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Abstract— Magnetic components are usually assumed
relatively reliable in power electronic converters. Never-
theless, with the trend for ever-increasing power density,
planar magnetics may need to be designed with reduced
margins in terms of thermal and insulation. Wear out or
even failure of magnetic components may become an issue
in extreme design and operation scenarios. This paper
presents the first observations in degradation testing of
planar magnetics at high temperatures. It serves to investi-
gate the change of various parameters and identify possible
ones as the health indicators of magnetic components for
power electronic applications. The degradation testing and
characterization results are presented and interpreted.

Keywords—Planar transformer, loss, impedance, degra-
dation, reliability.

I. INTRODUCTION

Planar transformers are preferred in high-frequency and

high-power-density power electronics, for their low profile,

large heat dispassion surface and easy mass production ca-

pability with small parameters variation[1, 2]. Nevertheless,

planar transformers become more and more stressed in per-

spective of reliability due to the following reasons:

• more harmonic electro-magnetic excitations lead to se-

vere high frequency effects, e.g., skin and proximity ef-

fects, which increase component losses and temperature;

• commercial power electronic products require a design

solution with a competitive cost, which means a small

design margin and deteriorated reliability performance;

• the increase of voltage and power density requires a more

reliable insulation which can deal with high voltage and

high temperature;

• emerging applications (e.g., precision drive, medical,

aerospace, more electrical aircrafts, etc.) require high

indexes in aspects of volume and reliability.

The reliability challenges are classified as external and internal

stresses, as illustrated in Fig. 1. Normally, planar transformers

are constructed with planar cores and printed circuit boards

(PCB) windings, while insulation layers or tapes are inserted in

between to provide isolation function. The failure of magnetics

means the lose of power transfer function due to the insula-

tion breakdown, core failure, winding short circuit, thermal

runaway, and degradation, etc. The degradation refers to the

shift of electromagnetic parameters, e.g., parasitic capacitance,

inductance, resistance and core losses, etc. The physics-of-

failure (PoF) approach through long-time reliability tests is

essential to understand the failure mechanisms of planar

magnetics in power electronics [3].
From a component level of view, the failure of planar

magnetics mainly comes from the magnetic cores, insulation,

and printed circuit boards (PCBs). The degradation of the

magnetic core is attributed to the localized overheating, dis-

torted magnetic flux, internal and external magnetic force, and

even the shape and volume of the core [4]. They may cause

the crystallization, oxidation and other reactions of the core

[5]. The degradation can be identified by the characteristic

parameters, such as the loss density and permeability. They are

regarded as particular for iron power core materials which usu-

ally contain organic content [4, 5]. However, recent research

reports the Cobalt-doped Mn–Zn ferrite also subjects to aging

under thermal stress [6]. The core loss permanently increases

at 100 kHz while decreases above 500 kHz. On the other side,

the core loss shows a reversible increase under a magnetic field

and no changes under humid environment. The mechanism of

thermal aging for MgMnFeO ferrites was analyzed early in

1967 [7]. The decline of ferrite permeability is also realized

in telecommunications applications [8], and is expressed as the

disaccommodation factor Df . The amorphous alloy cores for

low and medium frequency applications are tested in [9]. Both

the increase of core loss and x-ray diffractograms indicate

the aging after two years. There is mature research on the

insulation in power transformers. The degradation of insulation

is identified by the degree of polymerization (DP), which is the

average length of the cellulose rings or molecule structure in

oil and dry type insulation paper, respectively [10]. Based on

the failure mechanism related to the DP value, the Arrhenius

equation is adopted in the power transformer loading guide

for lifetime calculation [11]. This equation is also used for

the insulation lifetime prediction in electrical machines and

wires under thermal stress [12, 13]. Compared with the normal

insulation wire, PCB windings have complex structures, and

therefore are relatively vulnerable to vibration and thermal

stresses. In [14], the failure mechanism of the PCBs by

the flux residue, electric field, temperature, and humidity is

investigated; however no lifetime model has been developed.
From a system level point of view, the American military

handbook established a classic reliability model for transform-

ers in 1991 [15]. However, most of the coefficients have been
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Fig. 1: Basic structure of a planar transformer (a) and its external reliability stresses (b, c) and internal reliability stresses (d, e, f).

outdated nowadays, and the method to gain these values is

unknown. The lifetime model in [16] has the similar formula

form with that in [15], and it is used by manufacturers for

the lifetime calculation of planar transformers [17]. There are

more degradation tests for different kinds of magnetics, e.g.

power transformer, electrical machine, insulation winding, in

[12, 13]. However, planar magnetics have unique and more

compact structures, and may suffer from different reliability

stresses, as aforementioned. Therefore, systematic test and

research on the degradation of planar magnetic components

need to be covered.

This paper presents the first observations in the degradation

tests of planar magnetics. Test set-ups are built to evaluate

various parameters through aging period. Two thermal stresses

are exerted to three kinds of core materials and two kinds of

planar transformers. Moreover, the failure mechanism and the

health indicators of planar magnetics are investigated, which

can be further used for the lifetime modeling and prediction.

II. TEST SETUP AND SPECIMEN

A. Core Test Setup

A widely-used two-winding method [18] is adopted for

characterizing the power loss measurement of core materials,

as illustrated in Fig. 2. Two windings with the same specifi-

cations are wiring around the core. They are with the same

number of turns and perform as the primary and secondary

windings of a transformer. The primary winding is connected

to the power amplifier, while the secondary winding is open-

circuited. The excitation current through the primary winding

and the induced voltage across the secondary winding are mea-

sured by the Newtons4th Precision Power Analyzer PPA5500.

The total loss generated by the transformer is obtained as the

core loss. The secondary winding is open-circuited, thus the

transfer current it is neglectable, I1 ≈ Im and V2 ≈ Vm.

The measured loss is regarded as the core loss by Rm. Both

windings are with only five turns and Litz wires are used, so

the winding loss is negligible.
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(a) Core loss measurement method and the equivalent circuit of
a transformer.
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(b) Three kinds of core materials (F1, F2 and F3) and the applied
thermal stresses (180 ◦C and 200 ◦C).

Fig. 2: Core loss test method and three kinds of core materials under test.

The permeability of the material is measured with the

Keysight impedance analyzer E4990A. The secondary winding

is connected to the analyzer for the inductance value Li. The

permeability of the material μi is then calculated as:

μ =
Lil

N2μ0A
, (1)
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Fig. 3: Transformer insulation test setup and a typical partial discharge
waveform.

where l is the average path length of a core, N is the number

of turns of a winding, μ0 is the permeability of vacuum.

For the state of standardization and convenience, all the tests

are done with EE cores instead of toroids or planar cores.

Only one bobbin set wiring both primary and secondary is

used for all tests to ensure the same winding configurations.

The surface of each EE core pair is not perfectly smooth, and

there may be small air-gaps in between. So the two cores are

always pressed tightly to reduce this influence. Moreover, the

unsooth surface is inherent for each core and will not affect

the parameter change trend on which this paper focuses. Three

kinds of ferrites with the same core shape are used, marked

as F1, F2 and F3. Each group consists of 5 sets, which are

ferrite also commonly used for planar cores. They are placed

in 180 ◦C and 200 ◦C ovens, and each temperature is with

five sets, as is illustrated in Fig. 2(b).

B. Insulation Test Setup

To provide the functionality of transformers, the insulation

is one of the key components which affect the reliability of the

transformer. The partial discharge (PD) is a localized electrical

discharge, which only partially bridges the insulation between

conductors [19]. PD measuring is widely used for power

transformer to detect the degradation and aging of insulation.
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(a.1) Primary. (a.2) Short-circuit. (a.3) Insulation.

(a.4) General equivalent circuit of the planar transformer.

(a) The measurement configurations and equivalent circuit.
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(b) Two types of planar transformer specimens with two thermal stresses.

Fig. 4: Planar transformer measurement configurations and specimens. Con-
figuration (a.1) is to obtain Lm + L1σ and Rm+ R1, configuration (a.2) is
to obtain L1σ + L2σ and R1+ R2, and configuration (a.3) is to obtain C12

and R12, respectively.

The test is performed under IEC STANDARD 60270 [20].

The test set-up for the planar transformer and a typical

phase resolved PD pattern is illustrated in Fig. 3. Due to the

frequency limitation of the voltage source and high voltage

transformer in the high voltage lab, the test is done at 50 Hz.

The discharge is expected to be different in the kHz range,

in which the planar transformer operates. However, the 50

Hz results can still indicate the insulation characterization.

Two types of planar transformers, grouped as P1 and P2, are

tested and shown in Fig. 4(b). Each type is with 16 samples,

numbered 1 to 16. No. 1 to No. 7 are for 200 ◦C thermal

stress, while No. 9 to No. 15 are 180 ◦C, respectively. No. 8

and No. 16 are kept in the room temperature for comparison.

Transformers are soldered on the text boards, it is shown in

Fig. 3(a) as the device under test (DUT).

C. Transformer Test Setup

System-level planar transformer tests have also been con-

ducted with the samples in Fig. 4(b). The test board in Fig.

3(a) is also used here. Three kinds of test connections are

performed for each transformer, as given in Fig. 4(a). The

tests are carried out with the Keysight impedance analyzer

E4990A, and the excitation voltage is a constant value of 0.5 V.



5
6
7
8
9

10
11
12

0 20 40 60

C
or

e 
lo

ss
 (k

w
/m

 )

Time (day)

1&2  3&4 5&6 7&8 9&10

3

(a) Losses of material F1, 54.5 mT

50
60
70
80
90

100
110
120

0 20 40 60

C
or

e 
lo

ss
 (k

w
/m

 )

Time (day)

1&2 3&4 5&6 7&8 9&10

3

(b) Losses of material F2, 133 mT

0
20
40
60
80

100
120

0 20 40 60

C
or

e 
lo

ss
 (k

w
/m

 )

Time (day)

1&2 3&4 5&6 7&8 9&10

3

(c) Losses of material F3, 133 mT

1000

1200

1400

1600

1800

2000

0 20 40 60

Pe
rm

ea
bi

lit
y

Time (day)
1&2  3&4 5&6 7&8 9&10

(d) Permeability of material F1

1000

1200

1400

1600

1800

0 20 40 60

Pe
rm

ea
bi

lit
y

Time (day)
1&2 3&4 5&6 7&8 9&10

(e) Permeability of material F2

1000
1500
2000
2500
3000
3500
4000

0 20 40 60

Pe
rm

ea
bi

lit
y

Time (day)
1&2 3&4 5&6 7&8 9&10

(f) Permeability of material F3

Fig. 5: Core losses and induced flux results during 55 days of 200 ◦C thermal stress, tested at 20 kHz, one set of F 2 core is broken during the test in 40
days.
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Fig. 6: Core losses and induced flux results during 55 days of 200 ◦C thermal stress, tested at 200 kHz, one set of F 2 core is broken during the test in 40
days.

The impedance of the test board is measured before and then

subtracted from the measurement results of specimens.

To eliminate the impact of the test board, the test board

is tested first with the impedance and phase of Zboard and

θboard, respectively. With the testing results of the ith planar

transformer on the test board Zit and θit, the impedance of

the ith transformer itself is obtained by:

Zix = Zit cos(θit)− Zboard cos(θboard),

Ziy = Zit sin(θit)− Zboard sin(θboard),
(2)

Zi =
√
Z2

ix + Z2
iy, θi = arctan

Zix

Ziy
. (3)
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(d) Partial discharge results of inception voltage, P2, 180 ◦C.

Fig. 7: Insulation test of planar transformer P1 and P2 with thermal stresses in 180 ◦C and 200 ◦C. Three times of tests are performed for each point, the
inception voltage are the average value and the standard deviation is also given as the error bar. Several transformers are failed or with unreasonable results,
and no inception voltage is given.

III. ACCELERATED LIFETIME TESTS WITH THERMAL

STRESS

A. Core Test

The core loss and permeability of cores are tested for the

55 days of thermal stress at 200 ◦C. Two frequency points (20

k and 200 kHz) are selected for the test and the results are

given in Fig. 5 and Fig. 6, respectively. The test is performed

each time after the core is taken out of the oven and naturally

cooled down till room temperature. At 20 kHz, the excitation

voltages of the amplifier are 5.9, 14.5 and 14.5V for material

F1, F2, and F3, and the induced flux density B in the core are

54.5, 133 and 133 mT. At 200 kHz, the excitation voltage

are 12.8, 28.5, 28.5V and the flux density are 11.8, 26.2,

26.2 mT, respectively. Due to the limited page space and slow

degradation process, the testing points of 180 ◦C are not given.

The results will be reported in a following paper.

It can be seen that there is a continuous loss increase

with the increase of time in both frequency. In the low

frequency range, the hysteresis loss dominates, while at higher

frequencies, the eddy current loss is the dominant loss. The

test results indicate a large loss absolute value increment of

the materials in high frequencies, while similar loss percentage

increases in both frequencies. It shows that the ferrite not only

has different initial loss in different frequencies, but also with

different loss density increment with thermal aging at different

frequencies.

The permeability at two frequencies, however, shows almost

same value and change trend with the aging process. The test

results vary and are difficult to conclude a change trend for the

permeability. This is probably due to the slow change ratio of

permeability, and the test with two EE cores is largely affected

by the air gap although they are pressed tightly in each test.

The thermal stress is still applying on the cores, and toroidal

cores will be tested in the next step. More results and will be

reported in a future paper.

Finally, the cores are becoming more and more smelly, and

the color of the core is changing from black to grey, which is

also an indication of the degradation.

B. Insulation Test

With the increase of the applied voltage, partial discharge

(PD) starts to occur in the insulation. When the measured

PD level exceeds 10 pC, it is regarded as a PD inception

in the insulation. PD inception voltage, which the voltage

at which PD is triggered, are measured. The measured PD

inception voltages for different samples are shown in Fig. 7.

Several transformer is failed, as is summarized in Table I.



Fig. 8: Test results of No. 1 to 7 planar transformers in P1 group, 200 ◦C, 90 days, the related parameters are illustrated in Fig. 4(a).

Fig. 9: Test results of No. 8 to 15 planar transformers in P1 group, 180 ◦C, 108 days, the related parameters are illustrated in Fig. 4(a).

Compared with the initial values (0 day), the inception voltage

decreases with the thermal aging process. Normally, it means

the degradation of the insulation, and the partial discharge

happens more easily. Thus the thermal stress has an impact

on the degradation of the insulation system. The inception

voltage of P1 after 34 days (200 ◦C) is almost the same as

the 0 day result. It is reasonable to have the hypothesis that the

non-change is due to the difference in its insulation system.

C. Transformer Test
Multiple parameters of planar transformers at 100 kHz are

tested and compared in Figs. 8, 9, 10, and 11. Similar to the

core test, transformers are also tested after being taken outside

of the oven and cooled to room temperature.

In Figs. 8 and 9 as group P1, for both temperatures, the

change trend of each parameter is similar. Transformers in

200 ◦C in P1 group are analyzed below. The primary induc-

tance and resistance is continuously decreasing. However, the

gradient is decreasing. A roughly 30% decrease is obtained

from the primary inductance Lm + Lσ , while the primary

resistance Rm + R1σ decreases by 70%. The decrease of the

inductance is regarded as the degradation of the core or the

increase of air gap due to the degradation of core adhesive



Fig. 10: Test results of No. 1 to 7 planar transformers in P2 group, 200 ◦C, 69 days, the related parameters are illustrated in Fig. 4(a).

Fig. 11: Test results of No. 8 to 15 planar transformers in P2 group, 180 ◦C, 83 days, the related parameters are illustrated in Fig. 4(a).

paste. The decrease of the resistance is due to the core and

winding.

The short-circuit L1σ + L2σ is mainly dependent on the

permeability of the air and insulation material. It is also

slightly affected by the core for its the magnetic field control

function. The permeability of the air and insulation is not

affected much over aging, so does the short-circuit L1σ+L2σ .

The short-circuit resistance R1σ + R2σ is mainly dependent

on the winding, and it increases slightly (about 25%) before

69 days. This is probably due to the oxidation of the copper

layer. The divergent distribution result of R1σ + R2σ at 90

days is probably due to the measurement error.

The insulation capacitance C12 and resistance R12 between

the primary and secondary winding depend on the insulation

material. The measured insulation resistance is in the range

of hundreds of Ω, which is relatively small. It is probably

caused by the revolution limitation of the current sensor in the

impedance analyzer. However, the measured value is stable

and the change trend is still meaningful for the degradation

observation. An approximate of 35% decrease is observed for

C12, while a about 70% rise is seen for R12. They are the

indications of degradation. From the visual inspection in Fig.



1 (f), the insulation layer between the PCB winding layers

is yellow transparent and does not change the color at this

moment, and the solder mask on the PCB winding turns

from green to black, which is a failure indication. However,

the insulation function of the planar transformer is mainly

provided by the insulation layer, and the slow degradation of

it helps for the reliability.

In Figs. 10, and 11 as group P2, all the parameters in both

temperatures also show a similar variation trend. However,

their trends are not the same as those in P1 group. This is

probably due to the different core and insulation materials

applied in P1 and P2. Due to the relative slow change ratio

and page limitation in the paper, their trends are not analyzed

in detail here.

To summarize, there are considerable degradation in the

core from all the related parameters; for copper winding and

insulation, some parameters are shifting with large proportion

while others are not.

IV. CONCLUSIONS

This paper presents the first observations in the degradations

of planar magnetics. In order to determine the degradation

indicators, various parasitic parameters are characterized be-

fore and during the degradation test. The degradation and

failure mechanisms of the core, insulation, PCB winding, and

the planar transformer are also investigated. The 55 days of

200 ◦C thermal stress leads to a considerable increase of the

loss density of core specimens. The inception voltage in the

partial discharge test for the planar transformer decreases with

aging process, which indicates a degradation of the insulation

layer. For the planar transformers, 90 days of 200 ◦C and

108 days of 180 ◦C thermal stresses are exerted and eight

parasitic parameters are measured. For P1 transformer under

200 ◦C thermal stress, the primary inductance and resistance,

and the insulation capacitance are decrease by about 30%,

70%, and 35%, respectively, while the leakage resistance and

the insulation resistance are increased by around 25% and

70%, respectively. Compared to the high voltage PD test,

the determination of the RLC parameters of planar magnetics

is more convenient. They are with a good potential for the

indicator of degradation or failure status. The up-to-failure test

results of the specimens will be reported in a future paper.
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