy inefficient buildings (e.g. some
rooms are heated less thereby lowering the average indoor temperature).

The energy use estimated using the hybrid model was more consistent with the regis-
tered energy used for heating. However, too few low- and high energy use instances were
predicted whereas too many average energy use cases were predicted by the hybrid model,
see Figure 5 (right). This is a key feature of the regression based model, namely that it
predicts mean values. Therefore, bias could almost be eliminated in the model, but due
to much unexplained variance, extreme values (i.e. buildings with a particularly high- or
low energy use compared with that predicted by the building-physical model) could not be
predicted by the model. It should be noted that Figure 5 does not reflect the accuracy of
the predicted energy use for heating in the individual building level, but simply count the
number of buildings with a given energy use for heating.

In Table 4, the prediction accuracy of the hybrid model for individual building types is
assessed.
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Model n R2
adj CV(RMSE) MAPE NMBE

All buildings 40217 81.6 % 105.4 % 31.2 % −1.0 %

Farm houses 249 38.8 % 52.8 % 46.3 % −4.1 %

Detached single-
family houses

29304 36.6 % 35.8 % 29.7 % 1.9 %

Terraced houses 7258 56.0 % 56.6 % 34.6 % 4.1 %

Blocks of flats 3406 76.2 % 70.4 % 36.0 % −5.4 %

Table 4: Hybrid model evaluation (model validation) considering all buildings collectively and each building
type separately.

Evidently, the prediction accuracy of the model varied considerably among the four
building types on the individual building level (i.e. in terms of the CVRMSE) as well as in
terms of the average absolute error (i.e the MAPE). However, in terms of the NMBE (i.e.
on the aggregate level) the error was below 5 % in absolute numbers in all building types.
This could be due to differences in user behaviour, which were not identical across building
types, which evened out on average (NMBE) in all building types. Moreover, the difference
in CV(RMSE) among the four building types suggests that the variation in energy use for
heating was smaller in multi-family houses (terraced houses and blocks of flats) compared
with single-family houses.

Graphically, the accuracy of the three models (i.e. the building-physical model, the
simple hybrid model and the parsimonious model) is illustrated in Figure 6.
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Figure 6: Average predicted energy use for heating by the building-physical model, the simple hybrid model
and the parsimonious hybrid model respectively. Error bars denote 95 % confidence intervals

4.2. Estimating the energy-saving potential of a building stock

Employing a building-physics based model as the core in the hybrid model allowed for
easy estimation of the energy-saving potential (ESP) given an energy upgrade. In order
to estimate the energy-saving potential due to an energy-upgrade, one simply needs to
estimate the baseline energy use with the hybrid model, calculate the effect of the imposed
energy-conservation measure in the building-physics based model and predict the reduction
in energy use using the hybrid model. The concept is illustrated below.
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Figure 7: Conceptual illustration of the difference between the technical- and the realisable energy-saving
potential (ESP) in a subset of the considred sample.

Evidently, the realisable ESP was considerably smaller than the technical ESP. Therefore,
using a building physics-based model with normative assumptions across buildings with
different (building-physical) energy performance to calculate the ESP would lead to an
overestimation of the actual decrease in energy use for heating. This is interesting from
several perspectives, e.g. from a grid perspective where future heat demands must be met
or from a political perspective where CO2-emissions must be reduced.

5. Discussion

Hybrid building stock energy modelling allows for estimating of the energy use in build-
ings, including estimation of the energy-saving potential due to implementation of energy-
conservation measures, more accurately than traditional building-physics based models. A
major advantage of the proposed hybrid BSEM was that socio-technical factors (e.g. occu-
pant behaviour) did not have to be modelled explicitly. However, setting up a hybrid BSEM
requires data on both the physical characteristics of the building stock and measured energy
use data. This data may not be available in many countries yet; however, with schemes such
as the European Energy Performance Certificate and the deployment of smart-meters, these
data are becoming increasingly available. Until this information is available, the thermal
properties of building could be estimated based on building traditions (e.g. in terms of the
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year of construction) and used in place of the calculated energy demand that was used in
the approach presented in this paper.

Table 5 list the main advantages and disadvantages of hybrid BSEMs in general as well
as of the hybrid model proped in this paper.

Attribute Advantages Disadvantages

Data requirements No need for
occupant data

Requires both building-
and use data

EPC data Readily available
in many countries

Must be available at an
individual component level

Registered
energy use for heating

Electronic meters (e.g. smart-
meters) ease data-collection

Data privacy renders data
acquisition troublesome

Uncertainties Uncertainties are
easily accounted for

Sources of uncertainties
are conflated

Model interpretability Coefficients of a MLR
are interpretable

Multicollinearity may
limit interpretability

Prediction accuracy Accurate on average (NMBE) Large variation (RMSE)

Table 5: Advantages and disadvantages of the suggested hybrid building stock energy model

5.1. Model calibration

Using a simple multiple-linear regression model as the statistical part of the hybrid
model offered a simple way of correcting errors in the building-physics based part of the
model that arise due to uncertainties. This made the proposed hybrid model accurate on
the building stock level. Unfortunately, the simple method did not allow for identification
of individual sources of uncertainties. Therefore, if rebound effects were specific to certain
energy-conservation measures, these could not be detected. Two ECMs that could affect user
behaviour differently are the installation of a mechanical ventilation system, which might be
accompanied by a change in air change rate, versus an increased insulation level, which could
be accompanied by an increased indoor temperature. However, better energy efficiency is
often cause by a combination of measures, which justifies this modelling approach.

This drawback could possibly be overcome by means of employing Bayesian calibration,
where individual input parameters are calibrated [23, 26]. However, this would come at
the expense of the ease-of-use of the regression model and potentially also the direct model
interpretation. Lastly, the proposed method could be advanced by post-processing the model
results as proposed by Valocin et al. [27].

6. Conclusion

Estimating the energy-saving potential of a building stock requires a building-physical
description of the buildings in question. However, building-physics based models are sen-
sitive to incomplete knowledge about socio-technical factors. In order to overcome these
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shortcomings, hybrid building stock energy models, which combine traditional building-
physics based models with statistical models, could offer a way to account for uncertain
input parameters, including rebound effects. Moreover, these models can be validated by
means of commonly recognised statistical measures.

In the present paper, a hybrid model of the Danish residential building stock was pre-
sented. Using data from the Danish EPC database, a simple building-physics based model
was set up for each building. This model could be used for studying effects of imposing
energy-efficiency measures in the residential building stock. Moreover, the unique represen-
tation of each building provided a direct link between the results of the building-physics
based model and the corresponding metered energy use in each building. This combination
of data made it possible to set up a hybrid model at the building stock level. Simple statisti-
cal methods, in terms of multiple linear regression (MLR), was used for post-processing the
results from the building-physics based model, thereby providing more accurate estimates
of the average energy use for heating in the building stock.

The simplicity of the proposed hybrid model (in terms of the simplicity of the building-
physics based model and the statistical model respectively) in combination with the improved
accuracy of the model makes the hybrid building stock energy model a powerful tool for
informing policymakers with respect to energy use and investments in energy-conservation
measures in the building stock.
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Appendix A. Model validation metrics

The present appendix holds the definition of the four metrics used for validating (i.e.
evaluating the accuracy of) the proposed hybrid building stock energy model (BSEM).

The coefficient of determination, R2 is widely used in the literature for evaluating the
strength of a model fit to data [28, 29]. The adjusted R2 measures the variance explained
by the model adjusted for the number of predictors in the model:

R2
adj = 1 −

∑
(yi − ŷ)2∑
(yi − ȳ)2

· n− 1

n− k − 1
(A.1)

The coefficient of determination measures the unexplained variance (i.e.
∑

(yi − ŷ)2) in
comparison with the total variance in data (

∑
(yi − ȳ)2). Hence, large residuals (i.e. yi− ŷi

are counterbalanced if the total variation in data (yi − ȳ) is large. This makes the R2
adj

well-suited for comparing models that were fitted to different data sets.
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However, despite the plain interpretation in term of explained variance, the interpreta-
tion of the R2

adj in terms of prediction accuracy (i.e. the error made when using the model for
predicting energy use) is less intuitive. The CV(RMSE) was used for the purpose of measur-
ing the prediction accuracy of the model at the individual building level. The CV(RMSE)
is defined as the RMSE (Equation 1) normalised by the mean of the measured energy use:

CV (RMSE ) =

√
1
n

∑
(yi − ŷi)2

ȳi
· 100 (A.2)

Normalising the RMSE makes the CV(RMSE) suitable for comparing the prediction
accuracy on groups of buildings with different levels of energy use, e.g. single-family houses
and blocks of flats. However, as the total variation in energy use may also be different
between groups of buildings, the CV(RMSE) should be considered in combination with the
R2

adj.
In order to get an indication of the average error across all buildings in the sample, the

MAPE was used:

MAPE =

∑ |yi−ŷi|
yi

n
· 100 (A.3)

Considering energy use at a building stock level, the NMBE allows for positive and
negative residuals to cancel out, giving an indication of the average (mean) error in the
model:

NMBE =
1
n
·
∑

(yi − ŷi)

ȳ
· 100 (A.4)

One drawback of the NBME relates to the uncertainty regarding whom that are most
likely to invest in energy upgrades. So long as this is random (i.e. each building owner
is equally likely to invest in energy-savings), or if all buildings were to be renovated (e.g.
considering window replacement over the next 50 years), the NMBE provides valuable in-
formation. However, if groups of buildings were more likely to be renovated than others, the
NMBE would not provide an accurate representation of the model accuracy.
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