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A B S T R A C T

Variability in the predicted cost of energy of an ocean energy converter array is more substantial than for other
forms of energy generation, due to the combined stochastic action of weather conditions and failures. If the
variability is great enough, then this may influence future financial decisions. This paper provides the unique
contribution of quantifying variability in the predicted cost of energy and introduces a framework for in-
vestigating reduction of variability through investment in components. Following review of existing meth-
odologies for parametric analysis of ocean energy array design, the development of the DTOcean software tool is
presented. DTOcean can quantify variability by simulating the design, deployment and operation of arrays with
higher complexity than previous models, designing sub-systems at component level. A case study of a theoretical
floating wave energy converter array is used to demonstrate that the variability in levelised cost of energy
(LCOE) can be greatest for the smallest arrays and that investment in improved component reliability can reduce
both the variability and most likely value of LCOE. A hypothetical study of improved electrical cables and
connectors shows reductions in LCOE up to 2.51% and reductions in the variability of LCOE of over 50%; these
minima occur for different combinations of components.

1. Introduction

The design of an ocean energy array is highly complex and exhibits
many possible solutions. Although early demonstrator projects and ar-
rays have been successfully deployed (see e.g. [1–3]) there has yet to
emerge a standard design process for ocean energy arrays. This is likely,
in part, due to the early technology readiness level of the industry and
the broad range of technologies that are available ([4,5]). Assuming
that the internal design of the deployed ocean energy converter (OEC)
is fixed, the design of an OEC array can be divided into the following
general stages:

• Selecting the location of the OECs and calculating the energy pro-
duced;

• Designing the transmission network for the electricity generated by

the OECs;
• Designing the station keeping requirements of the OECs in the

chosen locations;
• Planning the installation of the OECs and array infrastructure;
• Planning the maintenance of the OECs over the lifetime of the array

and recording any energy lost due to failure;
• Planning the removal (decommissioning) of the array following the

end of its useful life.

Many studies exist which cover the individual stages of the OEC
array design process. The optimal positioning of wave and tidal con-
verters in an array has been discussed by [6,7], for example. Software
tools also exist for helping designers optimise the location of OECs, such
as WaveFarmer [8], TidalFarmer [9], and to evaluate and minimize the
array's potential environmental impact (e.g. SNL-SWAN [10] and SNL-
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Delft3D-CEC [11]). Studies have been undertaken to automate the de-
sign of the electrical network ([12,13]) and regarding choices for OEC
station keeping ([14,15]). Optimisation of installation of OECs using
the commercial planning software ‘Mermaid’ is presented in [16] and
other recent studies, such as [17,18], have considered the cost of
maintenance activities required for arrays of wave energy converters.

Automatic integrated design of arrays has the potential to bring
significant benefits to the ocean energy industry, as has been demon-
strated for offshore wind energy [19]. Unfortunately, effective com-
munication of specifications between design stages can be difficult to
achieve. Semantic conflicts and change management issues, known as
semantic heterogeneity [20], make developing software to facilitate in-
teroperability extremely challenging.

Some integrated design approaches have been attempted for ocean
energy array design. An integrated approach to calculating the costs of
an array of floating tidal turbines is addressed in [21]. The Reference
Model project [22] demonstrated a hybrid analytical and computa-
tional approach to the entire ocean energy array design process and
another hybrid approach for co-located wind and wave energy is pre-
sented in [23]. In [24] the positions of an array of wave energy con-
verters are optimised by combining precise power production calcula-
tions and a basic empirical cost model within a genetic algorithm. The
method described in [25] used a computational approach for evaluating
the impact of OEC design and site selection on the maintenance op-
erations required throughout the lifetime of the array.

The existing approaches do not consider all stages of ocean energy
array design as parametric, nor allow automated assessment of mod-
ifications at component level. Yet, understanding how individual
components, or groups of components, impact the costs of ocean energy
arrays is critical for improving the readiness level of ocean energy
technologies [26]. Comparison of energy generation technologies is
often achieved using cost of energy metrics. The ratio of the lifetime
costs of an array to the energy generated is the most basic formula. This
can be improved by considering discounting of future costs, as shown in
[27], to produce the levelised cost of energy (LCOE) metric. When
considering the cost of energy, it may be that a range of possible values

exist, which can be attributed to uncertainty and variability. These
concepts can be described following the definitions in [28]:

Uncertainty derives from a lack of knowledge. A parameter is un-
certain if the range of values it can take can be reduced by gaining more
or better quality data.

Variability is a characteristic of data that is naturally stochastic.
Variability of a parameter cannot be reduced, but understanding of the
variability can be improved through increased sampling.

How uncertainty in failure rates affects the maintenance require-
ments of deployments of the Pelamis P2 OEC is studied in [18]. Fol-
lowing the approach of [29], a sensitivity analysis is undertaken to
quantify uncertainty in the final productivity and cost outcomes. Pure
economic analyses will also address uncertainty of inputs by con-
sidering a range of values for both costs and energy production (e.g.
[30]).

The assumption in these studies is that if the inputs were better
understood, the results would become purely deterministic. The present
work provides the unique contribution of demonstrating that predicted
ocean energy costs will always exhibit variability, due to the significant
influence of variable weather conditions combined with random com-
ponent failures. It also hypothesises that if the variability is found to be
substantial then it may play an important role in investment decisions.
The work quantifies variability resulting from maintenance actions al-
though other sources of variability are present, such as in the power
generation and installation operations, that are not specifically ad-
dressed here. By developing a framework for modelling investment in
components to improve reliability, it will be shown that the cost of
energy and its variability can be reduced.

This goal is realised using an integrated, parametric model of ocean
energy array design with higher complexity than seen before. In par-
ticular, sub-systems are designed at component level which combine to
give the sub-system reliability. Thus, the impact of individual compo-
nent choices can be analysed over the lifetime of the array.

The software implementation of the model presented herein, named
DTOcean, was originally released to the public following conclusion of
the European Commission funded Optimal Design Tools for Ocean

List of abbreviations, units and nomenclature

C CAPEX for N years
E AEP for N years
O OPEX for N years
P power output of OECs within year m
Cop total cost of a logistics operation
Em AEP for year m
Hm0 significant wave height
M metocean time series data
N number of years in which the array is operational
Om OPEX for year m
T time of sub-system failure
Te wave energy period
Tm planned production time in year m
Top total duration of a logistics operation
Tpause sum of tpause for all operations
ci cost of ith 11kV static cable
cj cost of jth 11kV wet-mate connector
d discount rate
nop number of operations in year m
raccess cost rate over taccess
raction cost rate over taction
rdelay cost rate over tdelay
rpause cost rate over tpause
rprep cost rate over tprep
rreturn cost rate over treturn

rwait cost rate over twait
taccess time required to access the target of the logistics action
taction duration of a logistics action
tdelay time between logistics action request and commencing the

action
tpause sum of durations between weather windows
tprep logistics action preparation time
treturn time to return following a logistics action
twait time until a weather window is available
η electrical network efficiency
λ sub-system failure rate

depart earliest logistics operation departure date
start logistics action request date
i MTTF of ith 11kV static cable
j MTTF of jth 11kV wet-mate connector
AEP annual energy production
CAPEX capital expenditure
HPP homogeneous Poisson process
KDE kernel density estimator
LCOE levelised cost of energy
MTTF sub-system mean time to failure
NPV net present value
OEC ocean energy converter
OLCs operational limit conditions
OPEX operational expenditure
PDF probability density function
RM3 Reference Model 3
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Energy Arrays (DTOcean) project [31] under an open source licence
(available from www.github.com/DTOcean). Since then, the under-
pinning theory and software have been continually developed and, at
the time of writing, represents one of the most advanced comprehensive
tools for the conceptual design of ocean energy arrays. The software
continues development as part of the Advanced Design Tools for Ocean
Energy Systems Innovation, Development and Deployment (DTOcean-
Plus) project [32] which will add support for the entire ocean energy
development process, from the selection and development of sub-sys-
tems and energy capture devices to full array deployment.

The outline of the work is as follows. Section 2 presents the key
elements of the array design software, measurement of cost variability
and component investment framework. In section 3, a case study is used
to demonstrate the theory and establish a base case for investigating the
impact of component changes. Section 4 discusses the results while
conclusions are drawn in the final section.

2. Method

2.1. Software overview

The DTOcean software simulates, combines and assesses the design
stages described in section 1, apart from decommissioning which, si-
milarly to [22], was deemed to have negligible impact on LCOE. At the
time of writing, the software can be used for simulations of OEC array
deployments falling within the scope and subject to the assumptions
shown in Table 1.

A schematic showing the relationships between the key software
elements and the user is shown in Fig. 1. Each of the five simulated
design stages is calculated by a distinct module, collectively referred to
as ‘design modules’, which are configured to the project requirements.
A design module may also utilise the functionality of other modules,
known as ‘support modules’. Design or support modules may seek a
locally optimal result appropriate to the modules' purpose. The ‘as-
sessment modules’ combine outputs into metrics useful to the design
modules or for comparison of simulations. The purpose and optimisa-
tion strategy (if applicable) for the design, support and assessment
modules are shown in Table 2. As the environmental impact assessment
within DTOcean has no influence on the predicted costs of the array, it
is not considered within this study.

Data transfer between the software elements is managed by the
‘Core’ module, in which a ‘common data model’ [33] is defined to fa-
cilitate interoperability between the five design stages, and provide a
digital representation of the array. The logical connections between
modules are determined by data transfer; Fig. 2 shows the most perti-
nent outputs of each module and the transfer of outputs between
modules. Only a subset of the total number of variables is shown in
Fig. 2 and DTOcean's high level of complexity is illustrated by the
number of variables contained in the data model, having approximately
550 at the time of writing. Further details of the module implementa-
tions and data model design are available from [34].

2.2. Inputs

The DTOcean software is designed for analysing deployments of
multiple wave or tidal energy converters, typically at the planning stage
following project licensing. Assuming compliance with contemporary
standards (such as [35–37]), the users are anticipated to have a com-
prehensive dataset from which to design an array, including geo-
graphical, geological and OEC design data. The DTOcean tool seeks to
fully utilise datasets of this magnitude, and some key inputs are detailed
below. Example datasets, including the case study presented herein, are
stored within the database distributed alongside the software.

2.2.1. Geography and geology
The topography of a DTOcean project is defined using two domains,

the ‘deployment area’, in which the OECs should be placed, and the
‘cable corridor’, which bounds the path of the export cable. Both do-
mains share certain data requirements such as:

• Layers of seabed sediment; multiple layers can be defined, chosen
from various grades of sand, clay and rock;

• A single representative time series of wind and current magnitudes,
wave heights and wave periods;

• Optional ‘no-go areas’, where the software may not place OECs or
infrastructure.

Within the deployment area, additional data are required, in-
cluding:

• For tidal energy converter simulations, a time series of velocity, sea
level and turbulence intensity over the entire deployment area;

• Wave energy converter simulations require a single time series, re-
presentative of the deployment area, containing wave height, wave
period and mean direction;

• Representative, extreme conditions for wind, wave and currents.

2.2.2. Ocean energy converter
It is required that each deployment will use only a single OEC type

and that its characteristics are known prior to commencing the simu-
lation (i.e. no OEC modifications are made as part of the simulation
process). The inputs include:

• Various OEC dimensions such as the location of foundations and
mooring connection points, as applicable;

• Power performance data, requiring thrust/power curves for tidal
OECs and power matrices for wave OECs;

• Electrical specifications, such as operating voltage and connector
types.

The OEC sub-systems are divided into the support structure, prime
mover and power take-off for simulating installation and maintenance
(an optional control system can be added, but is not used here). Each
sub-system requires data such as costs, failure rates and operational
parameters.

2.3. Layout and energy production

Understanding of the key influences on the final LCOE of an ocean
energy converter array is greatly enhanced when the positioning of the
major components can be controlled.

Positioning OECs relative to the local environment and other OECs
allows the power production to be optimised subject to array interac-
tions and site constraints. The hydrodynamics module of DTOcean
seeks the optimal positions by applying a Covariance Matrix Adaptation
Evolution Strategy to the power produced from a parameterised array
structure [38]. The strategy is constrained by a minimum threshold for
the ‘q-factor’. The q-factor is the ratio of the power absorbed by the

Table 1
Simulation scope and modelling assumptions of the DTOcean software.

OEC types Floating or bottom fixed; wave or tidal
Mixed OEC types Single type per simulation
Maximum number of OECs 100
Maximum deployment depths 80m for tidal, 200m for wave
Sedimentary layers Single or multi-layered strata
Electrical network types Single substation, single export cable
Foundation types Gravity, piles, anchors, suction caissons, shallow
Mooring types Catenary or taut
Logistics Single port, one vessel per operation
Maintenance strategies Corrective, calendar or condition based
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OECs with and without interference. An array containing a single OEC
would have a q-factor of unity, for example.

For wave energy converters, the calculation of the power absorbed
and OEC interactions utilises the open-source boundary element
method software NEMOH [39] combined with the direct matrix method
approach presented in [40]. For tidal energy converters, an actuator
disc model is combined with the wake interaction method described in
[41], which is further enhanced by replacing the wake decay model
with a dataset of computational fluid dynamics simulations. Ad-
ditionally, the wake velocity deficits are calculated relative to the
streamlines of the turbine rather than assuming that the wake is
straight. Once the power per sea state is known for each device, energy
production can be calculated by combination with metocean data.

Cables and substations for the electrical network are intelligently
sited using the DTOcean electrical sub-systems module. Each array
must include one substation and a single export cable from the sub-
station to the cable landing point. The OECs are then connected to the
substation by a number of shared strings. Prior to populating the net-
work and calculating its efficiency, various cable routes are generated,
using a planar open vehicle routing algorithm developed for cable
layout in offshore wind farms [42]. If the OEC is floating, an initial
estimate at the required umbilical cable length and its point of con-
nection to the network is also calculated, which is finalised when the
moorings design is completed.

The selection of appropriate foundations for an ocean energy con-
verter is important to establishing accurate lifetime costs associated to
station keeping. Through knowledge of the OEC position, relative
foundation locations and seabed sediment the DTOcean moorings and
foundations module can discard foundation types which are not ap-
propriate for the given sediment type. The remaining foundation types
are then assessed for economic performance.

2.4. Component selection and reliability

DTOcean includes an extensive repository of technical data for
components which can be used in the electrical sub-systems and
moorings and foundations designs (see e.g. [43]). These data include
estimates for the reliability of the components, as is discussed in [44],
and costs.

The electrical sub-systems module selects a set of components to
transmit the energy generated by the array to shore. Once the OEC
power outputs are calculated, a set of suitably rated components is
chosen. The Python package PYPOWER [45,46] is then used to calcu-
late the power flow and associated power losses from all potential cable
route combinations. The solution with least cost per electrical unit
transmitted is returned.

The moorings and foundations module uses the available compo-
nents to create a design capable of withstanding the long term extreme
environmental conditions, subject to the OEC position and the local
geology. Maximum loads, moments and displacements are calculated
from static and quasi-static analysis within an iterative procedure to
find a mooring and foundation design in equilibrium with the calcu-
lated forces [47]. The module selects the lowest cost set of components
from the feasible solutions.

The components selected for the electrical and moorings and
foundations designs are structured into networks which record the
connectivity between sub-systems and the components within them;
connections can be in series or parallel. Supplementary data associated
to the nodes of the network are also generated, such as the lengths of
cable segments. The networks are used to calculate reliability metrics
for sub-systems and the entire array. The DTOcean reliability module
combines failure rates of components using varying analytical expres-
sions depending on the connectivity. A reliability indicator between

Fig. 1. Relationships between the key software elements and user. Data is transferred between the user, database, design and assessment modules by the core. The
core also sequences the execution of modules. Support modules provide functionality shared between multiple design or assessment modules, and are accessed
directly. Specific data transferred between modules is shown in Fig. 2.
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Fig. 2. Pertinent output data and its transfer between modules. Nodes represent modules, output parameters are shown in node cells and lines show exchange of
parameters between modules (paths travel down or across).

Table 2
Description of modules provided by the DTOcean software.

Name Category Purpose Local Optimisation Strategy

Array Hydrodynamics Design Locate OECs and calculate their power generation per sea state OECs positioned for maximum power output
Electrical Sub-Systems Design Design electrical network suited to the OEC and export cable

characteristics and calculate losses
Minimise cost per unit energy

Moorings and Foundations Design Design foundations and moorings (if appropriate) subject to array
requirements and extreme conditions

Minimise cost

Logistics Support Calculate vessel and equipment requirements, costs and durations
for installation or maintenance phases

Minimise cost within a maximum time limit

Installation Design Schedule the installation of all requested design phases Minimise cost within a maximum time limit per phase
Reliability Support/

Assessment
Combine components networks into reliability metrics for major
sub-systems

Not applicable

Economics Support/
Assessment

Calculate absolute or probabilistic costs for each design stage Not applicable

Maintenance Design Schedule the maintenance activity over the array lifetime and
record yearly costs and energy production

Minimise logistics cost subject to the maintenance
strategy and maximum time limit

Environmental Impact Assessment Assess the environmental impact of the array design Not applicable
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zero and one for a given mission time or a mean time to failure (MTTF)
of any component, sub-system or the entire array is given [48].

Sub-systems are described as either ‘OEC-level’ or ‘array-level’. The
OEC, inter-array cables, umbilical cable, moorings and foundations sub-
systems are ‘OEC-level’; the substation and export cable sub-systems are
‘array-level’. Combining the reliability metrics for OEC-level sub-sys-
tems allows each OEC to have a unique set of failure modes and
probabilities of failure. Incorporating the metrics of array-level sub-
systems allows individual OEC, partial and full array failures to be si-
mulated.

2.5. Logistics

The costs and durations of an installation or maintenance operation
are calculated through detailed planning of its associated sub-tasks. The
DTOcean logistics module selects appropriate vessels and equipment
and calculates the time required to complete all sub-tasks subject to
environmental conditions. From all feasible vessel and equipment
combinations, the minimum cost solution is chosen, starting no later
than a year after the operation request date. Seasonality and delays due
to unfavourable conditions are captured, which has a direct impact on
the cost variability discussed in this paper. In particular, the total cost
and duration of an operation, Cop and Top, are defined:

= +C
r
r
r

t
t
t

Cop

delay

action
return

delay

action

return

fixed

(1)

= + +T t t top delay action return

The delay time, tdelay, is the time between the action request date, start,
and beginning the physical action. taction is the time required to carry out
the physical action, such as a repair, and treturn is the time required to
return to port, once the action is complete. rdelay, raction and rreturn are the
associated cost rates and Cfixed refers to any fixed costs, such as spare
parts.

Each sub-task, vessel and equipment have maximum allowable va-
lues for wind, waves and currents, called operational limit conditions
(OLCs). Weather windows are time periods where environmental con-
ditions less than the minimum OLCs are identified in metocean time
series data (M). Subsequently, the delay time can be further subdivided
as follows:

= + + +t t t t tdelay prep access wait pause (2)

where tprep is the preparation time, taccess is the time required to access
the target of the logistics action, twait is the amount of waiting time until
a weather window is available to commence the operation and tpause is
the summation of the durations between any subsequent windows re-
quired to complete the operation. Matching cost rates are also defined.

The earliest departure date for the operation, depart, is given by:
= + tdepart start prep (3)

Subsequently, the calculation of twait and tpause can be expressed:

+ =t t f M OLCs( , , )wait pause depart (4)

The algorithm which describes the function f is given below.
To begin, the minimum of all OLCs in the operation's sub-tasks is

taken and suitable weather windows are found in M. Assuming some
weather windows exist, differing strategies are applied. The default
strategy attempts to find windows which are long enough to encompass
all sub-tasks of the operation, as follows:

1. Calculate the required window duration ( + +t t t )access action return ;
2. Iterate through each year of the time series data, searching for

windows after depart;
3. Record twait of the first weather window with sufficient duration,

within that year;

4. Return the mean twait over all years; tpause is zero.

If no single weather window of suitable duration can be found (as is
the often the case for long operations) then an alternative strategy is
used:

1. Calculate the required window duration ( + +t t t )access action return ;
2. Iterate through each year of the time series data, searching for

windows after depart;
3. Form groups from the ensuing weather windows such that the sum

of the durations exceeds the total required;
4. Record tpause for each group;
5. Find the group of windows with minimum tpause;
6. Record twait for the first window of the chosen group;
7. Return the mean twait and tpause over all years.

It is assumed that =r 0wait and =r rpause access, thus the above strategy
seeks to minimise cost but may incur large twait. An alternative is to
minimise twait but suffer potentially costly increases in tpause. Such a
strategy is utilised for maintenance operations in the event of un-
planned sub-system failures.

Further details of the remaining time and cost calculations, in-
cluding the route-finding, and port, vessel and equipment selection
algorithms, are available in [49]. In particular, drawing on the ex-
perience of the offshore wind industry, it is assumed that a single port is
used for all operations and only one vessel (of any type) will be required
per operation. All feasible port, vessel and equipment combinations for
the operations are selected from the extensive database included in
DTOcean.

2.6. Lifetime energy and costs

The operational phase of the array commences after a given com-
missioning period. The DTOcean maintenance module calculates the
operational expenditure (OPEX) and energy production over the array
lifetime by simulating failures and maintenance for sub-systems of the
OEC, electrical network, moorings and foundations.

For each sub-system, a series of dates on which failures occur are
generated using a homogeneous Poisson process (HPP), using the
failure rate as the intensity parameter [48]. The probability of failure
before time t is given by:

=P T t( ) 1 exp t (5)

where T is the time of failure and λ is the failure rate. When a failure is
detected, an ‘unplanned corrective’ maintenance operation is ordered.
In this case, the shortest time to repair logistics strategy is used which
may incur costly levels of tpause. ‘Downtime’ is accrued from the point of
failure of an OEC to the time of repair (equivalent to +t tdelay action, in
this case). This has the effect of stopping the energy production of the
affected OEC(s) but also extending the time to the next failure date,
simulating the additional life expected from the sub-system not being in
operation.

A strategy of regular ‘time-based’ maintenance can also be chosen
for any sub-system type. In this case, the model for probability of failure
changes to assume such sub-systems exhibit perfect reliability prior to
their given MTTF. Assuming =MTTF 1, the probability of failure
becomes:

= >P T t
t MTTF
t MTTF( )

0
1 exp t

The interval for maintenance can be chosen as desired and each op-
eration is undertaken using the minimum cost logistics strategy. Again,
downtime will be accrued while the sub-system is undergoing main-
tenance, reducing the energy production.

To illustrate how random sub-system failures (captured by the HPP)
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combine with environmental conditions to introduce variability into
the levelised costs, consider, for any given year m, the array OPEX and
annual energy production (AEP) in that year, written Om and Em re-
spectively. Assuming all operations are unplanned (such that the
downtime is always equal to +t tdelay action),

= +
= =

O C E T t t P( ) , ( ) ( )m
i

n

op i m m
i

n

delay i action i
1 1

op op

Here, nop refers to the number of operations in year m, η is the electrical
network efficiency, Tm is the planned production time in year m and P is
the power output of the OECs at any particular time within that year.
Cop and tdelay are shown to be dependent on the metocean conditions,M,
and the action request date, start, by the combination of eqs. (1)–(4).
Within the maintenance calculations, start is determined by the random
process governed by eq. (5), thus it can be inferred that, due to the
temporal variability of metocean conditions, both Om and Em must also
be treated in a probabilistic sense.

The LCOE equation is written:

= +LCOE NPV C NPV O
NPV E

( ) ( )
( ) (6)

where, C is the capital expenditure (CAPEX), O is the OPEX and E is
AEP of the array, for the N years in which the array is operational. The
net present value (NPV) is defined as:

=
+=

NPV x x
d

( )
(1 )m

N
m

m
0

where d is the discount rate. The CAPEX combines (principally) the
installed cost of devices, and the electrical, moorings and foundation
components, and is assumed deterministic.

The introduction of Om and Em into eq. (6), renders the LCOE
equation probabilistic. A bivariate kernel density estimator [50] is ap-
plied to the OPEX and AEP terms in order to produce a bivariate
probability density function (PDF). The maximum of the PDF can be
used to determine the most likely combination of the OPEX and energy
production and, thus, the LCOE. Additionally, by calculating the LCOE
values along the 95th percentile contour of the bivariate PDF, the 95th

percentile range of the LCOE can be found, which provides a standard
metric for the variability.

2.7. Measuring the impact of investment

It is trivial to surmise that improved component reliability, without
additional cost, will result in lower LCOE with reduced variability due
to lower OPEX and less downtime. Establishing an acceptable level of
capital investment in order to improve the reliability of components is a
more nuanced question, particularly for complex sub-systems such as
the inter-array cables which include multiple component types.

To investigate the use of more reliable, more expensive components,
a general model for manufacturing costs is applied. Following [51], the
production cost of a component, c, has a relationship to reliability of the
form:

= +c A B( ) i (7)

where θ is the reliability parameter (in this case MTTF), i is the order of
the function and A B, are positive constants, to be determined.

It is important to assess whether changes in LCOE due to component
changes are statistically significant from the base case. One technique
to determine if arbitrary distributions differ from each other is by ex-
amining the energy distance between the distributions. The energy
distance is a statistical distance between random vectors X Y R, with
cumulative distributions functions F and G, respectively [52]. The
squared energy distance is defined:

=D F G X Y X X Y Y( , ) 2 (|| ||) (|| ||) (|| ||) 02

where X and Y are independent and identically distributed copies of X
and Y, respectively, || || is the euclidean norm and denotes expected
value. The null hypothesis that =F G is true if and only if =D 0. From
this result, a test statistic, T, is defined in [52] that when utilised with
permutation tests gives an approximate p-value of the significance.

The ability to monitor change in LCOE and its variability as com-
ponents are modified allows the optimal investment cost [53] to be
established. The case study undertaken in the next section will provide
a baseline measure of LCOE and variability for which investment in
component upgrades can be investigated.

Fig. 3. Schematic map of the RM3 scenario deployment areas.
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3. Case study

A case study of a floating wave energy converter array is presented.
Wave energy extraction is likely to exhibit more variability than tidal
energy, as ocean waves are less predictable than tides. Also, a floating
OEC allows demonstration of the moorings and umbilical cable design

features of DTOcean. The theoretical ‘Reference Model 3’ (RM3) array
of floating point absorbers, as detailed in [22], matches the require-
ments above. The array is simulated at three scales of deployment (10,
50 and 100 OECs) and then an assessment of the impact of investment
in more reliable components for the 10 OEC deployment is conducted.

Fig. 4. Seabed depth at the RM3 site.

Fig. 5. Sediment types at the RM3 site.
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3.1. Inputs

3.1.1. Geography and geology
The RM3 scenario considered an offshore, moderate depth site on

the west coast of the United States of America near Eureka, in Humbolt
County, California. Local infrastructure exists to support installation,
operation, and maintenance of the array, with a 60kV substation
available near Eureka and a deep-water port within Humbolt Bay.

Depths compatible with the selected OEC are found between 5 and
15km offshore, whilst the available deployment area extends for

approximately 60km along the shoreline. The cable corridor was arbi-
trarily defined from the shoreline to the northern half of the deploy-
ment area. The southern half of the deployment area contains a ‘no-go
area’ (used for dumping of dredged material) which is excluded from
the DTOcean calculation. These domains can also be adjusted to suit the
size of deployment being undertaken, as shown in Fig. 3.

The bathymetric and sedimentary data used were acquired from
public sources [54,55] and discretised in regular grids, aligned in x and
y, using the UTM zone 10N projection. The grid resolution was set to
10m within the deployment area (to allow for accurate cable routing
and mooring placement) and 50m within the cable corridor (where less
accuracy is required for routing a single cable). The cable corridor
slightly overlaps the deployment area to ensure that a subset of grid
points is coincident.

The combined seabed depths and sediment are shown in Figs. 4 and
5. Due to limited publicly available data, only a single layer of sediment
is defined for the present simulation. This is not anticipated to affect the
results as the preferred foundations for the OEC are relatively shallow.

The time series for wave height, period and direction were reused
from a pre-existing hindcast model for the site, described in [56], and
the resulting occurrence matrix is shown in Fig. 6. This differs slightly
from that used in [22], which was derived from an older model. The
wind data were obtained from an anemometer on NDBC buoy 46022
and the sea surface currents were collected from an Ocean Surface
Current Analyses - Realtime (OSCAR) data point. Although all the data
points were not collocated, they do provide a continuous ten year time
series (from 2000 to 2009) and are representative of the chosen site.

Extreme environmental values were retrieved from [22,57], NOAA
weather station 46022 and the NOAA sea level station at Crescent City,
CA.

3.1.2. Ocean energy converter
The floating wave energy converter considered for this study is

henceforth known as the ‘RM3 device’. As defined in chapter 5 of [22],
it is a point wave absorber which can be deployed in water depths
between 40m and 100m. The RM3 device design mimics that of the
Ocean Power Technology ‘PowerBuoy’ [58], in that power is generated
through the relative motion of a floating buoy reacting against a loosely
connected plate, located below the buoy. The arrangement and di-
mensions are shown in Fig. 7.

The RM3 device generates power from motion in heave and is

Fig. 6. Wave occurrence matrix at the RM3 site (%).

Fig. 7. RM3 device design (from [22], with permission).
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moored in such a way as to reduce the motion in other modes. Three
equally spaced foundations are placed on the seabed 300m from the
OEC with matching connectors located 30m above the reaction plate
(not shown).

As a consequence of modelling the RM3 device with the direct
matrix method, the hydrodynamic performance calculation results in a
power matrix which differs slightly from that shown in Tables 5–5 of
[22]. After capping the power output at the 286kW rating, the power
matrix for the present calculation is seen in Fig. 8. The output voltage of
the OEC is chosen as 11kV and, unlike the design in [22], a dedicated
umbilical connection to the inter-array cabling is used which connects
to the OEC below the moorings.

3.2. Layout and energy production

This section presents the array layout and energy production

calculated by the DTOcean software. Following [22], the export cable
rating is fixed to 33kV for each deployment size. The OEC and electrical
network positions for the 10 OEC deployment are shown in Fig. 9 while
Fig. 10 shows the layout for 100 OECs. Notice that the southern corner
of the 100 OEC deployment area is empty, as expected, due to the ‘no-
go’ dredge dumping zone defined there.

Using a minimum q-factor setting of 0.9, the mean annual energy
production per OEC and capacity factor for the three scenarios are
given in Table 3. The level of negative interaction increases marginally
when 100 OECs are simulated, with the final q-factor being close to
unity in all cases. The annual energy production predicted is similar to
that reported in [22], where the OEC rating was chosen to produce a
capacity factor of approximately 30%. This is despite the differences in
the environmental inputs and power matrix discussed earlier.

The calculated efficiency for the electrical network at each de-
ployment size is given in Table 4. The electrical losses for 10 OECs are

Fig. 8. Recomposed RM3 device power matrix.

Fig. 9. 10 OEC layout and electrical network.
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unusually low, but this is because the 33 kV cable is designed for
transmission of significantly higher current than that produced by the
10 OEC array. Accordingly, the electrical losses of this system are
negligible. With increasing array size, the transmitted power and
number of OECs per branch increases, which reduces the efficiency.

3.3. Component selection and reliability

This section summarises the component selection for the electrical
network, moorings and foundations, in terms of costs and reliability.
Table 5 presents the cost per rated kW of the components selected. As
expected, economies of scale are seen in the electrical sub-systems as
more OECs share infrastructure such as the substation and export cable.

The cost per kW for the moorings and foundations of the 50 and 100
OEC deployments are greater than for 10 OECs. Mainly, this is due to
installation at greater depths for the 50 and 100 OEC arrays. Also, for
the 50 OEC deployment the converters are positioned slightly closer to
each other (which makes collision upon line failure more challenging to
prevent) resulting in higher costs per kW than the 100 OEC array.
Overall, the costs for the 50 and 100 OEC scenarios are similar to that
given in [22], which gives a single value for the 10, 50 and 100 OEC
deployments. Consequently, the costs for the 10 OEC array are under-
estimated in comparison.

Drag anchors were set as the preferred foundation type for the si-
mulations as per [22] and the safety factor was calibrated to select an
anchor of similar mass to the 9-ton anchor described therein. Notably,
for the 50 OEC deployment the sediment type at one foundation was
incompatible with drag anchors and thus a gravity foundation was
substituted, at higher cost.

The calculated annual failure rates of the external sub-systems for
the 50 OEC scenario are shown in Table 61 and little variance is seen for
the other deployment scales. This is because, due to limited availability
of reliability data, a single failure rate per component class is used.
Also, DTOcean does not consider the impact of operational factors, such

as cable lengths or power transmitted, on failure rates. Thus, any
variability in values is a product of the differing number and con-
nectivity of components in a network.

Failures of the OEC's internal sub-systems are simulated with the
rates given in Table 7. The failure rate for the power converter is taken
from [22]. As no reliability information for the spar buoy or surface
float is provided in [22], both are assumed to fail once in 100 years.

3.4. Installation

This section demonstrates the installation planning for the OECs,
electrical network and moorings and foundations and serves as an il-
lustration of the logistics algorithms. An arbitrary start date of the 1st of
January 2020 was chosen for installation to begin and, following [22],
a 10% contingency is applied to the costs. Installation is carried out
from the Humbolt Bay deep-water facility.

Table 8 shows the costs per kW installed power, tpause over all op-
erations (Tpause) and total installation time for the three deployment
sizes. The costs are representative of the $1000/kW price given in [22]

Fig. 10. 100 OEC layout and electrical network.

Table 3
Array energy production.

Number of OECs Annual energy production (MWh) Capacity factor (%)

10 7380.0 29.46
50 36997.4 29.53
100 71562.7 28.56

Table 4
Electrical network efficiency (%).

Number of OECs Efficiency

10 100.0
50 97.6
100 93.71 The reliability of the moorings and foundations are calculated together, but

maintained as separate sub-systems which results in matching failure rates.
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for the 100 OEC array but the trend with scale differs. Table 8 shows
costs increasing with scale whereas [22] reports a 200% reduction
between the 10 and 100 OEC arrays.

The increasing value ofTpause seen in Table 8 is the key reason for the
increasing costs. This is occurring due to the long operation durations
required for a single vessel to install the larger arrays (particularly for
the umbilical cable phase, which has low OLCs). Another consequence
of the long operation durations is that the time to complete the in-
stallation increases significantly between the 10 and 100 OEC deploy-
ments, from 119 to 685 days. As can be seen in Fig. 11, the challenge of
undertaking work in the winter causes delays until the following year.
The effect of delays caused by seasonality on the installation is not
considered in [22], but it is important as the LCOE calculation involves
discounting.

3.5. Lifetime energy and costs

The operational costs, energy production and levelised cost of en-
ergy of the scenario is determined. As discussed in section 2.6, these
values are subject to variability and thus are presented as statistical
distributions and metrics.

The maintenance program described in [22] assumed that two op-
erations per year per OEC were required to service the power converter,
umbilical cables, moorings and foundations. For this study, selected
sub-systems have been given the time-based maintenance intervals as
seen in Table 9. The remaining sub-systems are only serviced upon
failure.

Due to the relatively high rate of failure the inter-array cables and
lack of time-based maintenance, the vessel mobilisation and prepara-
tion time for unplanned corrective maintenance of the sub-system is set

Table 6
External sub-system failure rates for the 50 OEC scenario.
Parenthesis indicate range of values across all OECs.

Sub-system Annual failure rate

Export cable 0.079
Substation 0.001
Inter-array cables (0.114, 0.149)
Umbilical cable 0.131
Moorings (0.031, 0.163)
Foundations (0.031, 0.163)

Table 7
Internal sub-system failure rates for the RM3 device.

Sub-system Annual failure rate

Spar buoy 0.01
Surface float 0.01
Power converter 1

Table 8
Installation operations costs and durations.

Number of OECs Cost (Euro/kW) Tpause (Hours) Total time (Days)

10 1148 0 119
50 1278 518 477
100 1394 1947 685

Fig. 11. 100 OEC installation phases Gantt chart.

Table 9
Time-based maintenance intervals (years).

Sub-system Interval

Power converter 1
Umbilical cable 2
Moorings 3
Foundations 3

Table 5
Total component costs per rated output (Euro/kW).

Number of OECs Electrical Sub-Systems Moorings and Foundations

10 1049 1385
50 420 1746
100 354 1731
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to zero. This avoids cascading failure, due to delays, which can produce
unrealistically high amounts of downtime, particularly for the 100 OEC
array.

Additional inputs to the CAPEX and OPEX, which are not modelled
in DTOcean, contribute to the LCOE calculated in [22]. To improve the
comparison, pre-installation environmental monitoring and con-
tingency costs (in addition to the contingency applied to the installation
costs) are added to the present study as a one-off CAPEX contribution.
Additionally, post-installation environmental monitoring and insurance
costs are added annually to the OPEX. The additional costs are shown in
Table 10. Following [22], a discount rate of 7% is applied here; addi-
tional financial parameters, such as tax rates, are not included.

Thirty samples of the OPEX and AEP histories are collected for each
deployment size. The data points, probability density and 95th per-
centile contour for the 10 and 100 OEC arrays as shown in Figs. 12 and
13. The bivariate correlations are -0.527 and -0.493, respectively. The
most likely LCOE and the 95th percentile range (the metric for varia-
bility) is given in Table 11 and the breakdown per major contributor to
the CAPEX and OPEX is given in Table 12. The most likely LCOE is in
general agreement with [22] for each deployment size. A comparison of
the probability distributions of the 10 and 100 OEC arrays, normalised
by their most likely values, is shown in Fig. 14.

3.6. Impact of investment

As the inter-array cable sub-system is not subject to time-based
maintenance, and given that the sub-system failure rate is relatively
high, it is prudent to examine the impact on LCOE of investing in higher
reliability components.

The sub-system consists of two component types: 11kV static cables
and wet-mate connectors. Utilising eq. (7), a linear model of component
manufacturing cost with respect to reliability is examined (i.e. =i 1 in
eq. (7)). The baseline cable cost is 100 Euro/m for an MTTF of 0.2
million hours, so choosing =A 25 Euro/m, as the zero reliability cost,
implies =B 375. This value is reused as the gradient of the wet-mate
connector model, having baseline costs of 200 Euro per unit for an
MTTF of 0.25 million hours. Therefore, the resulting models are:

= +c ( ) 25 375i i i

= +c ( ) 65 375j j j

where c ,i i and c ,j j are the component cost and reliability (MTTF) of
the cable and connector, respectively.

Permutations of three values of each component, shown in Table 13,
are tested against the result of the unaltered components for the 10 OEC
array given in Table 11. Significance of each LCOE distribution is
checked using the energy statistic test with 1000 permutations and a

Table 10
Additional cost inputs, from [22] (millions of Euro).

Fig. 12. Bivariate probability density of discounted OPEX and discounted energy for the 10 OEC array. Additional OPEX costs are excluded.
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pass level of =p 0.05. The most likely LCOE, 95th percentile range and
percentage change to the unaltered case is shown in Table 14. It can be
seen that each combination of components produces a significantly
different distribution to the base case.

4. Discussion

Through development of the RM3 case study it has been demon-
strated that the DTOcean software can simulate a complex OEC array in
a detailed and highly integrated manner. Particular points of interest
regarding the design, such as the incompatibility of drag anchors at
certain regions of the deployment area (section 3.3) and the additional
time required to undertake installation due to weather conditions
(section 3.4), show the merits of an integrated approach.

Non-parametric bivariate distributions of discounted lifetime energy
production and discounted lifetime OPEX (illustrated by Figs. 12 and
13) were used to calculate the most likely LCOE values. As might be
anticipated, a negative correlation between the OPEX and AEP is ob-
served, as variation in OPEX is mostly driven by unplanned main-
tenance events. The most likely LCOE over the three deployment scales
(10, 50 and 100 OECs), given in Table 11, was in general agreement
with [22], although economies of scale between the 50 and 100 OEC
arrays were not observed. This was because the CAPEX component of
LCOE (after removing external costs) was shown to increase. Cost
savings accrued from sharing electrical infrastructure were offset by
increasing costs in the mooring systems and reduced electrical network
efficiency, as the size of the arrays increased, as seen in Table 12.

The analysis also provides a measure of variability by calculating
the 95th percentile range. It was shown that the variability in the LCOE

decreased with deployment scale for the case study herein. Fig. 14
compares the 10 and 100 OEC array probability distributions, nor-
malised by the most likely values. From here, it is clear that the re-
duction in dispersion of OPEX values, with increasing scale, is the main
contributor to the reduction in LCOE variability. This likely occurs
because the probability of failures being concentrated into particular
seasons is higher for small arrays. Thus, in effect, larger arrays smooth
out the differences in maintenance costs caused by seasonal weather
variation.

One strategy for reducing the variability found in the LCOE could be
to invest in increasing the reliability of the components. Table 14 shows
the outcomes from component upgrades for the inter-array cables, as-
suming a linear manufacturing cost model. Improvements observed in
most likely LCOE could be regarded as marginal (up to 2.51%); how-
ever, when considering the contribution to CAPEX from the electrical
network (7.5% for 10 OECs) they become more relevant. Improvement
in variability was more pronounced, reducing by as much as 56.26%.
Interestingly, the greatest reduction in variability was observed for
different conditions to the greatest reduction in most likely LCOE. It
follows that the typical strategy of investing to reduce LCOE may run
contrary to the importance of minimising potential cost variance. Fur-
ther investigation is required to accurately quantify the error in the

Fig. 13. Bivariate probability density of discounted OPEX and discounted energy for the 100 OEC array. Additional OPEX costs are excluded.

Table 11
Levelised cost of energy (Euro cent/kWh).

Number of OECs Most likely 95th percentile range

10 110.11 107.68–114.15
50 68.63 67.71–70.42
100 69.06 68.29–69.67

Table 12
Contribution to most likely levelised cost of energy (Euro cent/kWh).

10 OECs 50 OECs 100 OECs

OECs 24.66 27.08 30.39
Electrical network 3.68 1.62 1.53
Moorings and foundations 4.88 6.71 7.47
Installation 4.05 4.95 6.06
Pre-installation monitoring & contingency 11.85 5.97 5.65

CAPEX total 49.12 46.33 51.1

Operations 14.08 12.18 12.28
Post-installation monitoring & insurance 46.9 10.12 5.68

OPEX total 60.98 22.30 17.96
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most likely and 95th percentile metrics, for a given number of data
points.

It is important to observe that the results discussed above pertain to
a very prescriptive maintenance strategy and are derived from coarse
estimates for the cost and reliability of components. Nonetheless, im-
portant trends have been revealed which merit investigation of cost
variability on a case by case basis. This is especially true if the highest
variability is recorded at the smallest deployment scales (the current
maturity level of the industry), and a lower than expected return could
deter future investment. Mitigation of these risks could be undertaken
by investing in more reliable components, but clear understanding of
the relationships between production (or research and development)
costs and reliability is critical to determining the optimal level of in-
vestment.

5. Conclusion

A parametric model of ocean energy converter (OEC) array design
and deployment, with higher complexity than previous models, has

been demonstrated. The model fully integrates OEC positioning, power
calculation, electrical network and station keeping design, installation
of the OECs and infrastructure, lifetime maintenance and downtime
prediction. Variability in the levelised cost of energy is revealed by
modelling random sub-system failures and weather dependent logistics
operations. Utilising the model's component level design, a framework
for evaluating the impact of investment into more reliable components
is proposed.

A case study of a theoretical floating wave energy converter array
was developed as a baseline for investigating cost variability and the
impact of investment. The variability in levelised cost of energy (LCOE)
is shown to reduce with increased size of deployment (the 95th per-
centile range reduced from 5.9% of the most likely LCOE for the 10 OEC
array to 2% for the 100 OEC array), indicating that the least reliable
energy cost predictions are associated with smaller arrays. Such results
may provide an incentive to accelerate development of larger arrays.
Should the performance of small arrays be critical to unlocking addi-
tional funding, then this may present a risk to sustained investment.
Upgrading the reliability of components can reduce predicted energy

Fig. 14. Bivariate probability distributions of discounted OPEX and discounted energy, normalised by the most likely values.

Table 13
Linear models for manufacturing costs.

Table 14
LCOE and 95th percentile range for upgraded static cable and wet-mate connector combinations with comparison to the 10 OEC array result.

# Static cable Wet-mate connector Test p-value Most likely LCOE (Euro cent/kWh) Change (%) 95th percentile range (Euro cent/kWh) Change (%)

1 1 1 – 110.11 – 6.47 –
2 1 2 0.001 108.17 -1.76 4.08 -36.94
3 1 3 0.001 108.24 -1.70 5.36 -17.16
4 2 1 0.001 109.34 -0.70 5.52 -14.68
5 2 2 0.001 108.84 -1.15 3.7 -42.81
6 2 3 0.001 107.35 -2.51 4.45 -31.22
7 3 1 0.006 110.82 0.64 5.18 -19.94
8 3 2 0.001 109.12 -0.90 6.74 4.17
9 3 3 0.001 108.13 -1.80 2.83 -56.26
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cost (over 2.5%) and variability (over 56%), but the lowest cost solution
may not be the least variable.

Further work should examine the effect of alternative maintenance
strategies on cost variability and investigate sensitivity to choice of
component cost model. The influence of other sources of variability,
such as power generation and installation actions, also merits further
study. Quantifying the error in the economic metrics and understanding
the effects of input uncertainty alongside variability is vital for real
world applications.
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