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Abstract: Nowadays, since energy management of buildings contributes to the operation cost, many 
efforts are made to optimize the energy consumption of buildings. In addition, the most consumed 
energy in the buildings is assigned to the indoor heating and cooling comforts. In this regard, this 
paper proposes a heating and cooling load forecasting methodology, which by taking this method-
ology into the account energy consumption of the buildings can be optimized. Multilayer percep-
tron (MLP) and support vector regression (SVR) for the heating and cooling load forecasting of res-
idential buildings are employed. MLP and SVR are the applications of artificial neural networks and 
machine learning, respectively. These methods commonly are used for modeling and regression 
and produce a linear mapping between input and output variables. Proposed methods are taught 
using training data pertaining to the characteristics of each sample in the dataset. To apply the pro-
posed methods, a simulated dataset will be used, in which the technical parameters of the building 
are used as input variables and heating and cooling loads are selected as output variables for each 
network. Finally, the simulation and numerical results illustrates the effectiveness of the proposed 
methodologies. 

Keywords: energy management; load forecasting; heating and cooling; machine learning; multi-
layer perceptron (MLP), support vector regression (SVR) 

 

1. Introduction 

Increasing the number of cities and their populations throughout the world requires a great deal 
of energy to meet the needs of citizens. Recent studies have predicted that the population of cities 
will increase up to five billion by 2030 [1]. Nearly 40% of total energy consumption is related to the 
dwellings, and other building types constitute just a fraction of the buildings [2]. Supplying energy 
to the citizens requires associated resources in which limited sources are available. As the consump-
tion of residential buildings forms a great amount of demand, regarding social welfare, residential 
consumption should be monitored and controlled [3]. On the other hand, heating and cooling are the 
most crucial energy sources among citizens, so in this regard usage of these energies should be man-
aged. 

Managing and optimizing the energy consumption of buildings requires having complete infor-
mation about the performance of the building and environmental factors. Electricity, gas and heating 
supply are the most important resources of energy in a building, but the important final use applica-
tions are elevators, heating ventilation and air conditioning (HVAC), domestic hot water, and so on. 
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Among the aforementioned energy sources, optimal operation of HVAC and indoor condition sup-
ply are two important factors in evaluating building energy performance [4,5]. HVAC, as a basic 
infrastructure in the building, plays an important role by changing the amount of internal cooling 
and heating loads of residential buildings. Despite the need for this system in buildings, there is a 
major concern that about 40% of all energy, especially in office buildings, is consumed by this system 
[6,7]. Forecasting the thermal loads plays an important role in optimizing the cooling and heating 
cost of the buildings, as the deviation from the optimally scheduled values will increase the total cost 
considerably [8]. 

Energy forecasting is a way to reach optimal operation of HVAC and energy management of 
residential buildings. In this regard, residential buildings' consumption patterns could be predicted 
[9]. Nowadays, by developing technology many small-scale smart devices and building management 
systems (BMSs) can be installed on the residential buildings sites in order to monitor and record the 
load patterns of the buildings, and also environmental characteristics that have a high impact on the 
energy forecasting. Using such data, building consumption patterns could be predicted and con-
trolled hourly. In addition, the necessity of energy forecasting has been expressed by some researches 
e.g., a review study of thermal energy consumption in the buildings pertinent to the comfort was 
introduced in [10] and the purpose of the study was showing how social-economic, fuel mix and 
climate change are affected by thermal energy comfort. Moreover, by load forecasting, buildings can 
schedule for the next day, not only to participate in the demand–response programs [11-13] but also 
to participate in energy trading [14,15].  

So far, many studies have been done in order to evaluate load forecasting of the buildings. In a 
valuable study [16], an integrated design approach has been utilized to estimate life-cycle energy 
savings, cost-effectiveness of energy efficiency measures in new buildings, and carbon emission re-
duction. In [17], a multi-objective optimization for energy refurbishments of existing buildings 
through energy efficiency measures and HVAC systems have been carried out using a genetic algo-
rithm coupled with a dynamic simulation tool. Predictor methods for heating load based on artificial 
neural networks (ANN) have been evaluated in [18] for office buildings where the impact of data size 
and dimensionality in ANN was inspected. In order for heating, ventilation, and air-conditioning 
(HVAC) system optimization in [19], electricity load forecasting based on ANN has been studied. 
Among three utilized algorithms such as Levenberg-Marquardt, Scaled Conjugate gradient back-
propagation, and Bayesian Regularization (BR), the BR-based ANN showed the best performance. 
Another study proposed the energy forecasting method using statistical analysis for heating and 
cooling of an office building [20]. In [21], four hybrid techniques based on artificial neural network 
(ANN) and meta-heuristic algorithms such as artificial bee colony (ABC) optimization, particle 
swarm optimization (PSO), imperialist competitive algorithm (ICA), and genetic algorithm (GA) 
have been suggested for forecasting the heating load of buildings’ energy efficiency. Forecasting the 
cooling load has been done in [22] using a probabilistic entropy-based neural (PENN) method. Short-
term cooling load prediction in order to optimize the operation of HVAC systems and energy effi-
ciency measures in buildings has been done in [23] using multiple nonlinear regression (MNR), auto 
regressive (AR), and autoregressive with exogenous (ARX) models. In [24], the thermal comfort re-
duction of the energy consumption in the building by 36.5% was performed via a feedforward neural 
network (FFNN). A decision tree method has been suggested in [25] for energy demand forecasting 
and energy efficiency measures of a residential building. A comparative study of forecasting methods 
for heating and cooling load was done in [26], where machine learning techniques such as a deep 
neural network (DNN), gradient boosted machine (GBM), Gaussian process regression (GPR) and 
minimax probability machine regression (MPMR) were compared with each other. In [27], prediction 
of the cooling and heating loads of the building were done using ANN, classification and regression 
tree (CART), general linear regression (GLR), and chi-squared automatic interaction detector 
(CHAID). In the same work, the technical characteristics of the building were considered as input to 
the networks. In [28], sixteen residential buildings were evaluated in terms of heating and cooling 
energy consumption forecasting via adaptive linear time-series models. Likewise, cooling load fore-
casting based on data mining techniques was proposed in [29] to help design a more efficient building 
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management system (BMS). In [30], the BMS based on electrical, economic, and ecological optimiza-
tion using a genetic algorithm was introduced to improve energy efficiency of the buildings. General 
regression neural network (GRNN) has also been employed in [31] for cooling energy forecasting to 
optimize HVAC heat storage of public buildings.  

In most of the aforementioned research works, meteorological data was used as an indicator and 
input for forecasting the cooling and heating loads of residential buildings. It is undeniable that en-
vironmental and meteorological factors do not affect the cooling and heating loads of residential 
buildings, but sometimes abrupt changes in weather could disrupt energy forecasting equations, re-
ducing the accuracy coefficient and increasing the error in the energy forecasting operation. In this 
paper, high-precision prediction of cooling and heating loads of a building was done by using mul-
tilayer perceptron (MLP) and support vector regression (SVR) methods. A set of data on structural 
characteristics of the building was considered as an input variable, while the amount of cooling and 
heating load was considered as an output variable. Using this data and creating a linear mapping 
between input and output variables via the proposed methods, it is possible to make a more accurate 
prediction of cooling and heating loads. 

The rest of the paper is organized as follows: Section 2 describes the case study and dataset. 
Section 3 represents the employed methodologies and techniques. Section 4 includes the simulation 
and numerical results and finally, Section 5 concludes the paper.  

2. Case study  

The dataset used in this work was created by Tsanas and Xifara [32]. Twelve different buildings 
were simulated in Ecotect software to generate the dataset. The glazing area, distribution of the glaz-
ing area and the orientation are the parameters that make the buildings different from each other. 
Each building was simulated using eighteen preliminary cubes (3.5×3.5×3.5 m3) with the same mate-
rials for all buildings. The newest and most common materials in the building construction industry 
were selected for each of the eighteen elements so that the materials used for each of these elements 
were the same for all forms of construction. In the design process, three types of glazing areas such 
as 10%, 25%, and 40% were used as percentages of the floor area. In addition, it was assumed that 
buildings were in Greece, Athens. Sixty percent humidity, 0.3 m/s wind speed, lightning level of 300 
1x  and 0.6 clo of clothing were considered as internal design conditions during simulation, while 
the infiltration rate was set to 0.5 for the air change rate with a wind sensitivity of 0.25 air changer 
per hour. The dataset includes 768 samples with eight features for each sample, namely 

1 2 8, ,...,x x x   and 1 2,y y   as decision variables, which are listed in Table 1 [21,32]. This work aims 

to forecast 1y as the heating load and 2y as the cooling load using the aforementioned features as 
decision variables. Although the dataset was generated via simulation, it is notable that the proposed 
methods are applicable to the real-world dataset.  

Table 1. Details of input and output data. 

Mathematical symbol Variables 

1x  Relative compactness 

2x  Surface area 

3x  Wall area 

4x  Roof area 

5x  Overall height 

6x  Orientation 

7x  Glazing area 

8x  Glazing area distribution 
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1y  Heating load 

2y  Cooling load 

3. Methods 

Artificial neural network (ANN) and machine learning algorithms as powerful tools in data min-
ing were employed to do the modelling and forecasting tasks [33], [34]. In this work, MLP and SVR 
were used as two application models of these algorithms to create a linear mapping between the 
technical parameters of building and the cooling and heating loads of the building in order to forecast 
the load/energy. In the following, each of the proposed methods are briefly introduced. 

3.1. Multilayer perceptron (MLP) 

MLP has a fully connected layer structure, i.e., each neuron in a layer is connected to all neurons 
in the next and previous layers. The schematic of the MLP structure is shown in Figure 1, which 
illustrates a nonlinear mapping between the input vector and the output vector [35]. The neurons are 
connected through weights, and output signals are generated by a nonlinear transfer function [36]. 

1
( )

N

l l
l

Y f b w x
=

= +  (1) 

In equation (1) Y and x are the output and input signals, respectively, f is the nonlinear trans-
fer function, b and w are the bias and weight vectors, respectively, and N is the total number of the 
inputs. Since MLP has the ability to learn through training, a dataset with known input vector and 
output vector is required in which the weight vector is adjusted according to the output signals 
through training [37]. 

. 

Figure 1. Basic structure of multilayer perceptron (MLP). 

3.2. Support vector regression (SVR) 

SVR is one of the training tools which was developed from the support vector machine (SVM). 
The principle of SVR is depicted in Figure 2. In this work, ε-SVR is employed for the training of data. 
ε-SVR is a classic model of SVR with the aim of finding a flat function, which has a small (ε) error 
from the obtained target [38]. In the case of SVR, the following function is trained using given training 
data such as 1 1 2 2{( , ), ( , ),..., ( , ),...( , )} , {1,2,..., }l l N Nx y x y x y x y l Nχ⊂ × = , where χ illus-
trates the space of the input patterns:  

( ) , ; ,f x w x b w bχ= + ∈ ∈  (2) 
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where b is bias, and ,w x   represents the linear function of fitting input space to the feature space. 

Equation (3) is using to minimizing the risk function as follows: 

2
1

1

1 ( , , )
2

N

i
R w c y w x

=

= +   (3) 

In equation (3), the selected loss function and 0c >   specifies the tradeoff between the smooth-
ness of f and allowed deviation larger than ε. In order to deal with the problem, the minimization 
problem of (4) must be solved. 

2 *

1

1min ( )
2

N

l l
l

w c ξ ξ
=

+ +  (4) 

*

*

,

. . ,

0

l l l

l l l

l l

y w x b

s t w x b y

ε ξ

ε ξ

ξ ξ

 − − ≤ +


+ − ≤ +
 + ≥

 

where, *,l lξ ξ   are the slack variables which tackle the infeasible constraints. In order to solve the 
optimization problem, the dual problem of the (4) can be derived using the Lagrange function. In 
addition, w can be defined as an integration of training patterns of x  linearly. Therefore, equation 
(2) can be reformulated as [39]: 

*

1
( ) ( ) ,

N

l l l
l

f x b x xα α
=

= + −  (5) 

Where, *,l lα α   are the Lagrangian multipliers. Then, in order to put the nonlinearity in the algo-

rithm, the training patterns lx can be modified by a map : FχΦ →  . In addition, Kernel function 
can be defined as: 

( , ) : ( ), ( )k x x x x′ ′= Φ Φ  (6) 

 

According to the above-mentioned equations, the optimization problem of (4) can be modified, 
and finally, the function f derived as follows: 

*

1
( ) ( ) ( , )

N

l l l
l

f x b k x xα α
=

= + −  (7) 

It is notable that in the nonlinear optimization problem, the flatness function is searched among 
the feature space, not input space [40], [41]. 
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Figure 2. The principle of support vector regression (SVR). 

4. Simulation and results 

The MLP and SVR networks are designed to predict the cooling and heating load. Each of these 
networks was trained using a dataset as input. In this paper, 85% (658 samples) of the data were used 
to train and validate the proposed methods and the remaining 15% (110 samples) were used for test-
ing. In the first stage, each network required a preliminary design to determine the number of neu-
rons in the hidden layer and the coefficients of the network. After designing each network, the 
amount of training and testing data for the network was determined. In this work, 70% of the samples 
were considered as training data and 30% as test data to validate the training phase of each network. 
After training and testing each neural network or regression algorithm, the results need to be evalu-
ated. To do this, correlation coefficient (R), mean squared error (MSE), root mean squared error 
(RMSE), and mean absolute error (MAE) can be used as statistical performance metrics. Each of the 
mentioned indices are calculated according to the following equations [42]. 

1

2 2

1 1

( )( )

( ) ( )

N

l l
l

N N

l l
l l

x x y y
R

x x y y

=

= =

− −
=

− −



 
 

 
 

(8) 

2

1

1 ( )
N

l l
l

RMSE x y
N =

= −   (9) 

2

1

1 ( )
N

l l
l

MSE x y
N =

= −   

(10) 

 

1

1 N

l l
l

MAE x y
N =

= −  
 

(11) 

where lx and ly  illustrate the actual value and predicted value. x and y  y depict the mean of 
actual values and forecasted values, respectively. Figure 3 shows the good correlation coefficient be-
tween the real values and the predicted value by the network in the training, testing and validation 
steps for the MLP network. Figure 4 indicates an excellent correlation coefficient between the real 
values and the predicted value for the SVR network during the training phase. 
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(a) (b) 

Figure 3. Correlation coefficient between the real value and the output of the MLP: (a) heating load; 
(b) cooling load. 

  

  
(a) (b) 

Figure 4. Correlation coefficient between the real value and the output of the SVR; (a) heating load; 
(b) cooling load. 

Given the excellent correlation between the target data and the output of each network (as 
shown in Figures 3 and 4), it can be clearly understood that each of these networks have passed the 
training phase well. Good training means that the network is able to identify inherent patterns in the 
nature of data and to predict the unknown data by using the learned patterns, so that each network 
learns how much of a cooling and heating load is required for each building with specific character-
istics. With this training, each network can predict the amount of cooling and heating loads related 
to the input data of the test phase. After training, each network is validated using initial test data 
(30% of 85%). This is kind of a test for the training phase, which is done by the network itself. The 
prediction error in the test or validation, which is one of the most important values in evaluating the 
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results, is presented in Figures 5 and 6 for each of the MLP and SVR networks in the histogram form, 
respectively. 

  
(a) (b) 

Figure 5. MLP testing error in the for histogram; (a) heating load; (b) cooling load. 

.  
(a) (b) 

Figure 6. SVR testing error in the for histogram; (a) heating load; (b) cooling load. 

The error obtained in the error histogram model indicates the minimum and maximum predic-
tion error. This means that in predicting the cooling and heating loads for the test data, the amount 
of error that each of the trained networks can have is equal to the amount provided in the above 
figures. 

In evaluating and analyzing each of the above figures that somehow represent the performance 
of each network in the initial training and testing stages, it can be concluded that the training of 
proposed methods has been well validated using the desired data. It should be noted that when the 
network is trained with high accuracy, it is well designed and the amount of error in the validation 
and initial testing process depends more on the type of data. It also implies that the network will be 
able to accurately assess and predict new and unknown data. Each network is saved as a black box 
after training. This black box contains patterns that the network was able to identify during the train-
ing phase. Now, the new and unknown data must be used to test these networks and predict the 
cooling and heating load of buildings. To do this, 15% (110 samples) of the data, kept as unknown 
and new data, were used. Figures 7 and 8 show the results of forecasting heating and cooling loads 
for new data using the trained MLP and SVR networks, respectively. 
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Figure 7. Heating load forecasting via MLP and SVR. 

 

Figure 8. Cooling load forecasting via MLP and SVR. 

Performance evaluation of the proposed methods is presented in Table 2 in terms of R, MSE, 
RMSE, and MAE.  

Table 2. Results of accuracy and error for proposed methods in heating and cooling load prediction. 

 Heating load Cooling load 
 R MSE RMSE MAE R MSE RMSE MAE 

MLP 0.9993 0.2335 0.4832 0.4118 0.9824 6.896 2.626 2.0973 
SVR 0.9979 0.7838 0.8853 0.7780 0.9878 3.024 1.7389 1.4762 

Based on the results presented in the Table 2, it can be seen that the best prediction was related 
to the prediction of the heating load by the MLP method with the highest value of R (0.9993) and 
minimal errors in the form of MSE (0.2335), RMSE (0.4832), and MAE (0.4118). However, in predicting 
the cooling load, the SVR method with a large amount of R (0.9878) and lowest errors in the terms of 
MSE (3.024), RMSE (1.7389), and MAE (1.4762) made a good prediction. Highest values of MSE and 
RMSE errors of prediction were also related to the MLP method in the prediction of cooling load. The 
use of machine learning methods and their results are highly dependent on the type of input data. It 
is observed that there is a difference between the results of predicting the cooling load and heating 
load by each of the networks and the heating load is predicted with high accuracy. This difference is 
due to the poor correlation between the input data and the amount of cooling load relative to the 
heating load. To evaluate the effectiveness of the proposed methods in this paper, it is necessary to 
compare the results obtained with the results of other studies. Comparisons should be made with 
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caution using similar datasets. To this end, a number of studies were selected for comparison in which 
similar data was used for predicting the cooling and heating loads. To express the effectiveness of the 
data type in the accuracy of the results, the results of several studies conducted to predict cooling and 
heating loads using different data were compared with the results obtained in this paper. Table 3 
makes this comparison. 

Table 3. Comparison of cooling and heating loads prediction results with other works. 

Data type References 
Heating load 

(R) 
Cooling load 

(R) 
Used data in this pa-

per MLP in this paper 0.9993 0.9824 

 SVR in this paper 0.9979 0.9878 
 DNN [14] 0.9805 0.9976 
 GBM [14] 0.9853 0.9853 
 GPR [14] 0.9984 0.9913 
 MPMR [14] 0.8802 0.8955 
 ANN [15] 0.9980 0.9840 
 CART [15] 0.9960 0.9810 
 GLR [15] 0.9950 0.9830 
 CHAID [15] 0.9950 0.9810 
 GA-ANN [18] 0.9800 - 
 PSO-ANN [18] 0.9720 - 
 ICA-ANN [18] 0.9700 - 
 ABC-ANN [18] 0.9730 - 

Different data GRNN [28] - 0.9640 
 PENN [20] - 0.9500 
 MLR [20] - 0.7510 
 AR [20] - 0.8370 
 ARX [20] - 08640 

 MNR (initial prediction) 
[20] 

- 0.8990 

 
MNR (final calibration) 

[20] - 0.9580 

 ANN [21] 0.9900 - 
 Decision tree [22] 0.92 - 

The comparison made in Table 3, shows the accuracy and efficiency of the proposed methods in 
this paper for forecasting the cooling and heating loads of the building. The use of machine learning 
applications and the selection of the applicable method for energy predicting and energy efficiency 
measures in residential buildings are significantly effective in saving energy consumption. The se-
lected methods were able to realize the purpose of the paper with their high accuracy and achieve 
this important goal. Finally, it should be noted that the proposed solutions can also be used for real-
world data. 

5. Conclusions 

Nowadays, the importance of energy saving and its management has raised many challenges in 
forecasting the heating and cooling loads of buildings. Most researchers in this field offer many meth-
ods and models for predicting heating and cooling loads to somehow increase the prediction accu-
racy. In this paper, based on machine learning models two MLP and SVR methods were proposed to 
predict the cooling and heating load of a residential building. The main idea of these methods was to 
create a linear mapping between the input and output variables to increase the prediction accuracy. 
After designing each of the proposed models, the technical parameters of a home building were used 
as inputs and the heating and cooling loads were used as the output variables of each network during 
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the training phase. New and anonymous data were used to test the trained networks and for fore-
casting the heating and cooling loads. Finally, each trained network was able to reliably provide the 
heating and cooling load forecasts. Meanwhile, the MLP method with the maximal of R i.e., 0.9993 
and the SVR method with the highest value of R i.e., 0.9878 predicted the heating and cooling loads, 
respectively. 
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