

Aalborg Universitet

k/2-hop: Fast Mining of Convoy Patterns With Effective Pruning

Orakzai, Faisal Moeen; Calders, Toon; Pedersen, Torben Bach

Published in:
Proceedings of the VLDB Endowment

DOI (link to publication from Publisher):
10.14778/3329772.3329773

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Orakzai, F. M., Calders, T., & Pedersen, T. B. (2019). k/2-hop: Fast Mining of Convoy Patterns With Effective
Pruning. Proceedings of the VLDB Endowment, 12(9), 948-960. https://doi.org/10.14778/3329772.3329773

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://doi.org/10.14778/3329772.3329773
https://vbn.aau.dk/en/publications/34fa15ac-0808-4e3f-9fee-5e5c5233264c
https://doi.org/10.14778/3329772.3329773

k/2-hop: Fast Mining of Convoy Patterns With Effective
Pruning

Faisal Orakzai†, Toon Caldersa, Torben Bach Pedersen‡
†Department of Computer & Decision Engineering (CoDE) Université Libre de Bruxelles , Belgium

aDepartment of Mathematics and Computer Science, University of Antwerp
‡Department of Computer Science Aalborg University , Denmark

†ofaisal@ulb.ac.be ,aToon.Calders@uantwerpen.be ,‡tbp@cs.aau.dk

ABSTRACT
With the increase of devices equipped with location sen-
sors, mining spatio-temporal data for interesting behavioral
patterns has gained attention in recent years. One of such
well-known patterns is the convoy pattern which can be
used, e.g., to find groups of people moving together in public
transport or to prevent traffic jams. A convoy consists of at
least m objects moving together for at least k consecutive
time instants where m and k are user-defined parameters.
Convoy mining is an expensive task and existing sequential
algorithms do not scale to real-life dataset sizes. Existing
sequential as well as parallel algorithms require a complex
set of data-dependent parameters which are hard to set and
tune. Therefore, in this paper, we propose a new fast exact
sequential convoy pattern mining algorithm “k/2-hop” that
is free of data-dependent parameters. The proposed algo-
rithm processes the data corresponding to a few specific key
timestamps at each step and quickly prunes objects with
no possibility of forming a convoy. Thus, only a very small
portion of the complete dataset is considered for mining con-
voys. Our experimental results show that k/2-hop outper-
forms existing sequential as well as parallel convoy pattern
mining algorithms by orders of magnitude, and scales to
larger datasets which existing algorithms fail on.

PVLDB Reference Format:
Faisal Orakzai, Toon Calders and Torben Bach Pedersen. k/2-
hop: Fast Mining of Convoy Patterns With Effective Pruning.
PVLDB, 12(9): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3329772.3329773

The extended version of this paper is available as
[17]. Implementation of all algorithms can be found
at https://bit.ly/2SMOwDE.

1. INTRODUCTION
The massive amounts of GPS data today can be analyzed

to study collective mobility behaviour. One pattern stud-
ied extensively in this context is the Convoy pattern [13,
14, 1, 10, 25]. A convoy is a group of at least m objects
moving together (within eps distance of each other) for at

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 9
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3329772.3329773

least k time instants. Finding convoy patterns is useful in
many application domains. It can be used to find groups of
people traveling together for a certain time to analyze the
feasibility of starting a public transport service in the areas
where higher numbers of convoys are found. It can also be
used to determine potential candidates for carpooling. For
instance, to find potential car-pooling routes, we could use
m >= 2 so we can pool at least 2 persons. The choice of
the value of k depends on the minimum time duration of the
trips we are interested in pooling. Persons/vehicles forming
convoys repeatedly every morning and evening could be per-
sons working in the same area and taking similar routes to
their work location and thus could be good candidates for
car-pooling. Also in traffic jams, many vehicles are gener-
ally located near to each other for long times. If we want
to detect all traffic jams of duration more than 15 mins and
involving 50 cars or more, we would set m to 50 and k to
15 (if the sampling frequency of the data is 1 min). The
choice of eps determines what objects are considered to be
“together” while mining convoys. For the car-pooling ex-
ample, this could be a few metres within a city and a few
hundred meters for inter-city convoys. Note that m, k and
eps are user parameters whose values are determined based
on the use-case.

The groups of objects forming convoys are usually found
by performing, at each time instant, a density-based cluster-
ing algorithm such as DBSCAN [6] (with parameter eps) on
the object locations followed by combining the found clus-
ters over the time dimension into convoys. For mining con-
voy patterns, various algorithms [13, 14, 25, 1] have been
proposed. The existing sequential algorithms, however, have
been tested on small datasets that can easily fit into memory
only and thus completely ignore data access optimizations.

To alleviate this problem, a scalable Distributed Convoy
Mining algorithm called DCM has been proposed [18, 16].
Although DCM can operate on huge datasets, choosing rea-
sonable values for the parameters of the algorithm is a chal-
lenging task and requires a deep understanding of the al-
gorithm as well as the distribution of the input data. Even
though the DCM algorithm can run on a cluster of machines
in parallel, the cost of the algorithm is high as it has to pro-
cess all the points in a dataset and thus, it cannot benefit
from indexing techniques or run on operational data stores
efficiently.

The Star Partitioning and ApRiori Enumerator (SPARE)
framework proposed in [7] is the state of the art in convoy
mining. The framework considers the clustering process as a
pre-processing step and focuses only on the part in which the

948

clusters are matched together to mine convoys. For convoy
mining, the clustering phase is the most expensive one as it
involves scanning and clustering the whole dataset. SPARE,
however, ignores the clustering part. This approach doesn’t
yield much benefits because the part that is optimized is
dominated by the clustering phase, which is not optimized.

In this paper, instead of scaling the convoy mining algo-
rithm by parallelizing, we focus on improving the efficiency
of the sequential algorithm. In our proposed algorithm, we
use simple but effective heuristics to prune the data cor-
responding to objects which have no chance of forming a
convoy. We define the notion of benchmark points, which
are timestamps spread evenly at a distance k/2 (k being
the minimum length of the convoy to be mined). We prove
that, in order to find convoys of length at least k, we need to
fully cluster only the data corresponding to the benchmark
points. For the rest of the timestamps, we only cluster a sub-
set of the data. The reduction of the search space greatly
improves the performance of convoy mining as shown in our
experiments.

This paper has the following contributions:

• We propose a fast and efficient convoy mining algo-
rithm called k/2-hop which can operate on a variety of
operational data stores and can easily be parallelized.

• We propose a correction to the fully connected convoys
validation algorithm DCVal proposed in [25].

• We present an experimental evaluation of k/2-hop and
show that k/2-hop prunes more than 99% of the data
in most cases and is orders of magnitude faster than
the existing sequential and parallel algorithms.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the related work. Section 3 explains the
convoy mining problem. Section 4 describes the k/2-hop
algorithm, Section 5 describes the different storage options
suitable for k/2-hop, and the experiments are covered in
section 6. Section 7 concludes the paper.

2. RELATED WORK
A number of mobility patterns and their detection algo-

rithms have been proposed. One of the first such patterns is
the flock pattern [9, 24]. A flock is a group of objects moving
together for a time period t in the sense that at each time
instant the convoy can be covered by a disk with a given
radius. Although flocks are a good way of identifying ob-
jects moving in groups, the disk constraint limits its ability
to represent objects moving together either in a shape other
than a disk or in a disk shape greater than the size specified
by the user. The choice of an appropriate size for the disk
itself is a challenging problem.

To avoid the size and shape constraints required by the
flock pattern, Jeung et al. have proposed the convoy pattern
in [13, 14]. Unlike the flock pattern, in a convoy pattern,
objects which are density-connected to each other are con-
sidered to be together. This relieves the convoy pattern of
any restriction of size and shape.

The group movement pattern mining algorithms can be
categorized by the type of the movement behaviour they
capture. Kalnis et al. [15] proposed the notion of a moving
cluster which is a sequence of spatial clusters with a certain

percentage θ of similarity between the clusters of consecu-
tive timestamps. A moving cluster maintains its identity
while objects join or leave, whereas in a convoy, the ob-
jects should be together throughout the convoy’s lifespan.
Jung et al. proposed another type of group movement pat-
tern in [1] called evolving convoys in which objects can join
and leave a convoy during its lifespan. Tang et al. [23]
proposed a buddy based approach for finding traveling com-
panions from streaming trajectories. In the convoy pattern
proposed in [13, 14], the objects in a convoy can be con-
nected to each other through objects that are not part of
the convoy. Yoon et al. [25], discovered that the convoy
mining algorithms proposed by Jeung et al. [14] have seri-
ous problems with accuracy and recall. They refer to the
convoy pattern proposed by Jeung et al. as a partially con-
nected convoy pattern. They present a corrected version
of the CMC algorithm called PCCD (Partially Connected
Convoy Discovery). As the CuTs family of algorithms [25]
is based on CMC, they also have serious accuracy issues.
Yoon et al. [25] proposed a contextually different version
of the convoy pattern called Valid Convoy which is a group
of objects that are density-connected to each other through
only those objects that are also part of the convoy. With
the motivation of improving the naming convention used in
[25], we call valid convoys Fully Connected Convoys.

The primary reasons for the poor performance of existing
algorithms are the disk I/O involved in touching the whole
dataset and the cost complexity of the original DBSCAN
which is O(n2) for each run where n is the number of ob-
jects present at the corresponding time. The DBSCAN al-
gorithm issues a nearest neighborhood query for each point.
Hence 3 hours of movement data of a million objects with a
sampling frequency of 2 seconds, result in 540 million near-
est neighborhood queries which may take days to process
on a PC. The cost complexity of DBSCAN can be reduced
to O(n logn) by using an indexing structure. The memory
cost of DBSCAN is O(n). To speed up DBSCAN, a distance
matrix of size (n2−n)/2 can be constructed in memory but
this increases the required memory to O(n2). Existing algo-
rithms, e.g., CMC [14] and VCoDA/PCCD [25] are plagued
with expensive disk I/O and clustering as clustering needs
to be done for each timestamp and as a consequence they
cannot scale to huge datasets. Parallel DBSCAN algorithms
[20, 12, 4] are good for one large run but not suitable for
many small DBSCAN runs.

The sequential algorithms for convoy mining, CuTS,
CuTS+ and CuTS* [14] try to reduce the cost of DBSCAN
by reducing the number of objects n in each run using a
filter-and-refine paradigm. In the 1st phase, each object’s
trajectory is simplified by reducing the number of time-
location pairs using the Douglas-Peucker algorithm (DP)
[5]. The simplified trajectories are then partitioned into
pieces each corresponding to a time duration λ. For each
time duration λ, the pieces(sub-trajectories) are clustered
using the DBSCAN algorithm. This step reduces the dataset
to only those object trajectories which have the potential to
form convoys. In the second step, the CMC algorithm is
applied on the reduced dataset. Although this method has
proven to be faster than the CMC algorithm, the cost of
trajectory simplification is O(T 2Nt) where T is the number
of points in a trajectory and Nt is the number of trajectories
in the dataset. Using trajectory simplification also disallows
us from using the same indexing structure as that of DB-

949

SCAN. The index for DBSCAN is based on location whereas
the index required for trajectory simplification is based on
object identity. The fact that the trajectory simplification
process cannot use the existing spatial index constructed
for DBSCAN has completely been ignored as the implicit
assumption is that the data fits in memory and disk seeks
are not performed. This assumption renders these algo-
rithms inappropriate for huge data sizes as our experiments
demonstrate. Additionally, finding the right combination of
parameters for the CuTs family, for it to give acceptable per-
formance is very hard and may involve multiple expensive
iterations with no guarantee for success.

In [21], Phan et. al propose the ”All in one” framework
for mining multiple movement patterns. The framework
seems tempting because of its ability to mine multiple pat-
terns, but just like other sequential algorithms, it require all
the data to be clustered before it could start mining move-
ment patterns. Thus, the framework ignores the most ex-
pensive part and focusses on the cheaper part. Algorithms
for mining other patterns, e.g., Swarm, are also plagued by
this problem. In [11], a unifying movement pattern mining
framework capable of mining multiple movement patterns
calle get move is proposed. This framework operates on a
cluster matrices leading to the same problem of having to
run the expensive clustering process.

The algorithms proposed in the above mentioned papers
are sequential in nature and are not scalable enough to tackle
large mobility datasets. For instance, the most efficient se-
quential convoy pattern mining algorithm out of the algo-
rithms proposed in [14] took 100 seconds during an experi-
mental run on a small dataset containing a couple of hours of
movement data of only 13 cattle. The huge sizes of current
mobility datasets and the limitations of existing algorithms
led to the development of a parallel algorithm that can run
on a set of loosely connected machines (cluster) and can
produce results faster [18, 16]. Orakzai et al. [18] discuss
various partitioning strategies for mining convoy pattern in a
distributed setting. [16] presents a generic Distributed Con-
voy Mining algorithm DCM with an implementation using
the Hadoop MapReduce framework [8]. DCM is based on
the CMC algorithm [14] which is inherently inefficient be-
cause of its optimistic search for convoys touching each data
point more than once. DCM’s performance is highly de-
pendent on the partition/split size and bad choices can lead
to performance worse than the sequential algorithms. Ad-
ditionally, maintaining/running Hadoop clusters makes the
algorithm costly in a production environment.

The state of the art in convoy mining is the work in [7].
The authors propose a generic framework GCMP for min-
ing co-movement patterns. The authors propose two parallel
implementations of GCMP framework using Apache Spark
as an underlying platform, a baseline implementation and a
more optimal one called the Star Partitioning and ApRiori
Enumerator (SPARE) framework. The experiments show
huge performance gains over sequential algorithms. In both
implementations, there are two stages of MapReduce jobs
connected in a pipeline manner. The first stage deals with
spatial clustering of objects in each timestamp (which they
call a snapshot), which can be seen as a preprocessing step
for the subsequent pattern mining phase. In particular,
for the first stage, the timestamp is treated as the key in
the map phase and objects within the same snapshot are
clustered (DBSCAN or disk-based clustering) in the reduce

phase. Finally, the reducers output clusters of objects in
each snapshot, represented by a list of key-value pairs. The
clusters are then provided to the second phase of the pipeline
as input in which patterns are mined from the clusters. For
convoy mining, the first phase is the most expensive one,
however, the baseline implementation and SPARE both fo-
cus only on the second phase of the pipeline and consider the
first phase as a preprocessing phase. This approach leads to
larger overall convoy mining execution times.

3. CONVOY MINING PROBLEM

3.1 Density-based Clustering
Before we explain the convoy pattern, it is necessary to

understand the concept of density connectedness [6]. Con-
sider a point p in a set of points S and a distance threshold
eps. The eps-neighborhood of point p can be defined as
NH (p, eps) = {q ∈ S | d(p, q) ≤ eps} where d(p, q) rep-
resents the euclidean distance between two points. Given
a point p, a distance threshold eps and an integer m, a
point q is said to be directly density reachable from p if
q ∈ NH (p, eps) and |NH (p, eps)|≥ m and is denoted by
p → q. If there exists a chain of points p1, p2, . . . , pn such
that for all i, pi → pi+1, pn is said to be density reachable
from p1 and is denoted by p1 →∗ pn. Based on the previ-
ously defined terms, we can now define the notion of density
connected.

Definition 1. (Density-Connected) Given a set of
points S, a point p ∈ S is density-connected to a point
q ∈ S (denoted by p ↔∗ q), with respect to eps and m if
there exists a point x ∈ S such that x→∗ p and x→∗ q.

A set of density connected objects at a time instant is
called an (m,eps)-cluster and is defined as follows:

Definition 2. ((m,eps)-Cluster) Given an integer m
and distance threshold eps, a set c is called a (m,eps)-
cluster, if for all p, q ∈ c such that p 6= q, p ↔∗ q and
there does not exist an object r /∈ c such that p→∗ r.

3.2 Convoys
At a physical level, movement data is stored in a 4-column

table with schema < oid, x, y, t > where oid is the object id,
x and y represent the location in two dimensions, and t is
the time instant at which the object was at that location.
The trajectory of an object o can be extracted from this
data by retrieving all the tuples with oid = o and ordering
them by time column t.

In Figure 1 (reproduced from [18]), for m = 3, clusters
c1−1, c2−1 and c3−1 are (3,eps)-clusters as they are maxi-
mal sets of density connected points with size ≥ m. The
(m,eps)-clusters at a time tx can be found by querying all
tuples with t = tx to retrieve all objects present at time tx
and their locations, and performing density based clustering.
A convoy can be defined as follows:

Definition 3. (Convoy) Let Obj be a set of objects and
s, e be timestamps with s <= e. (Obj, [s, e]) is called a
(m, eps)-convoy if for all t ∈ [s, e], there exists a (m, eps)-
cluster C at timestamp t such that Obj ⊆ C.

From now on, we will assume that m and eps have been
fixed and omit them from the notation; i.e., cluster will de-
note (m,eps)-cluster.

950

x

y

t

1

2

3

o1 o2 o3 o4 o5

c1-1 c1-2

c2-1
c2-2

c3-1 c3-2

Figure 1: Convoy Pattern (in blue) with m = 3 and k = 3 Figure 2: Convoy Types

If v is a convoy, we denote its set of objects, respectively
timestamps with O(v), respectively T (v). In the figure 2,
for m = 3 and a distance threshhold eps , ({a, b, c}, [1, 4]),
({x, y, z}, [2, 5]), ({i, j, k}, [1, 3]), and ({a, b, c, d, e, f}, [1, 2])
are convoys. Note that a single (m,eps)-cluster c at time t
forms an (m,eps)-convoy (c, [t, t]).

Definition 4. (Fully Connected (FC) Convoy) Let
OB′ be a set of objects in a database DB, then we de-
fine the restriction of the database DB to objects OB′

as DB |OB′ := {(oid, x, y, t)|oid ∈ OB′}. A (m,eps)-convoy
v = (OB′, [ts, te]) is called a fully connected (m,eps)-convoy
(FC) if v is a (m,eps)-convoy in DB |OB′ .

In a fully connected convoy v, the objects O(v) are den-
sity connected without the help of any other object that is
not part of O(v); i.e., O(v) is self-sufficient in satisfying the
density connected property throughout the lifetime of the
convoy. For example, in Figure 2, ({x, y, z}, [1, 5]) is a con-
voy but not a fully connected convoy because at timestamp
4 the objects of the convoy {x, y, z} are density connected
to each other through object n and do not form a cluster
without object n. Also ({a, b, c}, [1, 4]) is a (3, eps)-convoy
but not fully connected. At all times, the objects of the
convoy are density connected without the involvement of
other objects that are not part of the final convoy except at
timestamp 4. On the other hand ({a, b, c}, [1, 3]) is an FC
(3,eps)-convoy.

Definition 5. (Sub-Convoy and Strict Sub-Convoy) v
is a sub-convoy of a convoy w if O(v) ⊆ O(w) and T (v) ⊆
T (w). In that case, w is called a super-convoy of v. If v
is a sub-convoy of w and v 6= w, then v is called a strict
sub-convoy of v.

Definition 6. (Maximal Convoy) An (m,eps)-convoy v
is called maximal if there does not exist another convoy w
such that v is a strict sub-convoy of w.

Definition 7. (Maximal FC Convoy) A fully connected
(m,eps)-convoy vfc is called maximal if there does not exist
another fully connected convoy wfc such that vfc is a strict
sub-convoy of wfc.

For instance, in Figure 2, ({a, b}, [1, 2]) is an FC (2,eps)-
convoy but it is not maximal because it is a sub-convoy of
another FC (2-eps) convoy ({a, b, c}, [1, 3]). ({a, b, c}, [1, 3])
is a maximal FC convoy because there doesn’t exist any
other FC convoy of which it is a sub-convoy. In the Figure 2,
v1 = ({w, x}, [0, 2]) is a sub-convoy of v2 = ({w, x, z}, [0, 2])
which is a sub-convoy of v3 = ({w, x, y, z}, [0, 2]). Note that
v1 and v3 are FC convoys whereas v2 is not.

Definition 8. (FC Convoy Mining Problem) Given a
dataset D, clustering parameters m, eps, and minimum
length of convoy k, find all maximal FC (m, eps)-convoys
v such that |T (v)|>= k.

The following lemmas describe the relationship between a
convoy and an FC convoy.

Lemma 1. Every FC convoy is a convoy and hence, every
maximal FC convoy is a sub-convoy of a maximal convoy.

Let V be the set of all (m,eps)-convoys in a dataset and
VFC be a set of all FC (m,eps)-convoys in that dataset, then
each convoy in VFC is a sub-convoy of at least one convoy
in V . Thus, using the validation algorithm proposed in [25],
V can be reduced to VFC .

Lemma 2. If v is a convoy, then for any O′ ⊆ O(v) and
T ′ ⊆ T (v), (O′, T ′) is a convoy as well.

However, the above lemma doesn’t hold for FC convoys.
For instance, in Figure 2, ({a, b, c}, [1, 3]) is an FC (2,eps)-
convoy but its sub-convoy ({a, c}, [1, 3]) is a (2,eps)-convoy
but not an FC (2,eps)-convoy because at timestamp 2, ob-
ject a is density connected to object c through object b which
is not a part of the convoy.

Table 1: Summary of Notation

Symbol Meaning

v A convoy
DB Dataset
Ts Start time of the dataset
Te End time of the dataset

DB [T] dataset restricted to time interval T
DB |O dataset restricted to objects in set O

Bn Set of nth order benchmark points
Hi ith hop-window

Vsp(i) Spanning candidate convoy set from Hi

VM Merged convoy set
V mr
sp Maximal right closed convoy set

VFC Set of fully connected convoys
L Lifespan of a convoy

CCi Candidate Clusters for hop-window Hi

CCl
i Candidate Clusters for level l hop-window Hi

CCl∗
i Intermediate CCl

i
Ci Set of clusters at bi

ts(v) Start time of convoy v
te(v) End time of convoy v
O(v) Objects in convoy v

4. k/2-HOP ALGORITHM
Convoy mining is an expensive task. Existing algorithms

are plagued by multiple expensive runs of DBSCAN, which
involve clustering all the points corresponding to each time-
stamp. From our experiments on real world datasets, we
have observed that the Convoy pattern is not a frequent
pattern. Most of the detected clusters do not become part

951

of any convoy, thus wasting valuable compute and I/O cy-
cles. Therefore, in this section, we propose the k/2-hop al-
gorithm, that is capable of pruning most of the data points
and clustering only the relevant convoy member points with
100% accuracy. k/2-hop has six steps as shown in Algorithm
1. Each of the steps is explained in the following sections.

4.1 Benchmark Points and Clusters
We call every k/2th timestamp in the dataset a benchmark

point and the time period between two consecutive bench-
mark points, a hop-window. The ith benchmark point is
denoted by bi and the ith hop-window is denoted by Hi. B
represents the set of all benchmark points and H the set of
all hop-windows. Figure 3 shows the main ideas of k/2-hop.
This figure represents the different timestamps [0, 16] and
the convoys are represented by rounded rectangles. The al-
gorithm is based on the following observations (see appendix
for proofs):

Lemma 3. Let k be the minimum length of a convoy to
be mined. Then for each convoy v with lifespan L = [ts, te]
such that |L|≥ k, there must exist at least two consecutive
benchmark points bi and bi+1 such that bi ∈ L and bi+1 ∈ L.

Proof. See full version [17] of the paper.

Algorithm 1 k/2-hop

Input: Dataset DB, Convoy size parameter m, Convoy length
parameter k, Distance threshold eps

Output: Set of fully connected convoys VFC

1: C = {Ci|i = 1, 2, . . . , n} such that Ci ← DBSCAN (bi) and
bi = i ∗ bk/2c
. The set of benchmark cluster sets

2: CC = {CCi = Ci ∩set Ci+1|i = 1, 2, . . . , n}
. The set of Candidate cluster sets

3: Vsp = {V i
sp : HWMT (Hi, CCi) : Hi ∈ H}

. 1st order spanning candidate convoys
4: VM = DCMmerge({V 1

sp, V
2
sp, ..., V

n
sp})

. Maximal spanning candidate convoys
5: VE ← extend(VM , DB)

. Semi-connected convoys
6: VFC ← DCVal(VE)

. Fully Connected convoys
7: return VFC

Figure 3 shows convoys with k = 8. It can easily be
seen that for a convoy with length greater than or equal
to k, crossing at least two consecutive benchmark points is
inevitable.

The set of (m,eps)-clusters at a benchmark point bi is
called the benchmark clusters set and is denoted by Ci. Note
that as the objects of a convoy remain together for the whole
length of the convoy, this is also true for the benchmark
points it crosses, which implies that the objects of the convoy
crossing bi must be a subset of one of the benchmark clusters
in Ci.

Lemma 4. Let C be the set of clusters at a benchmark
point b and O(x) be the set of objects of a convoy or cluster
x. Then for every convoy v crossing b, there exists a c ∈ C
such that O(v) ⊆ c.

Proof. See full version [17] of the paper.

4.2 Candidate Clusters
As a convoy must cross at least two consecutive bench-

mark points, the objects of a convoy must be part of a

Figure 3: Red rectangles show convoys with k=8, bi is a benchmark
point, Hi is a hop-window. v1 ends in H1, v2 crosses H1 and v3 starts
in H1

benchmark cluster at both of these benchmark points. In
other words, if we take a set-wise intersection of the two
benchmark cluster sets at the two benchmark points, the
objects of the convoy must be part of at least one of the sets
in the result.

Lemma 5. Let v be a convoy crossing two consecutive
benchmark points bi and bi+1 and let Ci and Ci+1 be the
respective sets of clusters. Then there must exist clusters
ci ∈ Ci and ci+1 ∈ Ci+1 such that O(v) ⊆ ci ∩ ci+1.

Proof. See full version [17] of the paper.

This lemma plays a crucial role in pruning the data of the
objects that cannot be part of a convoy in a hop-window.
For instance, let C1 and C2 be the sets of clusters at con-
secutive benchmark point b1 and b2:

C1 = {{a, b, c, d}, {e, f, g, h}, {i, j, k}}
C2 = {{a, b, c}, {d, e}, {f, g, h}, {i, j}}

Then the element-wise set intersection of C1 and C2 re-
sults in {{a, b, c}, {d}, {e}, {f, g, h}, {i, k}}. Assuming we
are looking for convoys with m = 3, we discard the sets
with size less than 3 to get the Candidate Clusters set
{{a, b, c}, {f, g, h}} for hop-window H1 denoted by CC1. To
find the convoys that span the hop-window, we can filter out
the data corresponding to all objects other than the mem-
bers of CC1.

We formally define the candidate clusters for hop-window
i as follows:

CCi := {ci ∩ ci+1 | ci ∈ Ci, ci+1 ∈ Ci+1, |ci ∩ ci+1|≥ m|}

As shown above, instead of touching the whole dataset, we
first find clusters only at the benchmark points and find
CC by the set-wise intersection of the cluster sets from the
adjacent benchmark points, i.e., CC = {CC1, CC2, ...CCn}.
As in real word cases, e.g., vehicular traffic, convoy is an
uncommon pattern, CC contains only a few objects. This
allows us to prune all data corresponding to the objects not
part of any cluster in CC. Mining convoys in the reduced
data is much faster.

4.3 Hop-Window Mining Tree (HWMT)
Up to this point, we have a CC for each hop-window. The

next task is to mine convoys in the hop-window using CC.
Before moving forward it is important to know what kind of
convoys we can find in a hop-window.

952

Candidate ClustersRe-clustering Process at timestamp n of level l(l,n)

HiHi-1 Hi+1bi
bi+1

 (1,1)

CC2

CC5CC5
spCC5

sp

CC6
sp

V*
sp

CC3*
1

CC4

CC3

CC3

CC2

CC4*
1 CC4*

2 CC4*
3 CC4

CC5*
1

CC5*
2

CC5*
3

CC5*
4

CC5*
5 CC5*

7

CC5*
6

CC5

CC6*
1 CC6*

2

CC6*
3

CC6*
4 CC6*

5

CC1

 (2,1)

 (3,1)

 (4,1)

 (5,1) (5,2)

 (4,2) (4,3)

 (3,2)

 (4,4)

 (5,3) (5,4)

 (4,5)

 (3,3)

 (4,6)

 (5,5) (5,6)

 (4,8)

 (3,4)

 (4,7)

 (2,2)

Figure 4: Hop-Window Mining Tree for Spanning Convoys. The cluster sets from bi and bi+1 are intersected to form the candidate cluster set

CC1 (input to HWMT level 1) which is clustered at the timestamp b2 to form the candidate cluster set CC2 (input to HWMT level 2).

Lemma 6. If a convoy v with lifespan L overlaps a hop-
window Hi, i.e., L ∩Hi 6= ∅, only one of the following can
be true:

1. L ∩ {bi, bi+1} = {bi, bi+1}, i.e., v spans Hi entirely.

2. Hi ∩ {ts(v)} 6= ∅, i.e., v starts in Hi.

3. Hi ∩ {te(v)} 6= ∅, i.e., v ends in Hi.

Proof. See full version [17] if the paper.

There can be three types of convoys whose lifespan over-
laps with a hop-window, i.e., the convoys which span/cross
the hop-window (spanning candidate convoys), the convoys
which end in the hop-window (ending candidate convoys)
and the convoys which start in the hop-window (starting
candidate convoys). The number of hop-windows a candi-
date spanning convoy spans is called the order of the candi-
date spanning convoy. Therefore, the candidate spanning
convoys mined in a hop-window are 1st order candidate
spanning convoys. Our proposed HWMT algorithm which
is a part of the global k/2-hop algorithm, operates on a
hop-window Hi and mines the 1st order candidate spanning
convoys efficiently by reducing the size of CCi at each step.
Applying the HWMT algorithm on all hop-windows gives
us all the 1st order spanning convoys. Working on individ-
ual hop-windows independently of other hop-windows makes
the HWMT algorithm a good candidate for distributed ex-
ecution.

The HWMT algorithm tries to reduce the effect of coin-
cidental togetherness. The algorithm exploits the fact that
the chance of objects being coincidentally together in ad-
jacent timestamps is higher than the chance of them being
coincidentally together in distant timestamps. Therefore it
picks up the farthest timestamps in the hop-window for pro-
cessing in each step.

The HWMT algorithm operates on the Hop Window Min-
ing Tree, which is a binary search tree of timestamps with
the middle timestamp of the hop-window as the root node.
The nodes in the next levels represent timestamps in the
middle of the timestamps of the previous level, and so on.
Figure 4 shows a sample HWMT. The candidate cluster set
of the hop-window is reclustered at the root node. The result
is then reclustered at the left timestamp of the 2nd level, the

Algorithm 2 HWMT

Input: Dataset DB[Hi]|CCi
, Hop-window Hi, Candidate cluster

set CCi

Output: 1st order spanning convoys set Vsp

. Constructs a binary tree of the timestamps within Hi as
shown in Figure 4

1: Vsp ← CC
2: for each level l ∈ hwmt(in ascending order) do
3: for each timestamp t ∈ l do
4: V ′sp ← ∅
5: for each convoy v ∈ Vsp do
6: V ′sp ← V ′sp∪ DBSCAN (DB [t]|O(v))

7: if V ′sp = ∅ then

8: return V ′sp
9: Vsp ← V ′sp

10: for v ∈ Vsp do
11: ts(v)← ts(Hi)− 1;te(v)← te(Hi) + 1 . convoy

starts and ends in the bordering benchmark points which are
not included in the hop-window

12: return Vsp

result of which is then reclustered at the right timestamp.
This process is repeated for all the levels of the tree until no
clusters are found at any timestamp. After each recluster-
ing step, the result contains either the same or fewer objects
than the input. The reclustering of clusters at a timestamp
validates the togetherness of the objects of the clusters at
that timestamp.

Algorithm 2 shows the pseudo code of the HWMT algo-
rithm. The algorithm operates on a hop-window and takes
as input the dataset restricted to the hop-window and the
candidate cluster set for that hop-window, CCi and returns
the set of convoys spanning the hop-window Hi. The al-
gorithm first creates a hop-window mining tree for the hop-
window. The algorithm processes each level of the tree start-
ing from the highest one, i.e., the root of the tree (line 2).
The candidate clusters in Vsp are reclustered at each time-
stamp in Tl to find new candidate clusters (line 6). If no
clusters are found after the re-clustering process (line 7), no
spanning convoys exist in the hop-window so we do not need
to go any deeper in the tree and the algorithm terminates.
Once the HWMT has been processed up to the leaves of
the tree, Vsp contains the surviving clusters which contain
objects which form a cluster in each timestamp of the hop-

953

Figure 5: Spanning Convoys

Table 2: Steps of HWMT for example in Fig 6 to be seen in con-
junction with Fig 4. (l,n) represents the timestamp number n of the
level l of HWMT. t represents the actual timestamp from the dataset
corresponding to (l, n). CC1 is provided as input to level 1 of HWMT
where it is clustered at the first timestamp of level 1 i.e. (1,1) which
corresponds to timestamp 4 and is the root of HWMT. The result
CC2 is passed on to the level 2 where it is clustered at (2,1), the
result of which is clustered at (2,2) producing CC3. CC3 is passed

on to level 3 and the process is repeated until either the CCi
j becomes

empty or no timestamp in HWMT is left unprocessed. In both the
cases, the last CCi

j is the result of the HWMT algorithm.

(l,n) t Cluster Set Value

0 C0 cluster(DB[0]) = {{abcdefghij},
{xyx}, {mno}}

8 C8 cluster(DB[8]) = {{abcd}, {xyz}}
CC1 C0 ∩∗ C8 = {{abcd}, {xyz}}

(1,1) 4 CC2 reCluster(DB[4]|CC1) = {{abcd}}
(2,1) 2 CC3∗

1 reCluster(DB[2]|CC2) = {{abcd}}
(2,2) 6 CC3 reCluster(DB[6]|CC3∗

1
) = {{abcd}}

(3,1) 1 CC4∗
1 reCluster(DB[1]|CC3) = {{abcd}}

(3,2) 3 CC4∗
2 reCluster(DB[3]|CC4∗

1
) = {{abcd}}

(3,3) 5 CC4∗
3 reCluster(DB[1]|CC4∗

2
) = {{abcd}}

(3,4) 6 CC4 reCluster(DB[6]|CC4∗
3

) = {{abcd}}

window. The clusters are thus eligible to be considered as
spanning candidate convoys. The start and end times of the
clusters is updated to be the left and the right benchmark
points bordering the hop-window which makes them repre-
sent spanning convoys of the current hop-window (line 11).
Figure 6 shows an example of a hop-window for which the
steps of the HWMT algorithm are described in Table 2.

Figure 6: Hop-Window Mining Tree Example. X-axis represents
timestamps. Grey timestamp blocks b0 and b1 are benchmark points.
Each letter represents an object and their relative position shows their
distance amongst each other. Encircled objects represents clusters of
minimum size 3.

4.4 Finding Maximal Spanning Convoys
In this step, the adjacent 1st order spanning convoys are

merged together recursively to find maximal spanning candi-
date convoys (which cannot be merged with adjacent span-
ning candidate convoys any further). A maximal spanning
convoy can be defined as follows:

Table 3: Finding Maximal Spanning Convoys in Fig 5. The 1st
merge column contains the result of merging the spanning convoys
from hop-windows H1 and H2. The 2nd merge column contains the
result of merging the convoys from 1st merge and the hop-window H1

and so on. The convoys with grey background got extended during
the merge process and hence are candidates of further merge with the
next hop-window.

1st merge 2nd merge 3rd merge

O T O T O T

{a,b,c,d} [b0,b2] {a,b,c,d} [b0,b2] {a,b} [b0,b4]
{e,f,g,h} [b0,b1] {a,b} [b0,b3] {c,d} [b0,b4]
{e,f} [b0,b2] {c,d} [b0,b3] {e,f} [b0,b4]
{g,h} [b0,b2] {e,f} [b0,b3] {g,h} [b0,b4]
{i,j,k} [b0,b1] {g,h} [b0,b3] {c,d,g,h} [b2,b4]

{a,b,e,f} [b2,b3] {a,b,e,f} [b2,b3]
{c,d,g,h} [b2,b3] {c,d,g,h} [b2,b3]
{i,j,k} [b2,b3] {i,j,k} [b2,b3]

Definition 9. (Maximal Spanning Convoy) Let O(v)
be the set of objects of a spanning convoy v and T = [bm, bn]
be its lifetime. v is a maximal spanning convoy if there does
not exist a spanning convoy w such that v is a strict sub-
convoy of w.

For merging 1st order spanning convoys to find maximal
spanning convoys, we use the DCM merge algorithm pre-
sented in [16]. Figure 5 shows the 1st order spanning con-
voys in 4 adjacent hop-windows. We use the DCM merge al-
gorithm to merge spanning convoys from the adjacent hop-
windows from left to right. Table 3 shows the results of
each phase of the merge process for the convoys in Figure
5. First we merge the 1st order spanning convoys of H0

and H1. The results are shown in the column for the 1st
merge. The convoys marked with dark background end at
the second benchmark point b2, and can thus be merged
further with the convoys in H2. The convoys without any
background colour are maximal as they cannot be merged
further. The convoys with dark background are then merged
with the spanning convoys of H2 and the results are shown
in the 2nd merge column. This process is repeated until
the spanning convoys from the last hop-window are not pro-
cessed, which in our example is H3. The convoys with white
background colour form the set of maximal spanning con-
voys as they cannot be merged further and are not strict
sub-convoys of any spanning convoy.

4.5 Extending Maximal Spanning Convoys
Up to this point, we have discovered all the possible span-

ning convoys, however, according to Lemma 6, we still need
to mine the hop-windows for the starting and ending candi-
date convoys which have the following properties:

Lemma 7. Given a convoy v with lifespan L. If te(v) ∈
Hi then bi−1, bi ∈ L; i.e., if a convoy v ends in Hi then it
spans Hi−1.

Proof. See APPENDIX[17].

Lemma 8. Given a convoy v with lifespan L. If ts(v) ∈
Hi then bi+1, bi+2 ∈ L; i.e., If a convoy v starts in Hi then
it spans Hi+1.

Proof. Symmetric case of lemma 7

From the above Lemmas 7 and 8, we know that to mine the
ending (resp. starting) convoys in a hop-window, we need
the (maximal) spanning candidate convoys from the previ-
ous (resp. next) window. In this phase, the maximal span-
ning convoys from the previous phase are extended within

954

the hop-windows to find their actual starts and ends. First,
the convoys are extended to the right and then the resulting
convoys are extended to the left. Algorithm 3 shows the
pseudo code of the extension algorithm to the right. The
algorithm takes as input the maximal spanning convoys set
VM from the previous phase and returns the right-closed
maximal spanning convoys set V mr

sp . A right-closed convoy
is a convoy which cannot be extended to the right anymore.
Each convoy is extended individually and may result in one
or more convoys after extension. The convoy to be extended
is put in the set Vprev which represents the convoys to be
extended further to the right (line 2). In each iteration, a
convoy v ∈ V is re-clustered in the timestamp next to it’s
end time which is the current timestamp and the resulting
convoy(s) are put in Gt (line 6). If Gt is empty, the convoy
v can no more be extended. Hence, it is put in the result set
V mr
sp (line 8). If Gt is not empty, the start and end time of

Algorithm 3 extendRight

Input: Dataset DB, Maximal spanning convoys VM

Output: Right extended spanning convoys V mr
sp

1: for each convoy vsp ∈ VM do
2: Vprev ← {vsp}
3: for each time t ∈ [te(vsp) + 1, te(DB)] do
4: Vnext ← ∅
5: for each v ∈ Vprev do
6: Gt ← reCluster(v,DB[t])
7: if Gt = ∅ then
8: V mr

sp ←update(V mr
sp , {v})

9: else
10: for each c ∈ Gt do
11: Vnext ← Vnext ∪ {c, [ts(v), t]}
12: if O(v) 6∈ Gt then
13: V mr

sp ←update(V mr
sp , {v})

14: Vprev ← Vnext

15: if Vprev = ∅ then
16: break
17: update(V mr

sp , Vprev)
18: return V mr

sp

each new convoy is set and the set is added to Vnext (line 11)
so that the convoys in the set could further be extended to
the right in the next iteration. If the set Gt does not contain
the original convoy v which was reclustered (line 12), two
things could have occurred. Either the convoy v got split
into two or more convoys or it got reduced in size. In both
the cases, the convoy v is added to the result (line 13) as
it did not get extended in its current shape. The update
function makes sure that v is only added to the result if it
is not a sub-convoy of existing convoy in the result set and
all existing convoys that are sub-convoys of v are removed
from the result set. The convoys in set Vnext are put in the
set V to be extended in the next timestamp (line 14). If the
set Vprev is empty (line 15), we do not have any convoy to
extend to the next timestamp, thus, the process is stopped.
In the extension process, if the algorithm reaches the end
time of the dataset, the convoys in V can be extended no
further, thus, they are added to the result using the update()
method (line 17).

While adding convoys to the result in the extendRight al-
gorithm, we never check if the convoys satisfy the minimum
length constraint of k. This is because, even if a convoy
does not satisfy the k constraint now, it could potentially
extend to the left and satisfy k. The extendLeft algorithm

takes as input the right extended spanning convoys and ex-
tends them to the left. The algorithm works just like the
extendRight algorithm with a few differences. First, it starts
extending each convoy to the left, starting from the time-
stamp just before the starting time of a convoy and goes all
the way to the start time of the dataset. Second, since, after
the extension to the left, no more extension is possible, we
expect the convoys to satisfy the k constraint. So, all the
convoys which do not satisfy the k constraint, are discarded.
The resultant convoys are passed on to the validation phase
in which the maximal fully-connected convoys are mined.4.6 Mining Fully Connected Convoys

After extending the spanning convoys to the left and right,
we still need an additional validation step to ensure that the
final convoys we output are fully connected. The reason is
that whenever we reduce the set of objects in a convoy we are
extending in the algorithm, we did not check if the reduced
set of objects was fully connected in the timestamps that
were already in the convoy. For instance, suppose we have
a convoy (abcde, [1, 5]) and at timestamp 6 the only cluster
intersecting abcde is abcd. Then we output (abcde, [1, 5]) as
it is maximal, and continue with (abcd, [1, 6]). At this point,
however, it is not guaranteed that abcd is fully connected in
the timestamps 1 to 5; maybe object e is needed to connect
the object d to abc in, let’s say timestamp 3. In that case
(abc, [1, 6]) may be the real fully-connected convoy while our
algorithm outputs (abcd, [1, 6]). Therefore we need an addi-
tional step to reduce the candidates output by our algorithm
sofar to FC-convoys.

An important observation on which our validation is
based, is that whenever (O, T) is an FC-convoy, then (O, T)
is a convoy in the dataset we obtain by reducing the objects
to O and the timespan to T , and vice versa. Indeed, suppose
(abc, [1, 6]) is an FC-convoy. Then, if we reduce our dataset
to only objects abc and timestamps in [1, 6], any convoy min-
ing algorithm will find (abc, [1, 6]) as a convoy, including our
own HWMT-based algorithm! Alternatively we could have
used an algorithm called “DCVal” from [25] for this task,
yet we decided to use a variant of the HWMT algorithm,
called HWMT*, which we will specify later. The validation
algorithm now proceeds as follows: for each candidate con-
voy (O, T) output by our algorithm sofar, we run a separate
instantiation of the validation algorithm. The validation al-
gorithm for (O, T) restricts the dataset and runs HWTM*.
This results either in one convoy (O, T) which is then guar-
anteed to be an FC-convoy, or it outputs smaller convoys
(O1, T1), . . . , (Ok, Tk) for which we run the validation al-
gorithm again. For instance, if HWMT∗ run for convoy
(abcde, [1, 5]) returns (abcd, [1, 5]) and (de, [2, 5]), then these
two convoys will be validated again. This continues until we
either reach one or more FC convoys, or they become too
small.

The complete procedure is depicted in Algorithm 4. The
for loop in lines 2-8 iterates over all candidates vin output by
our algorithm sofar. vin is removed from VE and HWMT∗
is run on it (lines 3 and 4). If this results in the same convoy,
then it is added to the output set VFC , otherwise all convoys
in the result of HWMT∗ are added to the set of convoys to
be validated and the procedure continues (line 8).

HWMT* is based on HWMT, but has some subtle differ-
ences. We illustrate the differences with an example convoy
(O, T) = (abcde, [1, 6]) to be validated:

1. HWMT* will not consider objects except those in O.

955

2. HWMT* does not start clustering at the benchmark
points bi, but instead at the extremes of T . In our
running example this means that we start by cluster-
ing the objects abcde in points 1 and 6. Then, using
the same rationale as HWMT, the next point that is
clustered is 1+6

2
(3 or 4), etc.

3. If HWMT meets a point where for a certain timestamp
no cluster are found, it stops. This is because HWMT
works on a hop-window and finds spanning convoys
only. HWMT* does not stop at such point, because it
also needs to output convoys that do not completely
span T . HWMT* only stops when no more convoys of
length k or more can be found.

Algorithm 4 validate

Input: Extended convoys VE , Convoy size parameter m, Mini-
mum convoy length k

Output: Maximal fully-connected Convoys VFC

1: VFC ← ∅ . initialize result set to empty
2: for each convoy vin ∈ VE do
3: VE ← VE \ Vout

4: Vout ← HWMT ∗(vin)
5: if Vout = {vin} then
6: VFC ← VFC ∪ Vout

7: else
8: VE ← update(VE , Vout)

9: return VFC

Proof of Correctness & The Cost Complexity See
full version [17] of the paper for the proof of correctness.
k/2-hop algorithm’s strength lies in its data pruning capa-
bility. Its cost increases with the number of convoys in the
dataset as lesser data can be pruned. In the worst case, each
object in the dataset would be part of at least one cluster
at each timestamp, the maximum size of the cluster would
be m, and each object would be part of at least one con-
voy at each timestamp of its existence in the dataset. In
such a case, the whole dataset participates in convoys, and
it is impossible for k/2-hop to prune any data. The cost
complexity of k/2-hop in such a case becomes equal to the
baseline PCCD/VCoDA algorithms. However, in the aver-
age case the data that doesn’t participate in any convoy is
pruned by k/2-hop. From our experiments, we have seen
that up to 99% of the data is pruned by k/2-hop.

5. PERSISTENT STORAGE STRUCTURE
k/2-hop shows improved performance because of its mea-

gre requirement for disk I/O. Therefore, use of an effi-
cient storage structure, tailored for its access behaviour can
greatly enhance k/2-hop’s performance. k/2-hop requires
to read all the data corresponding to the benchmark points
but within a hop-window, it needs to read only the points
corresponding to the objects which are part of the 1st or-
der candidate clusters. Thus, its disk access requirements
can be categorized as follows: (1) For data corresponding to
the benchmark points, the capability of doing fast scans on
the benchmark points is needed and (2) for non-benchmark
points data, fast random access indexed by object ids and
timestamp is required. In addition to that, to support large
amounts of data, it is desirable that the storage structure
supports (3) fast data inserts, (4) distributed storage and
(5) parallel querying with linear horizontal scaling. More-
over, (6) the storage format/data arrangement should be
independent of the choice of the convoy mining parameters

(m, k and eps). Otherwise for each convoy query with a
different parameter, the data would have to be rearranged
on disk. Also, (7) the structure should be efficient in terms
of memory and disk space consumption.

For the purpose of experiments, we tested 3 storage
structures, namely, flat files, relational and Log-Structured
Merge-Tree (LSMT) [19]. Flat files are good for scans but
are not suitable for random access, thus k/2-hop does not
benefit from it. However, relational and LSMT based stor-
age structures are more suitable for k/2-hop.

5.1 Relational Data Storage
A relational table could be used for data storage having

each tuple of the form (timestamp, oid, x, y) with a multi-
column clustering index on timestamp and oid. To get
benchmark points data, a SELECT query on the timestamp
would fetch all the points corresponding to the benchmark
point. For the HWMT algorithm, a SELECT query on the
timestamp as well as the oid is required.

5.2 Log-Structured Merge-Tree
Log-Structured Merge-Tree [19] is a storage structure de-

signed for high performance transaction applications and
makes a hybrid use of memory and disk. It stores the freshly
inserted data in the form of logs to minimize disk seeks and
stores the data in the form of key-value pairs. The data is
sorted by keys which allows faster range query performance
on the keys because similar keys are co-located. Note that
the data can be queried through the keys only. For achieving
better range scan and random access results for k/2-hop, we
create a composite key (t,oid) consisting of the timestamp
and the oid of the object with the location coordinates (x,y)
of the object stored as the value of the key-value pair. For
fetching the data of benchmark points, we issue a query
by timestamp which results in a range scan from (t,0) to
(t,max(oid)). As all the data corresponding to a timestamp
t is co-located, the data is fetched with a single seek, hence
better I/O performance. For fetching the data for HWMT,
a point query is issued for each (timestamp,oid) pair.

For huge datasets, LSMT is more suitable than a rela-
tional storage structure. It is horizontally scalable, allows
fast inserts and does not need special indexing structures to
be created or disk reorganization.

6. EXPERIMENTS
We compare k/2-hop algorithm with sequential as well

as distributed algorithms. As k/2-hop is a sequential algo-
rithm, it is fair to compare it with sequential algorithms run-
ning on a single machine, however, this puts the distributed
algorithms at a disadvantage as they are designed to be run
and take benefit of multiple cores and nodes. Keeping this
in view, in addition to comparing the sequential and dis-
tributed algorithms with the k/2-hop algorithm on a single
machine, we test the performance of the distributed algo-
rithms (SPARE and DCM) on multi-core and multi-node
setups and see how do they compare to the single machine
performance of k/2-hop.

6.1 Setups
For the experiments, three different hardware setups were

used, each for single instance, multi-core and multi-node
experiments. Following are the details of each setup. Unless
specified otherwise, all figures correspond to experimental
setup A.

956

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 200 400 600 800 1000 1200

G
a
in

k

k2-RDBMS

median

mean

k2-LSMT

(a) Performance Gain over
VCoDA* (Trucks)

 0

 50

 100

 150

 200

 250

 300

 200 400 600 800 1000 1200

G
a
in

k

k2-RDBMS

median

mean

k2-LSMT

(b) Performance Gain over
VCoDA* (T-Drive)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 200 400 600 800 1000 1200

T
im

e
 (

s
)

k

k2-RDBMS k2-LSMT

(c) k2-RDBMS Vs.
k2-LSMT (Brinkhoff)

 1

 32

 1024

 32768

 1 2 3 4 5 6 7 8

G
a
in

 l
o
g
2
 s

c
a
le

cores

Trucks
Brinkhoff

TDrive

(d) k/2 Performance gain
over SPARE on a single

machine

 0.25
 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

 2 4 6 8 10 12 14 16

G
a
in

 l
o
g
2
 s

c
a
le

cores

Trucks
Brinkhoff

TDrive

(e) k/2 Performance Gain
over SPARE on YARN

(Setup B)

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16
 32
 64

 8 16 24 32

G
a
in

 l
o
g
2
 s

c
a
le

cores

Trucks
Brinkhoff

TDrive

(f) k/2 Performance Gain
over SPARE on NUMA

Machine (Setup C)

 0.25

 1

 4

 16

 64

 256

 1 2 3 4

G
a
in

nodes

Trucks

Brinkhoff

TDrive

(g) k/2 Performance Gain
over DCM on YARN (Setup

B)

 128

 256

 512

 1024

 2048

 4096

 200 400 600 800 1000 1200

T
im

e
 (

m
s
)

lo
g
2
 s

c
a
le

k

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(h) Trucks: Effect of varying
k on performance

Figure 7: k/2-hop Performance Experiments

6.1.1 Setup A
For experiments requiring a comparison with sequential

algorithms, a machine with a quad core Intel(R) Core(TM)
i7-4700MQ processor with 2.4GHz frequency was used. The
machine had 16MB RAM and a Samsung MZ7TD256 SCSI
Solid State Drive. It ran a 64-bit Linux Mint 17.3 Rosa
distribution with Linux 3.19.0-32-generic (x86 64) kernel.
All the algorithms were implemented in Java and run on
Java(TM) SE Runtime Environment (build 1.8.0 101-b13)
using the Java HotSpot(TM) 64-Bit Server VM (build
25.101-b13, mixed mode) implementation. All the experi-
ments were run with the maximum heap size set to 6GB.

6.1.2 Setup B
For measuring the performance of the SPARE frame-

work running on Spark over YARN and of DCM running
on YARN using the MapReduce framework, a cluster of 5
machines was used with one machine configured as the Re-
source Manager and 4 machines configured as Node Man-
agers. Each machine had Intel(R) Xeon(R) E5520 processor
running at 2.27GHz2. The processor contained 2 sockets, 4
cores per socket and 2 threads per core. The machines had
24GB of RAM. For the experiments, the same JVM as of
setup A was used.

6.1.3 Setup C
For measuring the multi-core performance of the dis-

tributed algorithms (DCM and SPARE) in, we used a ma-
chine with 4 AMD Opteron(tm) 6376 processors running at
2.3 GHz. Each processor had 16 cores equally divided be-
tween 2 NUMA nodes. Thus the machine had 8 NUMA
nodes, each node containing 8 cores making the cluster’s to-
tal core count to be 32. We used spark in Standalone mode
to reduce the overhead of YARN container allocation. The
machine had 256 GB of physical memory. For the experi-
ments, the same JVM as of setup A and B was used.

6.2 Data Sets
Following datasets were used for the experiments:

6.2.1 Trucks Dataset
The truck dataset consists of 276 trajectories of 50 trucks

delivering concrete to several construction places around
Athens metropolitan area in Greece. The locations in lat-
itude and longitude were sampled approximately every 30
seconds for 33 days. To make the experiments compatible
with the experiments performed on the trucks dataset in the
previous papers [13, 14], a single day’s of a truck’s movement
was considered as a trajectory of a truck. The next day’s
trajectory of the same truck was considered as a different
truck’s trajectory to increase the number of objects in the
dataset and hence, to find more convoys.

6.2.2 T-Drive Taxi Dataset
12 This dataset [26, 27] contains the GPS trajectories of

10,357 taxis during the period of Feb. 2 to Feb. 8, 2008
within Beijing. The total number of points in this dataset
is about 15 million (29 million after interpolation) and the
total distance of the trajectories reaches to 9 million kilo-
meters. The average sampling interval is about 177 seconds
with a distance of about 623 meters.

6.2.3 Brinkhoff Generator’s Dataset
For testing k/2-hop’s performance on synthetic datasets,

we used the well-known Brinkhoff Generator [2, 3] which can
generate network based traffic data based on a real-world
dataset and user specified parameters using simulation. It is
open-source and publicly available. Table 4 shows different
properties of the generated Brinkhoff dataset.

6.3 Results

6.3.1 Performance Gain
Figures 7a and 7b show the performance gain of the k/2-

hop algorithms over V CoDA∗ on the Trucks and T-Drive
dataset, respectively. The top and bottom lines of an area

1http://research.microsoft.com/apps/pubs/?id=
152883
2https://www.microsoft.com/en-us/research/
wp-content/uploads/2016/02/User_guide_T-drive.pdf

957

represent the maximum and the minimum gain of the algo-
rithm for different values of eps and m where as the lines
inside the marked areas represent mean and the median of
different gain values. It can be seen that k2-RDBMS is up
to 8 and 260 times faster than V CoDA∗ on Trucks and T-
Drive dataset, respectively. As the Trucks dataset is quite
small, the results of T-Drive dataset is more relevant. More-
over, the V CoDA∗ algorithm could not finish when run on
the Brinkhoff dataset (Figure 7c), whereas the k/2-hop al-
gorithms were able to finish without any problems. While
k2-RDBMS performs the best on the Trucks and T-Drive
dataset, k2-LSMT performs the best on the largest dataset,
i.e., the Brinkhoff dataset.

Table 4: Brinkhoff Dataset Properties

Property Value Property Value

MaxTime 25000 data space height 26915
ObjBegin 5000 number of nodes 6105
ObjTime 100 number of edges 7035
ExtObjBegin 100 maximum time 25000
ExtObjTime 2 moving objects 2505000
data space width 23572 points 122014762

6.3.2 Comparison with SPARE Framework
Figures 7d,7e and 7f show the performance gain of k/2 al-

gorithm over the distributed SPARE framework[7] on a sin-
gle machine, scale-out and scale-up scenarios respectively.
As k/2 algorithm is a sequential algorithm and we used a
non-threaded implementation for the experiments, k/2 was
effectively running on a single core whereas SPARE was run-
ning in parallel on multiple cores. It can be seen that k/2
algorithm is up to 43000 times faster than SPARE running
on a single core and up to 32000 times faster than SPARE
running on 8 cores.

6.3.3 Comparison with DCM Algorithm
Figure 7g shows the performance gain of k/2 algorithm

over the distributed convoy mining algorithm DCM[16] on
a cluster with different number of nodes. With the increase
in the number of nodes, the DCM runtime decreases leading
to a decrease in the gain of k/2, however, k/2, even being a
sequential algorithm, outperforms DCM running in parallel
on multiple nodes and is up to 140 times faster.

6.3.4 Data Pruning Performance
Table 5 shows the minimum and the maximum number

of points processed by k/2-hop for different convoy mining
parameters. It can be seen that k/2-hop is able to prune
more than 99% of the data in most cases.

6.3.5 Effect of k

Figures 7h, 8a and 8b show the effect of variation in k
on performance of the convoy mining algorithms. It can be
seen that the performance of VCoDA and VCoDA∗ does not
vary much with the change in k. This is because both the
algorithms touch all the data points for clustering purposes
irrespective of the parameters. The execution time of the k2-
* algorithms decreases with the increase in k. For the Trucks
dataset, change in k does not reduce the execution time of
the k2-* algorithms significantly for values of k >= 600 be-
cause there is not much time spent on the HWMT phase as
no convoys exist for this range of k . VCoDA crashed while
processing the Brinkhoff dataset, throwing an out of mem-
ory exception. Increase in k causes decrease in the expected

Table 5: k/2-hop: Data Pruning Performance

Trucks T-Drive Brinkhoff

Total Number of Points 366202 29384000 122014762
Min Points Processed 571 49038 205331
Max Points Processed 57031 500691 1221697
Min Pruning 84.43% 98.3% 99%
Max Pruning 99.84% 99.83% 99.83%

number of convoys, thus, k2-* algorithms is able to prune
more data and get better performance. The k2-LSMT and
k2-RDBMS algorithms benefit from this effect more than
the rest of the algorithms. This is because the k2-LSMT
and k2-RDBMS algorithms are also able to reduce disk I/O
costs in addition to the clustering costs. k2-RDBMS per-
forms the best on the Trucks and T-Drive datasets, how-
ever, k2-LSMT performs best on the Brinkhoff algorithm
(the largest in size). k2-File algorithm performs better than
k2-LSMT on the Trucks dataset because it can easily load
the whole dataset in memory and mine convoys.

6.3.6 Effect of m

Figures 8c, 8d and 8e show the effect of variation in m on
performance of the convoy mining algorithms. It can be seen
that the performance of k2-* algorithms increases with the
increase in m. In Figure 8d, the execution time decreases
when m is changed from 3 to 6 but for further increase, the
decrease is not very significant. The reason for this is that
for both values of m, i.e.,; 6 and 9, not many benchmark
and candidate clusters were discovered, which allowed k2-*
algorithms to save the cost of HWMT phases. We found
the same behaviour on the Brinkhoff dataset however the
behaviour is not very evident in Figure 8e because of the
log scale. VCoDA and file based k2 algorithm crashed while
processing the Brinkhoff dataset. k2-File performed the best
on Trucks dataset because of its smaller size, k2-RDBMS
performed the best on T-Drive dataset whereas k2-LSMT
performed the best on the Brinkhoff dataset.

6.3.7 Effect of eps

Figures 8f, 8g and 8h show the effect of the choice of values
of eps on convoy mining algorithms. Increase in the value
of eps causes detection of more and larger clusters which
do not form convoys, hence, the object conversion ratio de-
creases. k2-LSMT performs better than other algorithms
for all tested values of eps.

6.3.8 Execution Time of k2-LSMT Phases
Figure 8i shows the execution time of difference phases of

the k/2 algorithms. It can be seen that most of the time is
taken by the HWMT phase. In the HWMT, k/2-hop pro-
cesses most of the timestamps and also involves point queries
which are expensive. The extension (left and right) phases
are the second most expensive parts of the k/2 algorithm.
The rest of the phases take negligible time to execute.

6.3.9 Effect of No. of Pre-Validation Convoys
Figure 8j shows the number of pre-validation convoys de-

tected by different convoy mining algorithms for different
values of k. VCoDA algorithm first finds the partially-
connected convoys and at the end runs a validation algo-
rithm on them to get fully-connected convoys. In k/2-hop
algorithm the size of the input convoy set to the validation
algorithm is smaller than the partially-connected convoy set

958

 0.25

 1

 4

 16

 64

 256

 200 400 600 800 1000 1200

T
im

e
(s

e
c
)

lo
g
2
 s

c
a
le

k

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(a) T-Drive: Effect of
varying k on performance

 4

 8

 16

 32

 64

 128

 256

 200 400 600 800 1000 1200

T
im

e
(s

e
c
)

lo
g
2
 s

c
a
le

k

k2-File
k2-RDBMS

k2-LSMT

(b) Brinkhoff Dataset:
Effect of varying k on

performance

 0

 1

 2

 3

 4

 5

 3 6 9

T
im

e
(s

e
c
)

m

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(c) Trucks: Effect of varying
m on performance

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 3 6 9

T
im

e
(s

e
c
)

lo
g
2
 s

c
a
le

m

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(d) T-Drive: Effect of
varying m on performance

 8

 16

 32

 64

 128

 256

 3 6 9

T
im

e
(s

e
c
)

lo
g
2
 s

c
a
le

m

k2 k2-RDBMS k2-LSMT

(e) Brinkhoff Dataset: Effect
of varying m on performance

 5

 5.5

 6

 6.5

 7

 7.5

0.000006 0.000060 0.000600

T
im

e
(s

e
c
)

lo
g
2
 s

c
a
le

eps log10 scale

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(f) Trucks: Effect of varying
eps on performance

 0.1

 1

 10

 100

 1000

 10000

0.000006 0.000060 0.000600

T
im

e
(s

e
c
)

lo
g
1
0
 s

c
a
le

eps log10 scale

VCoDA
VCoDA*

k2-File
k2-RDBMS

k2-LSMT

(g) T-Drive: Effect of
varying eps on performance

 0

 50

 100

 150

 200

0.000006 0.000060 0.000600

T
im

e
(s

e
c
)

eps log10 scale

k2-File k2-RDBMS k2-LSMT

(h) Brinkhoff Dataset:
Effect of varying eps on

performance

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

200 400 600 800 10001200

T
im

e
 (

s
e
c
)

k

HWMT
merge

extend-left

extend-right
validation

(i) Execution times for
different k2-LSMT phases

 0

 100

 200

 300

 400

 500

200 400 600 800 10001200

c
o
u
n
t

k

k2-LSMT VCoDA

(j) Pre-Validation Convoys

 0

 1

 2

 3

 4

 5

 6 8 10 49 161

T
im

e
(s

e
c
)

Convoy Count log10 scale

k2-RDBMS-B k2-LSMT-B

(k) Effect of Convoy Count
(Trucks)

 0

 20

 40

 60

 80

 100

 120

 140

 29 122

T
im

e
(s

e
c
)

No. of Points (millions) log10 scale

k2-LSMT VCoDA* k2-RDBMS

(l) Data Size Scalability

Figure 8: k/2-hop Performance Experiments

discovered by VCoDA because of the clustering process re-
stricted to only the subset of the data thus saving time on
the validation process. It turns out that the difference in
the number of pre-validations convoys between VCoDA and
k/2 algorithms is not very significant, thus the performance
gain achieved by k/2-hop in terms of lesser validation time
is not very significant. This effect can also be seen in Figure
8i which shows that the time spent on the validation process
by VCoDA as well as k/2 algorithm is insignificant.

6.3.10 Effect of Convoy Count
Figure 8k shows the execution time of k/2-hop algorithms

for the number of convoys found in the data set. It can be
seen that generally the execution time increases with more
convoys but this is not always true. It is possible to have no
convoys in the dataset and a higher execution time because
of lower object conversion ratio. The datasets in which many
objects tend to be closer but not for long enough to form
convoys, have lower object conversion ratio and hence higher
execution time per convoy.

6.3.11 Data Size Scalability
Figure 8l shows the data size scalability of the convoy

mining algorithms. The execution time of VCoDA∗ in-
creases sharply with the increase in the data size but for the
larger dataset, i.e.; Brinkhoff dataset, it crashes. The k/2
algorithms show sub-linear increase in the execution time
and show huge performance gain (2 orders of magnitude)
over VCoDA* algorithm which increases with the size of the

dataset. This shows that k/2 algorithms can process very
large data sets on a single machine.

7. CONCLUSION AND FUTURE WORK
Convoy is a rare pattern and mining it is computationally

expensive. Existing algorithms do not scale up to the huge
amounts of movement data. In this paper we propose the
k/2-hop algorithm which is highly scalable and outperforms
any existing sequential or parallel algorithms by orders of
magnitude because of its smart sampling technique which
mostly prunes more than 99% of the data. The performance
of k/2-hop increases with the increase in k and m, and the
decreases in the values of eps. k2-RDBMS performs the best
in small to medium datasets, whereas k2-LSMT outperforms
k2-RDBMS in large datasets. The k/2-hop technique can be
applied to numerous movement pattern mining algorithms
such as moving clusters [15] and flock patterns [9, 24, 22] to
make them fast and efficient, and also to enable them to use
operational data stores with negligible overhead.

In future, we would like to use k/2-hop to mine differ-
ent movement patterns like moving clusters and flocks. We
would also like to parallelize k/2-hop using distributed data
processing platforms e.g Apache Spark and Apache Flink.

8. ACKNOWLEDGMENTS
This research was partially funded by ”The Erasmus

Mundus Joint Doctorate in Information Technologies for
Business Intelligence - Doctoral College (IT4BI-DC)”.

959

9. REFERENCES

[1] H. H. Aung and K.-L. Tan. Discovery of evolving
convoys. In Scientific and Statistical Database
Management, pages 196–213. Springer, 2010.

[2] T. Brinkhoff. Generating network-based moving
objects. In Scientific and Statistical Database
Management, 2000. Proceedings. 12th International
Conference on, pages 253–255. IEEE, 2000.

[3] T. Brinkhoff. A framework for generating
network-based moving objects. GeoInformatica,
6(2):153–180, 2002.

[4] B.-R. Dai, I. Lin, et al. Efficient map/reduce-based
dbscan algorithm with optimized data partition. In
Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 59–66. IEEE, 2012.

[5] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica: The International Journal for
Geographic Information and Geovisualization,
10(2):112–122, 1973.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226–231, 1996.

[7] Q. Fan, D. Zhang, H. Wu, and K.-L. Tan. A general
and parallel platform for mining co-movement
patterns over large-scale trajectories. PVLDB,
10(4):313–324, 2016.

[8] S. Ghemawat and J. Dean. Mapreduce: simplified
data processing on large clusters. In Proc. OSDI, 2004.

[9] J. Gudmundsson and M. van Kreveld. Computing
longest duration flocks in trajectory data. In
Proceedings of the 14th annual ACM international
symposium on Advances in geographic information
systems, pages 35–42. ACM, 2006.

[10] J. Gudmundsson, M. van Kreveld, and B. Speckmann.
Efficient detection of motion patterns in
spatio-temporal data sets. In Proceedings of the 12th
annual ACM international workshop on Geographic
information systems, pages 250–257. ACM, 2004.

[11] P. N. Hai, P. Poncelet, and M. Teisseire. G e t m ove:
an efficient and unifying spatio-temporal pattern
mining algorithm for moving objects. In International
Symposium on Intelligent Data Analysis, pages
276–288. Springer, 2012.

[12] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan.
Mr-dbscan: a scalable mapreduce-based dbscan
algorithm for heavily skewed data. Frontiers of
Computer Science, 8(1):83–99, 2014.

[13] H. Jeung, H. T. Shen, and X. Zhou. Convoy queries in
spatio-temporal databases. In Data Engineering, 2008.
ICDE 2008. IEEE 24th International Conference on,
pages 1457–1459. IEEE, 2008.

[14] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
PVLDB, 1(1):1068–1080, 2008.

[15] P. Kalnis, N. Mamoulis, and S. Bakiras. On
discovering moving clusters in spatio-temporal data.
In Advances in spatial and temporal databases, pages
364–381. Springer, 2005.

[16] F. Orakzai, T. Calders, and T. B. Pedersen.
Distributed convoy pattern mining. In Mobile Data
Management (MDM), 2016 17th IEEE International
Conference on, volume 1, pages 122–131. IEEE, 2016.

[17] F. Orakzai, T. Calders, and T. B. Pedersen. k/2-hop:
Fast mining of convoy patterns with effective pruning
[full version]. https://bit.ly/2VCMCT6, 2019.

[18] F. Orakzai, T. Devogele, and T. Calders. Towards
distributed convoy pattern mining. In Proceedings of
the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS ’15,
pages 50:1–50:4, New York, NY, USA, 2015. ACM.

[19] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The
log-structured merge-tree (lsm-tree). Acta
Informatica, 33(4):351–385, 1996.

[20] M. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao,
F. Manne, and A. Choudhary. A new scalable parallel
dbscan algorithm using the disjoint-set data structure.
In High Performance Computing, Networking, Storage
and Analysis (SC), 2012 International Conference for,
pages 1–11. IEEE, 2012.

[21] N. Phan, P. Poncelet, and M. Teisseire. All in one:
Mining multiple movement patterns. International
Journal of Information Technology & Decision
Making, 15(05):1115–1156, 2016.

[22] A. O. C. Romero. Mining moving flock patterns in
large spatio-temporal datasets using a frequent pattern
mining approach. PhD thesis, Master Thesis,
University of Twente (March 2011), 2011.

[23] L.-A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung,
C.-C. Hung, and W.-C. Peng. On discovery of
traveling companions from streaming trajectories. In
Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, pages 186–197. IEEE,
2012.

[24] M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line
discovery of flock patterns in spatio-temporal data. In
Proceedings of the 17th ACM SIGSPATIAL
international conference on advances in geographic
information systems, pages 286–295. ACM, 2009.

[25] H. Yoon and C. Shahabi. Accurate discovery of valid
convoys from moving object trajectories. In Data
Mining Workshops, 2009. ICDMW’09. IEEE
International Conference on, pages 636–643. IEEE,
2009.

[26] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with
knowledge from the physical world. In Proceedings of
the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 316–324.
ACM, 2011.

[27] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on
taxi trajectories. In Proceedings of the 18th
SIGSPATIAL International conference on advances in
geographic information systems, pages 99–108. ACM,
2010.

960

