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Abstract: Instability phenomena of an offshore wind power plant (OWPP) may occur in a wide frequency range, due to
impedance interactions between control loops of grid-connected inverters (GCIs) and long transmission cable (LTC) networks. This
paper presents a dq impedance-decoupled network modelling method of OWPP for stability analysis. DQ impedance frequency
responses of GCIs and LTCs are first measured by frequency scanning method, which are fitted as transfer function matrices
based on matrix fitting algorithm. Then, the GCIs are modelled as Norton equivalent circuits. In addition, per-unit-length electrical
parameters, e.g., resistance, inductance and capacitance, of the LTCs are extracted from the measured dq impedance frequency
responses of a specific LTC, based on which dq impedance-decoupled two-port network models of the LTCs are established.
DQ impedance-decoupled network model of the whole OWPP is then established based on connection relationships of these
GCIs and LTCs. Finally, generalized Nyquist criterion (GNC) is performed in all the dq impedance-decoupled subsystems, and the
subsystems where the GNC is not satisfied are identified as instability sources. Compared with conventional impedance-based
stability analysis methods of OWPP, the proposed dq impedance-decoupled modelling method is able to facilitate the application
of GNC and further instability source identification based on partitioning the whole OWPP into several decoupled subsystems.
The effectiveness of the dq impedance-decoupled network modelling method for stability analysis is validated in a typical type-IV
permanent magnet synchronous generator-based OWPP under weak grid conditions based on time-domain simulation results in
Matlab/Simulink platform and real-time verification results in OPAL-RT platform.

1 Introduction

Offshore wind power plants (OWPPs) have been gaining increas-
ing concerns, due to abundant wind power resources, little visual
and auditory noise, and no occupied spaces [1]. Voltage source grid-
connected inverters (GCIs), as important interfaces, are commonly
used to transfer the generated electrical energy to utility grid [2].
Impedance interactions between control loops of the GCIs and long
transmission cables (LTCs) could result in instability phenomena in
a wide frequency range, which threaten safe and reliable operation
of the whole system [3–6]. Specifically, low-frequency instability
phenomena may be caused due to improper designs of phase-locked
loop (PLL) and outer control loops, e.g., dc-link voltage control loop
and power control loop [7–11]. In addition, improper design of inner
current control loop may lead to high-frequency instability phenom-
ena under weak grid conditions [12–14]. For simplicity, only PLL
and inner current control loop, as representatives, will be investi-
gated in this paper. It’s necessary to establish an efficient system
model and develop corresponding stability criteria to identify the
instability phenomena and corresponding problematic components
at the initial design stage.

The small-signal stability of power electronic-dominated AC
power systems has conventionally been investigated by system state-
space model [7, 15–17]. However, heavy computational burdens are
involved in power systems with moderate to large size. In addi-
tion, the detailed information of control structure and parameters are
required. Recently, the impedance-based stability criterion (IBSC),
as an alternative method, has widely been applied, where the over-
all system is partitioned into source and load parts at a certain bus,
and both right-half plane (RHP) poles of the impedance ratio and
the encirclement number of the Nyquist plot of the impedance ratio
around (−1, j0) in the complex plane are calculated [18, 19]. The

main step of the IBSC is to establish the component impedance
model. Specifically, dq impedance model has widely been used to
assess stability related to the inner current control loop and PLL [20–
22]. It is revealed in [20, 22] that the negative-resistor behaviour of
PLL in low-frequency range could result in instability phenomena
under weak grid conditions, which can be captured by q-q chan-
nel component of the dq impedance model. Since both source and
load parts of single GCI-based system are inherently stable, no RHP
poles calculation is needed [18, 20, 22]. However, when the conven-
tional IBSC is applied in an OWPP where a large number of GCIs
and LTCs exist, RHP poles calculation cannot be avoided. In addi-
tion, problematic components cannot be identified, since the GCIs
and LTCs are aggregated for IBSC. The dq impedance formulas of
source and load parts, thus, should be theoretically derived to calcu-
late the RHP poles. However, the theoretically-derived dq impedance
models of source and load parts may have very high orders, due to
the existence of a large number of GCIs and LTCs. In addition, the dq
impedance models sometimes cannot be theoretically derived, due
to industry confidentiality about internal structure and parameters of
the GCIs.

Many works have been reported to avoid RHP poles calcula-
tion for stability assessment of large-scale power electronic-based
AC power systems [4, 23–34]. In [23], the theoretically-derived
dq impedance models of the GCIs and transmission lines are con-
nected based on system topology, based on which a loop impedance
model is derived. The determinant of the loop impedance model is
then calculated to assess system stability. Different from [23], dq
impedance formulas of the GCIs are fitted from measured impedance
frequency responses based on system identification technique in
[24, 25]. RHP poles calculation can be avoided. Instability sources,
however, cannot be identified, since information of system struc-
ture is missing in the loop impedance model [23–26]. Similarly,
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the impedance frequency responses of the whole power systems at
a specific node are fitted as a state-space model using the vector
fitting (VF) or matrix fitting (MF) algorithm in [27, 35]. In addi-
tion, the terminal impedance frequency responses of the subsystems
and individual components are fitted as state-space models using
the VF or MF algorithm in [28] and [29], respectively. RHP poles
calculation can also be avoided in [27–29]. However, the stability
analysis methods presented in [27–29] are system state space-based
eigenvalues analysis instead of impedance-based stability analysis.
In [4, 30, 31], information about system structure is maintained by
the nodal admittance matrix. System stability can then be assessed
by the determinant of the nodal admittance matrix, and contributions
of all components on system modes of interest can be calculated
by participation factor analysis. However, when there exists a huge
number of nodes, the order of the nodal admittance matrix is very
high, and heavy computational burdens will be involved.

On the other hand, the Nyquist stability criterion is performed
sequentially from the farthest bus to point of common coupling
(PCC) in [23, 32–34], where RHP poles calculation is avoided. In
each step, ratio of the nearest component impedance which is at
the right side of a bus and total impedance which is at the left side
of the bus is calculated, based on which the encirclement number
around (−1, j0) of Nyquist plot of the impedance ratio is counted.
If the encirclement number is not zero at a certain bus, the overall
system is assessed as unstable. It can be seen that RHP poles cal-
culation can be avoided, and instability sources can be identified.
However, the multi-step Nyquist stability criterion-based stability
analysis method needs to calculate the aggregated impedance models
at all buses sequentially, which tends to bring in heavy computa-
tional burdens. In addition, only purely inductive transmission lines
are considered in [23, 32–34], where practical parasitic capacitances
along the LTCs is not taken into account. The LTCs may compli-
cate the stability analysis procedure based on the multi-step Nyquist
stability criterion. Impedance-decoupled two-port network model of
the LTC with consideration of parasitic capacitance is proposed in
[5, 36] to facilitate stability analysis. However, only single GCI is
investigated in [36], and multiple GCIs connected with PCC are
investigated in [5]. The practical radial topology of the OWPP is not
considered in [5, 36]. Furthermore, impedance-decoupled multi-port
network models of multi-port transmission networks are presented
in [13, 33]. However, the presented modelling methods in [13, 33]
are not applicable for LTC, since the parasitic capacitance is also
not considered. In addition, the impedance-decoupled two-port or
multi-port network model is established in phasor-domain, which is
not suitable for PLL-related low-frequency stability analysis, i.e., the
LTC model should be established in dq-domain.

The per-unit-length (p.u.l.) electrical parameters of the LTCs, e.g.,
p.u.l. resistance and p.u.l. inductance, are commonly assumed as
not frequency dependent in previous works [3, 37, 38]. In practice,
the p.u.l. inductance decreases as frequency increases, whereas the
p.u.l. resistance increases as frequency increases [39]. Therefore,
this simplification may lead to inaccurate stability analysis results,
since the inherent damping characteristics of the LTCs in high-
frequency range are ignored [10, 40, 41]. The frequency-dependent
characteristics will, thus, be considered in this paper for accurate
stability analysis results . However, the measurement of terminal
impedance frequency responses of the LTCs can be tedious and
time-consuming, if many LTCs exist in the OWPP. In [42, 43],
the frequency-dependent p.u.l. electrical parameters of the power
cables are extracted from measured terminal impedance frequency
responses of a specific power cable, and used to calculate the ter-
minal impedance formulas of the same type of power cables in other
lengths. However, the studied power cables in [42, 43] are commonly
in length of tens of metres, which is not suitable for the LTC which
can be tens or hundreds of kilometres.

This paper further develops the multi-step Nyquist stability cri-
terion presented in [23, 32–34] by splitting the whole OWPP into
several decoupled subsystems with the help of the dq impedance-
decoupled two-port network model of the LTC. The overall system
is first partitioned into individual components, e.g., GCIs and LTCs.
The dq impedance frequency responses of all GCIs are then mea-
sured by performing frequency scanning, which are fitted as transfer

function matrices using the MF algorithm. In addition, all LTCs
are divided into different categories according to materials and
geometrical shapes, so that each kind of LTC has the same p.u.l.
electrical parameters. For each kind of LTC, one-end short-circuited
and one-end open-circuited terminal impedance frequency responses
are obtained by performing frequency scanning, based on which
the p.u.l. electrical parameters are then identified. Then, the dq
impedance models of the LTCs in other lengths can be theoret-
ically calculated. The GCIs and LTCs can then be modelled as
Norton equivalent circuits and dq impedance-decoupled two-port
circuit models, respectively. Based on their interconnection relation-
ship, the established component circuit models are integrated, and
the impedances of adjacent GCIs and LTCs are aggregated based on
one-end open-circuited admittances of LTCs. Generalized Nyquist
criterion (GNC) is applied in all the decoupled subsystems, and the
subsystems which do not satisfy GNC are identified as instability
sources.

The main contributions of this paper are explained as follows.
1) A frequency-dependent p.u.l. electrical parameters identifica-

tion method of the LTC is proposed, which is able to facilitate
impedance modelling of LTCs of the same material but in different
lengths.

2) A unified dq impedance model fitting method of GCIs and
LTCs based on the MF algorithm is proposed, which is able to deal
with variation and uncertainty of internal structure and parameters.

3) An admittance aggregation method of GCI and LTC based on
one-end open-circuited admittance of LTC is proposed, where no
information about series impedance and shunt admittance of the LTC
is required.

4) A dq impedance-decoupled network modelling method of
OWPP is proposed, which partitions the whole OWPP into sev-
eral decoupled subsystems. It’s able to facilitate stability analysis
and problematic components identification based on the multi-step
Nyquist stability criterion.

The rest of this paper is organized as follows. Theory basis is
introduced in Section 2. In Section 3, principle of the dq impedance-
decoupled network modelling method and detailed implementation
procedure are explained. In addition, some issues about the proposed
stability analysis method are also discussed. The proposed stabil-
ity analysis method is performed in a typical OWPP in Section 4.
Section 5 verifies the correctness of the stability analysis results
in Section 4 based on time-domain simulation results in Mat-
lab/Simulink platform and real-time verification results in OPAL-RT
platform. Finally, conclusions are drawn in Section 6.

2 Theory Basis

In this section, theory basis of the proposed dq impedance-decoupled
network modelling method of OWPPs is introduced. In detail, dq
impedance frequency characteristics of both GCIs and LTCs are fist
reviewed, followed by introduction of the MF algorithm.

2.1 DQ Impedance Model of the GCIs

Fig. 1 shows the configuration of a typical HVAC permanent magnet
synchronous generator (PMSG)-based OWPP. Control of the rec-
tifier and the GCI in the PMSG system is decoupled, and dc-link
voltage can be regarded as constant [3]. Fig. 2 shows the control
diagram of an L-filtered GCI, where current control loop and PLL
are used to track current reference i∗tdq and phase angle of terminal
voltage vtabc, respectively. Due to asymmetric impact of PLL on ter-
minal impedance, 2× 2 impedance matrix in dq domain shown as
(1) should be used [20].

Zdq_L = (Yc
L−VdcY

g
LGdel(−GciG

i
PLL + Gd

PLL))−1

·(I + VdcY
g
LGdelGci) (1)

where bold letters indicate 2× 2 matrices. Gi
PLL and Gd

PLL are
two asymmetric matrices related with PLL. Expressions of transfer
function matrices in (1) can be found in the Appendix.
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Fig. 1. Configuration of a typical HVAC PMSG-based OWPP.
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Fig. 2. Control diagram of an L-filtered GCI with current control loop and

PLL.

In addition, the dq impedance matrix of an LCL-filtered GCI can
be obtained based on (1), shown as

Zdq_LCL = (Yc
LCL−VdcY

g
LCLGdel(−GciG

i
PLL + Gd

PLL))−1

·(I + VdcY
g
LCLGdelGci) (2)

where detailed expression of each symbol is also shown in the
Appendix.

The dq impedance matrices Zdq_L and Zdq_LCL are aligned to
terminal voltage vtabc. Therefore, Zdq_L and Zdq_LCL in l and k
reference frames are not the same, which can be linked by (3) [23].

Zk
dq_L = Rdq(θ)Zl

dq_LR
−1
dq (θ)

Zk
dq_LCL = Rdq(θ)Zl

dq_LCLR
−1
dq (θ) (3)

where Rdq(θ) = [cos θ, sin θ;− sin θ, cos θ] is rotation matrix, and
θ is the difference of voltage angles at nodes l and k.

Besides PLL and inner current control loop shown in Fig. 2, the
effects of outer dc-link voltage control loop and outer power control
loop on dq impedance model of the GCI have been investigated in
[9] and [8, 10], respectively. The studies show that, similar with PLL,
outer dc-link voltage control loop and outer power control loop also
affect the dq impedance characteristics of the GCI in low-frequency
range, thus affecting system low-frequency stability, since the band-
widths of PLL, outer dc-link voltage control loop and outer power
control loop are designed to be close to each other and much lower
than the bandwidth of inner current control loop [44, 45].

This paper aims to present a dq impedance-decoupled network
modelling method to facilitate the identification of the instabil-
ity phenomena in both high-frequency and low-frequency ranges,
instead of investigating the effects of various control loops on system

mY
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s mY Y�

RvRiSiSv
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openY
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�
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s
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Fig. 3. Circuit model of an LTC. (a) Single-Π model with lumped

parameters. (b) Impedance-decoupled two-port circuit model.

stability. Therefore, the current control loop-related high-frequency
stability issue and PLL-related low-frequency stability issue, as rep-
resentatives, are used to verify the validity of the proposed method
in this paper. The dc-link voltage dynamics are, thus, neglected by
assuming a large dc-link capacitor. In fact, similar simplification has
been widely adopted in existing works. For example, the dynamics
of dc-link voltage control and PLL are neglected in [3, 4, 46, 47]
where high-frequency harmonic instability is focused. In addition,
the dc-link voltage is assumed as constant in [8, 48] to focus on the
PLL-related low-frequency stability issue. Readers can find detailed
impedance modelling procedure of the PMSG in [49, 50], where
dc-link voltage dynamics are considered.

2.2 Terminal Impedance Characteristics of the LTCs

Voltage and current distribution along a uniform LTC can be
expressed as following classical telegraph equations [36, 51].

∂xv(x, ω) = −Z′(ω)i(x, ω)

∂xi(x, ω) = −Y ′(ω)v(x, ω) (4)

where v(x, ω) and i(x, ω) are voltage and current at position x
of the LTC, respectively. Z′(ω) = R′(ω) + jωL′(ω) and Y ′(ω) =
G′(ω) + jωC′(ω) are p.u.l. series impedance and shunt admit-
tance of the LTC, respectively. In general, G′(ω) can be ignored
and C′(ω) can be regarded as constant [51]. In addition, L′(ω)
decreases as frequency ω increases, whereas R′(ω) increases as
frequency ω increases [39, 41]. If the frequency-dependent char-
acteristics of L′(ω) and R′(ω) are ignored, inaccurate stability
analysis conclusions may be obtained [10, 40].

(4) can be rewritten as a 2-order differential equation to decouple
v(x, ω) and i(x, ω), shown as

∂2xv(x, ω) = Z′(ω)Y ′(ω)v(x, ω) = γ2(ω)v(x, ω)

∂2xi(x, ω) = Z′(ω)Y ′(ω)i(x, ω) = γ2(ω)i(x, ω) (5)

where γ(ω) =
√

(Z′(ω)Y ′(ω)) is the propagation constant.
Based on (5), the currents flowing through both ends can be

expressed by the voltages at both ends, shown as[
iS
−iR

]
=

[
Ys −Ym
−Ym Ys

] [
vS
vR

]
(6)

where Ys and Ym represent self admittance and mutual admittance,
respectively, which are expressed as

Ys = 1/(Zc tanh(γ`))

Ym = 1/(Zc sinh(γ`)) (7)

where ω is omitted for simplicity, and Zc =
√
Z′/Y ′ is the charac-

teristic impedance.
Based on (6), the LTC can be modelled as a lumped-parameter

single-Π model, as shown in Fig. 3(a). In addition, the equivalent
two-port circuit model is established in Fig. 3(b), where Zshort
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and Yopen are one-end short-circuited impedance and one-end
open-circuited admittance, respectively, shown as

Zshort = Y −1short = Y −1s

Yopen = Z−1open = (Y 2
s − Y 2

m)/Ys (8)

Then, one-end short-circuited dq impedance and one-end open-
circuited dq admittance can be calculated based on (8), shown as
[48]

Zdq
short = A−1

Z Zpn
shortAZ = A−1

Z

[
Zppshort Zpnshort
Znpshort Znnshort

]
AZ

Ydq
open = A−1

Z Ypn
openAZ = A−1

Z

[
Y ppopen Y pnopen
Y npopen Y nnopen

]
AZ (9)

where AZ = 1√
2

[1, j; 1,−j] and Zpnshort = Znpshort = Y pnopen =

Y npopen = 0. In addition,

Zppshort = Zshort(s+ jω1)

Znnshort = Zshort(s− jω1)

Y ppopen = Yopen(s+ jω1)

Y nnopen = Yopen(s− jω1) (10)

where ω1 is the fundamental angular frequency.
The motivation why the single-Π model with lumped parame-

ters in Fig. 3(a) is represented as the two-port circuit model in Fig.
3(b) based on one-end short-circuited impedance Zshort and one-
end open-circuited admittance Yopen can be explained as follows.
First, the two-port circuit model in Fig. 3(b) is able to facilitate the
proposed p.u.l. electrical parameters identification method shown in
Section 3.3, since the identification method is based on measured
terminal impedance frequency responses, i.e., Zshort and Yopen.
Second, the two-port circuit model in Fig. 3(b) contributes to estab-
lishing the dq impedance-decoupled network model of the whole
OWPP, as shown in Section 3.4.

2.3 MF Algorithm

A series of discrete frequency responses of a multiple-input
multiple-output (MIMO) system can be fitted as a rational model in
pole-residue form by the MF algorithm [35]. Taking a k-port MIMO
system as an example, the fitted transfer function matrix is given as
[35]

F(s) =
Rm

s− pm
+

Rm−1
s− pm−1

...+
R1

s− p1
+ D + sE

= C(sI− A)−1B + D + sE (11)

where A = diag(diag(p1, p2...pm), ..., diag(p1, p2...pm))k, B =

diag([1, 1, ...1]m
T , ..., diag[1, 1, ...1]m

T )k, C = [R1(:, 1),R2(:, 1)
...,Rm(:, 1),R1(:, 2),R2(:, 2)...,Rm(:, 2), ...,R1(:, k),R2(:, k)
...,Rm(:, k)]. Both D and E are k × k matrices. It can be seen
from (11) that all elements in F(s) share the same poles sets
(p1, p2..., pm), which can be used to assess stability issue of the
MIMO system.

3 Proposed Stability Analysis Method Based on
DQ Impedance-Decoupled Network Model

In this section, the implementation procedure of the proposed sta-
bility analysis method based on dq impedance-decoupled network
model is first introduced. On the basis of it, each step is explained in
detail. Finally, some issues related to the proposed stability analysis
method are discussed.

Obtain dq impedance frequency 

responses of all GCIs using 

frequency scanning method

Generate transfer function 

matrices using MF algorithm

6WHS��

Establish Norton equivalent 

circuit models of GCIs

Modify one-end open-circuited dq admittance of the dq 

impedance-decoupled two-port circuit models of LTCs

6WHS��
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responses of all LTCs using 
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The overall system is stableThe overall system is unstable

YesNo

Fig. 4. Flowchart of the proposed dq impedance-decoupled network

modelling method for stability analysis.

3.1 Flowchart of the Proposed Stability Analysis Method

Fig. 4 shows the flowchart of the proposed dq impedance-
decoupled network modelling method for stability analysis. In step
1, impedance frequency responses of all GCIs in dq-domain are mea-
sured using the frequency scanning method. On the basis of it, the
transfer function matrices are fitted using the MF algorithm. In step
2, terminal impedance frequency responses of an LTC are measured
in phasor-domain, from which the p.u.l. parameters are extracted.
Then, dq impedance models of all LTCs in different lengths can
be calculated. In step 3, Norton equivalent circuits of GCIs and dq
impedance-decoupled two-port circuit models of LCTs are estab-
lished and connected based on their connection relationship. In
addition, the dq impedance models of adjacent GCIs and LTCs are
aggregated, and the overall system is partitioned into several subsys-
tems. In step 4, GNC is performed in all dq impedance-decoupled
subsystems. If encirclement numbers of Nyquist plots of character-
istics loci of return ratio matrices of all subsystems around (−1, j0)
are zero, the OWPP is assessed as stable. Otherwise, the OWPP is
probably unstable.

3.2 Step 1: Identification of DQ Impedance Models of GCIs
from Measured Terminal Impedance Frequency Responses

Identification of dq impedance models of the GCIs consists of two
main steps.

3.2.1 Measurement of DQ Impedance Frequency Responses:
The frequency scanning method is depicted in Fig. 5, where a small-
signal voltage perturbation vinj is injected into PCC in series way
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Fig. 5. Measurement of dq impedance frequency responses of the GCI

using frequency scanning method.

to excite the small-signal current response ires (A small-signal cur-
rent perturbation iinj can also be injected into PCC in parallel way
to excite the small-signal voltage response vres). Magnitude of vinj
cannot be too large, so that the operation point of the GCI can be kept
almost unchanged [52]. The excitation signal vinj consists of mul-
tiple frequency components which are commonly evenly distributed
or logarithmically distributed in the frequency range of interest. In
addition, two sets of linear independent perturbation signals vinj are
applied separately in dq domain, since the dq impedance model is
represented as a 2× 2 matrix. FFT is then performed to analyse vinj
and ires, and Park transformation is applied to obtain equivalent rep-
resentations in dq frame, i.e., vinjdq and iresdq , at all frequency
points. The measured dq impedance frequency responses Zdq_mea
can be calculated as

Zdq_mea =

[
vinjd
vinjq

] [
iresd
iresq

]−1
(12)

3.2.2 Generate Transfer Function Matrix from Measured DQ
Impedance Frequency Responses: Transfer function matrix in
the form of (11) is generated from the measured impedance fre-
quency responses in (12) using the MF algorithm, where the order
m is determined in a trial-and-error way. In detail, m is gradually
increased until the fitting error is acceptable.

3.3 Step 2: Identification of DQ impedance Models of
Length-Scalable LTCs from Measured Terminal Impedance
Frequency Responses

By substituting (7) into (8), γ and Zc can be calculated from Yshort
and Yopen, shown as

γ =

(
cosh−1

(√
Yshort

Yshort − Yopen

)
+ j2πk

)
/` k ∈ Z

Zc =
1√

YopenYshort
(13)

Then, p.u.l. series impedance Z′ and shunt admittance Y ′ can be
derived as

Z′ = R′ + jωL′ = γZc =
γ√

YopenYshort

Y ′ = jωC′ = γ/Zc = γ
√
YopenYshort (14)

whereR′ = Re(γZc),L′ = Im(γZc)/ω andC′ = Im(γ/Zc)/ω.
Based on the identifiedR′, L′ andC′, the two-port circuit models

of the LTCs in other lengths can be established based on (7) and (8).
Impedance/admittance model in dq domain can further be calculated
based on (9) and (10).

Here gives the theoretical verification of the effectiveness of the
proposed p.u.l. electrical parameters extraction method. Assume
that an LTC with length d0, p.u.l. resistance R′, inductance L′

and capacitance C′ is studied (The frequency-dependent character-
istics of p.u.l. parameters are ignored to simplify the verification
process. However, the conclusion is also applicable when frequency-
dependent characteristic is considered, as shown in Section 4.2).

R L

�

C

shortY

open
Y

out
v

out
i

in
v

in
i

�

C

Fig. 6. Simplified single-Π circuit model of the LTC without considering

frequency-dependent characteristic.

Single-Π RLC circuit model in form of Fig. 3(a) can be obtained,
as shown in Fig. 6. One-end open-circuited and short-circuited
admittances seen from the sending end of the LTC are as

Yshort =
1

sL+R
+
sC

2

Yopen =
1

2
sC + sL+R

+
sC

2
(15)

where R = R′d0, L = L′d0 and C = C′d0.
The propagation constant can be calculated by (13), shown as

γcal =

(
cosh−1

(
d20(s2L′C′ + sR′C′)

2
+ 1

)
+ j2πk

)
/d0

=

(
cosh−1

(
d20γ

2
theo

2
+ 1

)
+ j2πk

)
/d0 k ∈ Z (16)

where γtheo =
√

(sL′ +R′)sC′ is the theoretical propagation con-
stant. (16) provides the relationship between the derived propaga-
tion constant using terminal admittances γcal and the theoretical
propagation constant γtheo.

To quantify the calculation error, Taylor series expansion of the
hyperbolic cosine function cosh(γtheod0) is shown as

cosh(γtheod0) =
eγtheod0 + e−γtheod0

2
= 1 +

(γtheod0)2

2!

+
(γtheod0)4

4!
+

(γtheod0)6

6!
... (17)

In principle, infinite cascaded Π sections can accurately repro-
duce terminal impedance characteristics of the LTC, which means
that the LTC length represented by each Π section approximates to 0.
Thus, the high-order terms in (17) can be omitted, and the following
equation can be obtained.

γtheod0 ≈ cosh−1(1 +
(γtheod0)2

2!
) + j2πk k ∈ Z (18)

By substituting (18) into (16), it can be found that,

γcal ≈ γtheo =
√

(sL
′

+R
′
)sC

′ (19)

It shows that the proposed method can accurately extract the
propagation constant γtheo from Yshort and Yopen.

3.4 Step 3: Establishment of the DQ Impedance-Decoupled
Network Model of the Whole OWPP

Based on the fitted dq impedance models of GCIs and LTCs, the
corresponding Norton equivalent circuits of GCIs and dq impedance-
decoupled two-port circuit models of LTCs as shown in Fig. 3(b) are
established. Then, the circuit models of GCIs and LTCs are con-
nected together based on their connection relationship. For example,
Fig. 7(a) shows a simplified radial OWPP with three GCIs and five
LTCs. Its equivalent circuit model can be established as Fig. 7(b).

IET Power Electronics, pp. 1–15
© The Institution of Engineering and Technology 2020 5



/7&��

/7&��

�mY
� �s mY Y�

�

�

*&,����
/7&��

�

�

*&,��

�mY

� �s mY Y�

/7&��

/7&��
�

�

*&,��

gi

gV

1RGH��

1RGH�� 1RGH��

1RGH�� 1RGH��

3&&

gL

�mY
� �s mY Y�

�mY

� �s mY Y�

�mY
� �s mY Y�

dc
V

dc
V

dc
V

��� 9��� N9

(a)

+

-

short1
Z

open1
Y

+

-

short3
Z open3

I

GCI1
Y

+

-

short2
Z

+

-

short4
Z

open4
Y

+

-

short5
Z

open5
Y

open2
Y

LTC 1

LTC 2

LTC 3

LTC 4

LTC 5GCI 1

GCI 2 GCI 3

+

-

gZ

gV

gi

GCI2
Y

GCI3
Y

GCI1
I

short1
V

open1
I

GCI2
I

short2
V

open2
I

GCI3
I

short3
V

short4
V

open3
Y

open4
I

short5
V

open5
I

575 V/33 kV

(b)

Fig. 7. Implementation of the proposed dq impedance-decoupled network model for stability analysis. (a) Circuit model of a three-GCI-based radial OWPP.

(b) Established equivalent circuit model.
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Fig. 8. Aggregation of a Norton equivalent circuit and an LTC.

Next, the circuit models of adjacent GCIs and LTCs in Fig. 7(b)
are aggregated sequentially from node 1 to node 5, which follows
the aggregation principle shown in Fig. 8 [53]. In detail, a Norton
equivalent circuit NEC 1 and an LTC can be aggregated as a Norton
equivalent circuit NEC 2, where the parameters are

INEC2 =
YmINEC1

YNEC1 + (Ys − Ym) + Ym
=

Y −1s YmINEC1

1 + Y −1s YNEC1

YNEC2 =
1

1
YNEC1+Ys−Ym

+ 1
Ym

+ Ys − Ym

=
YNEC1 + Ys − Y −1s Y 2

m

1 + Y −1s YNEC1

(20)

By substituting (8) into (20), the parameters of NEC 2 can be
reformulated as

INEC2 =

√
1− YopenZshortINEC1

1 + ZshortYNEC1

YNEC2 =
(1 + ZopenYNEC1)Yopen

(1 + ZshortYNEC1)
(21)

Similar with (21), GCI 1 and LTC 1 can be aggregated at node
1 into a Norton equivalent circuit, of which the current source and
equivalent admittance can be calculated as

IN1 =

√
1− Yopen1Zshort1

1 + Zshort1YGCI1
IGCI1

YN1 =
1 + Zopen1YGCI1
1 + Zshort1YGCI1

Yopen1 (22)

To depict the aggregation effect, Iopen1 and Yopen1 are modified
as IN1 and YN1, respectively. In addition, GCI 2 and LTC 2 can be
aggregated at node 2 into a Norton equivalent circuit, of which the
current source and equivalent admittance can be calculated as

IN2 =

√
1− Yopen2Zshort2

1 + Zshort2YGCI2
IGCI2

YN2 =
1 + Zopen2YGCI2
1 + Zshort2YGCI2

Yopen2 (23)

Similarly, Iopen2 and Yopen2 are modified as IN2 and YN2,
respectively. Furthermore, the two modified Norton equivalent cir-
cuits established in (22) and (23) can be aggregated with LTC 3 at
node 3 into a Norton equivalent circuit, of which the current source
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6.

and equivalent admittance can be calculated as

IN3 =

√
1− Yopen3Zshort3

1 + Zshort3(YN1 + YN2)
(IN1 + IN2)

YN3 =
1 + Zopen3(YN1 + YN2)

1 + Zshort3(YN1 + YN2)
Yopen3 (24)

Iopen3 and Yopen3 are modified as IN3 and YN3, respectively.
Similarly with (22) and (23), GCI 3 and LTC 4 can be aggregated at
node 4 into a Norton equivalent circuit, of which the current source
and equivalent admittance can be calculated as

IN4 =

√
1− Yopen4Zshort4

1 + Zshort4YGCI3
IGCI3

YN4 =
1 + Zopen4YGCI3
1 + Zshort4YGCI3

Yopen4 (25)

Iopen4 and Yopen4 are modified as IN4 and YN4, respectively.
Similarly with (24), the two modified Norton equivalent circuits
established in (24) and (25) can be aggregated with LTC 5 at node
5 into a Norton equivalent circuit, of which the current source and
equivalent admittance can be calculated as

IN5 =

√
1− Yopen5Zshort5

1 + Zshort5(YN3

K2
T

+ YN4

K2
T

)
(
IN3

KT
+
IN4

KT
)

YN5 =
1 + Zopen5(YN3

K2
T

+ YN4

K2
T

)

1 + Zshort5(YN3

K2
T

+ YN4

K2
T

)
Yopen5 (26)

where KT = 33000
575 = 57.39 is the set-up ratio of the ideal trans-

former in Fig. 7(a). Iopen5 and Yopen5 are modified as IN5 and
YN5, respectively.

Based on the components aggregation procedure in (22)-(26), the
whole OWPP in Fig. 7(b) can be divided into six subsystems, as
shown in Fig. 9. Then, the GNC can be performed in the six sub-
systems to obtain the global stability feature. A detailed explanation
will be given in Section 3.5.

It can be seen from Fig. 3(b) that a coupling relationship exists
between the two subsystems of the established two-port circuit
model of the LTC, since the controlled voltage source YmvR

Ys
and

controlled current source YmiS
Ys

are determined by the voltage at the
other terminal vR and the current flowing through the other termi-
nal iS , respectively. In fact, the two subsystems can be regarded as
decoupled from the perspective of impedance. In the IBSC, the con-
trolled voltage and current sources slightly contribute to component
impedance [18]. Thus, the controlled voltage and current sources can
be neglected in the IBSC. In addition, Zshort and Yopen are not
affected by the other subsystem, as shown in (8). This is why we use
“impedance-decoupled network model” to represent the decoupling
relationship, instead of simply using “decoupled network model”.

3.5 Step 4: Stability Analysis Based on the Established DQ
Impedance-Decoupled Network Model of the Whole OWPP

Based on Fig. 9(f), ig can be calculated as

ig =
IN5 − VgYN5

1 + ZgYN5
(27)

Number of RHP poles of ig can be calculated as [53]

P (ig) = Z(1 + ZgYN5) + P (IN5 − VgYN5)

= P (YN5)−N(−1,j0)(ZgYN5) + P (IN5) (28)

where P (•) and Z(•) indicate the numbers of RHP poles and zeros,
respectively.N(−1,j0)(•) indicates the encirclement number around
(−1, j0) in anticlockwise direction. In addition, numbers of RHP
poles of IN1-IN5 can be calculated based on (22)-(26), shown as

P (IN1) = Z(1 + Zshort1YGCI1) + P (IGCI1)

= P (YGCI1)−N(−1,j0)(Zshort1YGCI1) + P (IGCI1) (29)

P (IN2) = Z(1 + Zshort2YGCI2) + P (IGCI2)

= P (YGCI2)−N(−1,j0)(Zshort2YGCI2) + P (IGCI2) (30)

P (IN3) = Z(1 + Zshort3(YN1 + YN2)) + P (IN1 + IN2)

= P (YN1) + P (YN2)−N(−1,j0)(Zshort3(YN1 + YN2))...

+P (IN1) + P (IN2) (31)

P (IN4) = Z(1 + Zshort4YGCI3) + P (IGCI3)

= P (YGCI3)−N(−1,j0)(Zshort4YGCI3) + P (IGCI3) (32)

P (IN5) = Z(1 + Zshort5(YN3 + YN4)) + P (IN3 + IN4)

= P (YN3) + P (YN4)−N(−1,j0)(Zshort5(YN3 + YN4))...

+P (IN3) + P (IN4) (33)

Similarly, numbers of RHP poles of YN1-YN5 can be calculated
based on (22)-(26), shown as

P (YN1) = Z(1 + Zshort1YGCI1) + P (1 + Zopen1YGCI1)

= P (YGCI1)−N(−1,j0)(Zshort1YGCI1) (34)

P (YN2) = Z(1 + Zshort2YGCI2) + P (1 + Zopen2YGCI2)

= P (YGCI2)−N(−1,j0)(Zshort2YGCI2) (35)

P (YN3) = Z(1 + Zshort3(YN1 + YN2)) + P (1 + Zopen3

...(YN1 + YN2))

= P (YN1) + P (YN2)−N(−1,j0)(Zshort3

...(YN1 + YN2)) (36)

IET Power Electronics, pp. 1–15
© The Institution of Engineering and Technology 2020 7



P (ig) =

3∑
i=1

P (YGCIi)︸ ︷︷ ︸
=0

+

3∑
i=1

P (IGCIi)︸ ︷︷ ︸
=0

−N(−1,j0)(Zshort1YGCI1)︸ ︷︷ ︸
Subsystem 1

−N(−1,j0)(Zshort2YGCI2)︸ ︷︷ ︸
Subsystem 2

−N(−1,j0)(Zshort3(YN1 + YN2))︸ ︷︷ ︸
Subsystem 3

...−N(−1,j0)(Zshort4YGCI3)︸ ︷︷ ︸
Subsystem 4

−N(−1,j0)(Zshort5(YN3 + YN4))︸ ︷︷ ︸
Subsystem 5

−N(−1,j0)(ZgYN5)︸ ︷︷ ︸
Subsystem 6

(39)

P (YN4) = Z(1 + Zshort4YGCI3) + P (1 + Zopen4YGCI3)

= P (YGCI3)−N(−1,j0)(Zshort4YGCI3) (37)

P (YN5) = Z(1 + Zshort5(YN3 + YN4)) + P (1 + Zopen5

...(YN3 + YN4))

= P (YN3) + P (YN4)−N(−1,j0)(Zshort5

...(YN3 + YN4)) (38)

(39) shown at the top of this page can be obtained by substituting
(29)-(38) into (28). Since each GCI is stable in stand-alone mode,
i.e., P (YGCIi) = P (IGCIi) = 0 (i = 1, 2, 3), the stability feature
of ig is determined by the rest six components in (39). It can be
observed that the six encirclement numbers of (39) around (−1, j0)
in complex plane correspond to the six subsystems in Fig. 9, i.e.,
the stability of the whole OWPP in Fig. 7(a) can be obtained by
assessing the stability of the six subsystems in Fig. 9. Specifically,
if all the subsystems are stable, the complete system will be stable.
Otherwise, the complete is probably unstable.

It can be seen from the derivation procedure that, similar conclu-
sion can be obtained if there exists more GCIs and LTCs in the radial
OWPP. In addition, although the derivation procedure is performed
in phasor-domain for simplicity, it is also applicable in dq-domain.
Note that the proposed dq impedance-decoupled network modelling
method is independent on the control structures of the GCIs.

3.6 Some Issues Related with the Proposed Stability
Analysis Method

3.6.1 Emphases of the Contributions: The impedance-
decoupled modelling method of multi-port transmission network is
initially presented in our previous works [13, 33]. This paper fur-
ther improves the performances of the impedance-decoupled concept
from the following three perspectives. First, the transmission line is
merely regarded as an RL circuit model in [13, 33], whereas practical
LTC model considering frequency-dependent characteristics of p.u.l.
resistance and inductance is adopted in this paper. In addition, p.u.l.
electrical parameters are extracted from measured one-end short-
circuited and open-circuited impedances of a specific LTC. Second,
the multi-port transmission topologies, e.g., three-port and four-
port transmission topologies, are modelled as impedance-decoupled
multi-port networks in [13, 33], whereas LTCs are modelled as
impedance-decoupled two-port networks in this paper. Third, only
inner current control loop of the GCI is modelled in [13, 33], which
is only able to deal with high-frequency stability issue. On the other
hand, both high-frequency and low-frequency stability issues are
investigated in this paper by considering both inner current control
loop and PLL simultaneously.

Next, the differences between this paper and [23] are summarized
as follows. To avoid the RHP pole calculation of return-ratio matri-
ces in the conventional impedance-based GNC, and enable stability
assessment using only measured impedance frequency responses of
system components without knowing internal information, the com-
ponent connection method in the frequency-domain is proposed in
[23] to derive the impedance matrix models of system connection
network and aggregated inverter components. The system connec-
tion network as a whole and all inverter components as a whole

are modelled as impedance matrix models, respectively. However,
the proposed method in [23] suffers from the following two dis-
advantages. First, the derived impedance matrix models must be
reconstructed, if connection network topology changes or new trans-
mission lines/inverters are added/deleted. Second, the problematic
inverter components cannot be identified, if the power system is
assessed as unstable. To overcome aforementioned two disadvan-
tages, impedance-decoupled two-port circuit model of the LTC is
presented in this paper to decouple the whole system into sev-
eral small subsystems. Due to the modular modelling method,
the established impedance-decoupled system model can be eas-
ily reconstructed, if connection topology changes or components
are added/deleted. In addition, the subsystems where GNC is not
satisfied are identified as instability sources.

3.6.2 Stability Improvement under Weak Grid Conditions:
This paper presents a dq impedance-decoupled modelling method
of power electronic and LTC-dominated power systems to assess
the stability characteristics with grid strength varying, instead of
proposing stability improvement strategies under weak grid condi-
tions. In fact, various stability improvement strategies have widely
been explored, e.g., based on controller parameters retuning [52],
based on active damping [38], based on passive damping [54], based
on additional grid voltage feed-forward loop [55]. Details of these
stability improvement strategies are not explained here.

3.6.3 Stability Analysis under Unbalanced Grid Conditions:
Stability assessment under unbalanced grid conditions has been a
hot topic recently [56–60]. Harmonic transfer functions are used in
[56, 57] to derive the impedance model of unbalanced three-phase
grid, which is able to capture all the possible frequency couplings.
Based on the harmonic transfer-function-based model, it’s found that
the GCI-grid system exhibits a greater capability of maintaining sta-
bility if the grid asymmetry is more serve. Therefore, the presented
stability analysis method in this paper for balanced systems provides
a conservative stability conclusion, i.e., if the system is assessed
as stable for a balanced system using the proposed method in this
paper, the stability performance will be even better in the unbalanced
system [56, 57].

In addition, an online frequency response measurement method of
the grid dq impedance model under harmonics and unbalance is pro-
posed in [58]. Furthermore, state-space models of GCIs and modular
multilevel converters under unbalanced grid conditions are presented
in [59] and [60], respectively, for small-signal stability analysis. To
guarantee the stability of the GCIs under unbalanced grid condi-
tions, a simple yet effective current-control-based compensator is
also developed in [59]. Readers can find implementation details in
these papers.

4 Implementation of the Proposed Stability
Analysis Method

In this section, the proposed dq impedance-decoupled network
model of Fig. 7(a) is first established based on the flowchart in Fig.
4. The proposed stability analysis method is then implemented.
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Table 1 Circuit and Controller Parameters of Inverter of PMSG

Parameter Value

DC-link voltage Vdc 1150 V
Grid voltage Vg (Phase-Phase Vrms) 575V
Grid fundamental frequency 50 Hz
Inverter side filter inductance Lf1 263 µH
Grid side filter inductance Lf2 200 µH
Filter capacitance Cf 100 µF
Filter inductance Lf for L filter 789 µH
Switching frequency fswit 2.5 kHz
Sampling frequency fsamp 2.5 kHz
d axis current reference I∗d 1.0 kA
q axis current reference I∗q 0 A
Proportional gain of current controller kpi 5.4908e-4
Integral gain of current controller kii 0.3295
Proportional gain of PLL kppll 20
Integral gain of PLL kipll 200

Fig. 10. Time-domain simulation waveforms of PCC voltage and grid cur-

rent without voltage perturbation before 2 s and with voltage perturbation

after 2 s. (a) The first perturbation. (b) The second perturbation.

4.1 Step 1: Identification of DQ Impedance Models of GCIs
Based on the MF Algorithm

Table 1 shows the circuit and controller parameters of the three GCIs
in Fig. 7(a), where GCI 2 and GCI 3 are with LCL filter, and GCI
1 is with L filter. The ratio of filter resonance frequency ωres and
sampling frequency ωsam plays an important role in the selection of
active damping strategies [61]. If ωres < ωsam/6, an active damp-
ing strategy is mandatory for stable operation. If ωres > ωsam/6,
an active damping strategy is not required for stable operation. If
ωres = ωsam/6, the system will be unstable irrespective of the con-
troller that is used. In this paper, ωres =

√
Lf1+Lf2

Lf1Lf2Cf
= 9382 rad/s

is higher than ωsam/6 = 2618 rad/s. Therefore, according to [61],
the active damping strategy is not required for the stable operation
of the GCIs in Table 1.

Two multi-tone small-signal voltage perturbations consisting of
80 frequency components which are logarithmically distributed
between 1 Hz and 2.5 kHz are designed and injected into PCC in
series way, as shown in Fig. 5. In addition, the magnitudes of the 80
frequency components are designed as 1% of PCC voltage magni-
tude, i.e.

√
6Vg

100 = 14.08 V, which are not too large to influence the
steady-state operating point of the GCI under study. Fig. 10 shows

Fig. 11. FFT results of PCC voltage and grid current of the first perturba-

tion. (a) FFT result of PCC voltage. (b) FFT result of grid current.

Fig. 12. FFT results of PCC voltage and grid current of the second

perturbation. (a) FFT result of PCC voltage. (b) FFT result of grid current.

the two time-domain simulation waveforms of PCC voltage and grid
current without perturbation before 2 s and with perturbation after 2
s. In addition, frequency spectrums of the two perturbed PCC volt-
ages and grid currents after 2 s can then be obtained by performing
FFT analysis, as shown in Figs. 11 and 12. The impedance frequency
responses of the GCI at the 80 frequency points can then be calcu-
lated by dividing the two linear independent voltage components in
Figs. 11(a) and 12(a) by the current response components in Figs.
11(b) and 12(b) at these frequency points, as shown in (12).

Bode plots of terminal impedance frequency responses of the
LCL-filtered GCI derived by the theoretical dq impedance matrix
formula in (2) and by frequency scanning method in Fig. 5 are
shown as the red solid lines Zdq_LCL_the and black crossed lines
Zdq_LCL_mea in Fig. 13, respectively. It can be seen that the
measured and analytical terminal impedance frequency responses
agree with each other well, which verifies the effectiveness of
the frequency scanning method in Fig. 5 and correctness of the
analytical dq impedance matrix in (2). The measured discrete ter-
minal impedance frequency responses are fitted by both 6-order
and 14-order transfer function matrices in form of (11) using the
MF algorithm, shown as the blue solid and brown solid lines in
Fig. 13, respectively. It can be seen that the fitting accuracy of
the fitted 14-order transfer function matrix is higher than the fitted
6-order transfer function matrix. In addition, It can be seen from
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Fig. 13. Bode diagrams of theoretically-derived Zdq_LCL_the, fre-

quency scanning-obtained Zdq_LCL_mea, fitted 6-order transfer func-

tion matrix Zdq_LCL_fit_6 and fitted 14-order transfer function matrix

Zdq_LCL_fit_14 of LCL-filtered inverter of PMSG.

Table 2 Poles of the Fitted Transfer Function Matrices in Form of (11)

Zdq_LCL_fit_6 Zdq_LCL_fit_14 Zdq_L_fit_4 Zdq_L_fit_10

-0.23 0.06 -2514.00 -0.01
16.67 3.36 -44.54 -10.67

-0.57±i5.84e3 -10.21 -0.03 -36.76
1.80 ±i6.47e3 17.18 48.44 49.46

-115.87 4.47±i5.40
137.04 -5.00e3±i1.20e2

-4307.00 -1.45e4±i2.01e5
30064.00

-0.32±i5.84e3
1.24±i6.47e3

-6.61e3±i2.00e3

Figs. 10 to 13 that, the MF algorithm is able to fit a smooth dq
impedance curve from a small number of discrete impedance fre-
quency responses, which could release the computational burdens
of frequency scanning, if a large number of impedance frequency
responses are desired.

The poles of the fitted 6-order and 14-order transfer function
matrices are shown in the first and second columns of Table 2,
respectively. The poles -0.57±i5.84e3 and -0.32±i5.84e3 are cor-
responding to frequency 929.46 Hz. In addition, 1.80±i6.47e3 and
1.24±i6.47e3 are corresponding to 1029.73 Hz. They agree with the
two resonance peaks of magnitudes of Zdd and Zqq , i.e., 931 Hz and
1023 Hz, in Fig. 13. The ability of the fitted 6-order transfer func-
tion matrix to reproduce terminal impedance frequency responses
in other frequency points is weaker than the fitted 14-order trans-
fer function matrix, which indicates that the fitting ability can be
improved by increasing fitting order.

In addition, the measured dq impedance frequency responses of
theL-filtered inverter are also fitted by the MF algorithm. Bode plots
of terminal impedance frequency responses of the L-filtered inverter
derived by the theoretical dq impedance matrix formula in (1) and
by frequency scanning method in Fig. 5 are shown as the red solid
lines Zdq_L_the and black crossed lines Zdq_L_mea in Fig. 14,
respectively. It can be seen that the measured and analytical terminal
impedance frequency responses agree with each other well, which
verifies the effectiveness of the frequency scanning method in Fig.
5 and correctness of the analytical dq impedance matrix in (1). The
measured discrete terminal impedance frequency responses are fitted
by both 4-order and 10-order transfer function matrices in form of
(11) using the MF algorithm, shown as the blue solid and brown solid
lines in Fig. 14, respectively. It can be seen that the fitting accuracy of
the fitted 10-order transfer function matrix is higher than the fitted 4-
order transfer function matrix. In addition, it can be seen from Figs.

10-1

101

103

M
ag

. 
[

]

|Z
dd

|

-90
0

90

A
n
g
le

 [
o
]

Z
dd

10-3

10-1

M
ag

. 
[

]

|Z
dq

|

-180

-90

A
n
g
le

 [
o
]

Z
dq

10-310-1101103

M
ag

. 
[

]

|Z
qd

|

100 101 102 103

Frequency [Hz]

-90

0

A
n
g
le

 [
o
]

Z
qd

Z
dq_L_the

Z
dq_L_mea

Z
dq_L_fit_4

Z
dq_L_fit_10

10-1

101

M
ag

. 
[

]

|Z
qq

|

100 101 102 103

Frequency [Hz]

-180
-90

0
90

A
n
g
le

 [
o
]

Z
qq

Fig. 14. Bode diagrams of theoretically-derived Zdq_L_the, frequency

scanning-obtained Zdq_L_mea, fitted 4-order transfer function matrix

Zdq_L_fit_4 and fitted 10-order transfer function matrix Zdq_L_fit_10 of

L-filtered inverter of PMSG.

13 and 14 that the order of the fitted transfer function matrix of theL-
filtered inverter can be lower than that of the LCL-filtered inverter.
Poles of the fitted 4-order and 10-order transfer function matrices are
provided in the third and fourth columns of Table 2, respectively.

4.2 Step 2: P.u.l. Parameters Identification of LTC and DQ
Impedance-Decoupled Two-Port Circuit Modelling

The line models provided by Simscape library of Matlab/Simulink,
e.g., Distributed Parameters Line model and Pi Section Line, cannot
reproduce the frequency-dependent characteristics of p.u.l. electri-
cal parameters. To overcome this shortcoming of Simscape library,
ARTEMiS-SSN library of OPAL-RT developed the advanced
Modal/Marti and Phase/Wideband frequency-dependent line mod-
els, which can be directly used in Matlab/Simulink environment
[62]. In this paper, the EMTP-RV program is used to calculate
frequency-dependent p.u.l. resistance, inductance, and capacitance
based on the line geometry and the conductor characteristics.
The generated data is then saved and exported to the Wideband
frequency-dependent line model. Next, the terminal impedance fre-
quency responses of the Wideband frequency-dependent line model
in dq-domain are measured in Matlab/Simulink environment based
on the same frequency scanning scheme for GCIs.

Bode plots of the terminal impedance frequency responses of a 50
km LTC obtained by the frequency scanning method in Fig. 5 and
the fitted results using the MF algorithm are shown as the red dot-
ted line Yshort_mea and black solid line Yshort_fit in Fig. 15(a),
respectively. It can be seen that the measured impedance frequency
characteristics of the 50 km LTC can be well reproduced by the MF
algorithm. On the basis of Fig. 15(a), the Bode plot of the one-end
short-circuited phasor-domain admittance Yshort can be calculated
based on (9), as shown in Fig. 15(b). In addition, the Bode plot of the
one-end open-circuited phasor-domain admittance Yopen can also be
calculated in a similar way.

The propagation constant γ can then be extracted from Yshort and
Yopen using (13). It should be noted that inverse of hyperbolic func-
tion in (13) are multi-valued, since any k ∈ Z satisfies the equation.
The derived real part and imaginary part of γ by setting k = 0 are
shown as the red solid line and blue solid line in Fig. 16, respec-
tively. A pseudo code in Algorithm 1 is used to recover the actual
imaginary part of γ, shown as the black solid line in Fig. 16. Finally,
based on the calculated γ, Yshort and Yopen, p.u.l. parameters R′,
L′, C′ at each frequency point can be calculated using (14). The
actual and extracted p.u.l. parameters using Algorithm 1 are plotted
as blue solid lines and red dotted lines in Fig. 17, respectively. It
can be seen that they highly agree with each other. In addition, the
extracted p.u.l. parameters without correcting γ using Algorithm 1
are plotted as black lines in Fig. 17. It can be seen that the p.u.l.
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Fig. 15. Bode diagrams of terminal impedance frequency responses of a

50km LTC. (a) Measured one-end short-circuited admittance Yshort_mea

in dq-domain and fitted results Yshort_fit. (b) Derived Yshort and Yopen
in phasor-domain based on (9).

Fig. 16. Calculated propagation constant γ based on (13).

parameters can only be accurately extracted up to the first resonance
frequency of Yopen in Fig. 15, i.e., 204 Hz. Based on the identi-
fied p.u.l. parameters, the two-port circuit models of LTCs can be
established as Fig. 3(b).

4.3 Step 3: Establishment of the DQ Impedance-Decoupled
Network Model of the Whole OWPP

Based on the fitted transfer function matrices of the dq impedance
models of the GCIs and LTCs in Sections 4.1 and 4.2, six subsys-
tems as shown in Fig. 9 can be established, where the parameters
can be derived based on (22)-(26). The minor-loop gains of the six

Algorithm 1: Recover actual imaginary part of γ

1 set fk as starting point, d0 as LTC length and i = 0; while
fk is within frequency range of interest do

2 update γ: imag(γk_update) = imag(γk) + iπ
d0

;
3 if imag(γk) equals to π

2d0
then

4 i = i+ 1;
5 end
6 end

(a)

(b)

(c)

Fig. 17. Actual and extracted p.u.l. parameters. (a) P.u.l. resistance. (b)

P.u.l. inductance. (c) P.u.l. capacitance.

subsystems in Fig. 9 can be calculated as

Tm1 = Zshort1YGCI1

Tm2 = Zshort2YGCI2

Tm3 = Zshort3(YN1 + YN2)

Tm4 = Zshort4YGCI3

Tm5 = Zshort5(YN3 + YN4)

Tm6 = ZgYN5 (40)

where the bold letters indicate that the impedance and admittance
models are represented dq-domain. Based on (39), system stability
can then be assessed by checking whether any Nyquist plots of the
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Fig. 18. Nyquist plots of the characteristic loci of the critical return ratio

matrices in Fig. 9. (a) For subsystem 4 under case 1. (b) For subsystem 4

under case 2. (c) For subsystem 4 under case 3.

minor-loop gains in (40) encircle point (−1, j0) in complex plane,
as shown in Section 4.4.

4.4 Step 4: Stability Analysis Based on the DQ
Impedance-Decoupled Network Model of the Whole OWPP

To simplify the verification of effectiveness of the established model
in Fig. 9 for stability assessment of the radial OWPP in Fig. 7(a),
Ysk and Ymk in Fig. 7(a) are regarded as constant, as shown in
Fig. 6. In addition, resistances of the LTCs are also ignored, i.e.,
Ysk − Ymk = sCk

2 and Ymk = 1
sLk

(k = 1, 2..., 5), where Ck and
Lk are total capacitances and inductances of LTC k in Fig. 7(a),
respectively. Therefore, the five dq-domain one-end short-circuited
impedance models in (40), i.e. Zshort1, Zshort2,..., Zshort5, can
be modified as

Zshortk = ZLk
//ZCk/2 =

ZLk
ZCk/2

ZLk + ZCk/2
k ∈ [1, 5] (41)

where ZLk
and ZCk/2 can be calculated using (42) and (44) in

Appendix. The circuit and controller parameters of the three GCIs
are shown in Table 1. In addition, the p.u.l. inductance and capac-
itance of the five LTCs are 0.1 mH/km and 3 µF/km, respectively.
The effectiveness of the proposed stability analysis method will be
verified by three cases, i.e., stable case, high-frequency unstable case
and low-frequency unstable case.

In case 1, lengths of the five LTCs in Fig. 7(a) are lLTC1 = 1 km,
lLTC2 = 1 km, lLTC3 = 2 km, lLTC4 = 1 km and lLTC5 = 10
km, respectively. The corresponding short-circuit ratio can be cal-
culated as 3.43 [10]. Fig. 18(a) shows the Nyquist plots of the
characteristic loci of the return ratio matrix in Subsystem 4 of Fig.
9 (In cases 1-3, only the Nyquist plots of problematic submodules
are plotted.). It can be seen that no Nyquist plots of characteristic
loci encircles (−1, j0), which indicates that ig is stable according to
(39).

In case 2, lLTC4 is increased from 1 km to 10 km, i.e., the short-
circuit ratio is decreased from 3.43 to 2.14. Fig. 18(b) shows the
Nyquist plots of the characteristic loci of the return ratio matrix in
Subsystem 4 of Fig. 9. It can be seen that both λ1 and λ2 encir-
cle (−1, j0) two times, which indicates that ig is unstable at two
frequency points according to (39).

In case 3, lLTC4 is further increased from 10 km to 130 km, i.e.,
the short-circuit ratio is further decreased from 2.14 to 0.36. Fig.
18(c) shows the Nyquist plots of the characteristic loci of the return
ratio matrix in Subsystem 4 of Fig. 9. It can be seen that λ2 encircles
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Fig. 19. Time-domain simulation results of grid currents ig under cases 1

and 2 based on Matlab/Simulink platform. (a) Case 1. (b) Case 2.

(a) (b)

Fig. 20. Frequency spectrum of ig under cases 2 and 3 based on

Matlab/Simulink platform. (a) Case 2. (b) Case 3.

(−1, j0) one time, which indicates that ig is unstable according to
(39).

5 Simulation and Real-Time Verifications

In this section, the correctness of the stability analysis results in
Section 4.4 is verified by time-domain simulation results based
on Matlab/Simulink platform and real-time verification based on
OPAL-RT platform.

5.1 Simulation Verification Based on Matlab/Simulink
Platform

Fig. 19 shows the time-domain simulation results of grid current ig
under cases 1 and 2. It can be seen that ig is stable under case 1,
and high-frequency instability phenomena occur under case 2. The
frequency spectrum of ig under case 2 is shown in Fig. 20(a), where
electrical oscillation occurs at 840 Hz and 997 Hz. The time-domain
simulation results in Figs. 19 and 20(a) agree with the stability
analysis results in Figs. 18(a) and 18(b).

In addition, Fig. 21 shows the time-domain simulation results of
grid current ig and output currents of the three GCIs under case 3. It
can be seen that the grid current ig and the output current the GCI
3 i3 are unstable, whereas the output currents of GCIs 1 and 2, i.e.,
i1 and i2, are stable. Fig. 20(b) shows the frequency spectrum of ig ,
where low-frequency electrical oscillation occurs at 69 Hz. It can be
concluded that the instability phenomena result from GCI 3. On the
other hand, Fig. 18(c) shows that the instability phenomena result
from the subsystem 4 in Fig. 9. The time-domain simulation results
in Figs. 21 and 20(b), thus, verify the correctness of the stability
analysis results in Fig. 18(c).

5.2 Real-Time Verification Based on OPAL-RT Platform

Real-time verification based on OPAL-RT digital simulator platform
is performed to further validate the correctness of the theoretical
analysis results in Section 4.4 and the time-domain simulation results
obtained by Matlab/Simulink platform in Section 5.1. The picture
of the OPAL-RT platform in laboratory is shown in Fig. 22, which
consists of an OP5600 real-time digital simulator and a monitor.
Backed by nearly two decades of expertise in the development of
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Fig. 21. Time-domain simulation results of grid currents ig and GCI out-

put currents under case 3 based on Matlab/Simulink platform. (a) Grid

current ig . (b) Output current of GCI 1 i1. (c) Output current of GCI 2 i2.

(d) Output current of GCI 3 i3.

Fig. 22. Picture of the OPAL-RT platform in laboratory.

Fig. 23. Real-time verification of grid currents ig when the system

changes from case 1 to case 2 at 0.5 s based on OPAL-RT platform.

high-performance simulation hardware, the OP5600 real-time simu-
lator is the most adopted simulation platform by OPAL-RT’s users
in both industry and academia. OP5600 combines the performance,
versatility and reliability that is ideal for demanding hardware-in-
the-loop applications. The Simulink-based model is first established
in the RT-LAB software, based on which code is generated and
downloaded into the OP5600 hardware. The real-time simulation
results obtained by OPAL-RT platform are then post-processed in
Matlab software.

Fig. 23 shows the simulation results of grid current ig when the
system changes from case 1 to case 2 at 0.5 s. It can be seen ig is
stable before 0.5 s, and unstable after 0.5 s. The frequency spectrum
of ig after 0.5 s is shown in Fig. 24(a), where ig oscillates at 840 Hz
and 997 Hz. The real-time verification results in Figs. 23 and 24(a)
agree with the time-domain simulation results in Figs. 19 and 20(a).

(a) (b)

Fig. 24. Frequency spectrum of ig under cases 2 and 3 based on OPAL-RT

platform. (a) Case 2. (b) Case 3.

(a) (b)

(c) (d)

Fig. 25. Time-domain simulation results of grid currents ig and GCI out-

put currents under case 3 based on OPAL-RT platform. (a) Grid current ig .

(b) Output current of GCI 1 i1. (c) Output current of GCI 2 i2. (d) output

current of GCI 3 i3.

Furthermore, Fig. 25 shows the simulation results of grid current
ig and output currents of the three GCIs when the system changes
from case 1 to case 3 at 0.5 s. It can be seen that, all the four currents
are stable before 0.5 s, whereas ig and i3 are unstable, i1 and i2 are
stable after 0.5 s. The frequency spectrum of ig after 0.5 s is shown
in Fig. 24(b), where ig oscillates at 69 Hz. The real-time verification
results in Figs. 25 and 24(b) agree with the time-domain simulation
results in Figs. 21 and 20(b).

6 Conclusion

This paper presents a frequency scanning-based dq impedance-
decoupled network model of OWPPs for stability analysis. The
dq impedance models of GCIs are fitted from measured terminal
impedance frequency responses using the MF algorithm. In addition,
p.u.l electrical parameters of the LTCs are extracted from measured
terminal impedance frequency responses of a specific LTC, based on
which the dq impedance models of the LTCs in other lengths are the-
oretically calculated. The impedance-decoupled two-port network
model of LTCs are then established to partition the whole OWPP
into several subsystems. Furthermore, an impedance aggregation
method for adjacent GCI and LTC based on one-end open-circuited
admittance of the LTC is presented to decouple the subsystems.
In addition, the p.u.l. electrical parameters of the LTCs can be
extracted accurately based on the presented method. Instability phe-
nomena and corresponding instability source of the OWPP in both
low-frequency and high-frequency ranges are able to be predicted
by the proposed dq impedance-decoupled network model. Both the
time-domain simulation results based on Matlab/Simulink platform
and real-time verification results based on OPAL-RT platform val-
idate the effectiveness of the proposed stability analysis method.
Compared with conventional IBSCs, RHP poles calculation can be
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avoided. In addition, the instability source can be identified once
GNC is not satisfied in any subsystems. In our near future work, cir-
cuit and controller parameters of the GCIs will be identified from the
measured dq impedance frequency responses, which enables the fur-
ther identification of problematic circuit and controller parameters
contributing to the instability phenomena.
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8 Appendix: Detailed Representation of Symbols
in DQ Impedance Matrices (1) and (2)

ZLf1
=

[
sLf1 −ω1Lf1
ω1Lf1 sLf1

]
(42)

ZLf2
=

[
sLf2 −ω1Lf2
ω1Lf2 sLf2

]
(43)

ZCf
=

[ s
(s2+ω2

1)Cf

ω1

(s2+ω2
1)Cf

− ω1

(s2+ω2
1)Cf

s
(s2+ω2

1)Cf

]
(44)

For LCL-filtered VSC,

Yc
LCL= ((Z−1

Lf1
+Z−1

Cf
)−1+ZLf2

)−1

Yg
LCL = (ZL2(I + (Z−1

Lf2
+ Z−1

Cf
)ZLf1

))−1 (45)

For L-filtered VSC,

Yc
L= Yg

L= Z−1
Lf1

(46)

Gdel =

[
e−1.5Tss 0

0 e−1.5Tss

]
(47)

where Ts is the sampling period.

Gci =

[
kpi + kii

s 0

0 kpi + kii
s

]
(48)

where kpi and kii are proportional and integrator coefficients of cur-
rent controller, respectively. Vdc is taken into account to design kpi
and kii.

Gi
PLL models the small-signal perturbation path from the system

voltage to current in the controller dq frame.

Gi
PLL =

[
0 IsqGPLL
0 −IsdGPLL

]
(49)

where Isd and Isq are d-axis and q-axis components of three-phase
currents in system reference frame. GPLL is defined as

GPLL =
kppll + kipll/s

s+ V sd (kppll + kipll/s)
(50)

where kppll and kipll are proportional and integrator coefficients of
PLL, respectively; V sd the d-axis component of three-phase terminal
voltages in system reference frame.

Gd
PLL models the small-signal perturbation path from the system

voltage to duty cycle in the controller dq frame.

Gd
PLL =

[
0 −DsqGPLL
0 DsdGPLL

]
(51)

where Dsd and Dsq are d-axis and q-axis components of three-phase
duty cycles in system reference frame.
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